The ISel patterns we have for truncating to i1's under MVE do not seem
to be correct. Instead custom lower to icmp(ne, and(x, 1), 0).
Differential Revision: https://reviews.llvm.org/D94226
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
This is a recommit of 6cc3d80a84 after
fixing the backward instruction definitions.
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
Differential Revision: https://reviews.llvm.org/D92553
The code here seems to date back to r134705, when tablegen lowering was first
being added. I don't believe that we need to include CPSR implicit operands on
the MCInst. This now works more like other backends (like AArch64), where all
implicit registers are skipped.
This allows the AliasInst for CSEL's to match correctly, as can be seen in the
test changes.
Differential revision: https://reviews.llvm.org/D66703
llvm-svn: 370745
Arm 8.1-M adds a number of related CSEL instructions, including CSINC, CSNEG and CSINV. These choose between two values given the content in CPSR and a condition, performing an increment, negation or inverse of the false value.
This adds some selection for them, either from constant values or patterns. It does not include CSEL directly, which is currently not always making code better. It is still useful, but we will have to check more carefully where it should and shouldn't be used.
Code by Ranjeet Singh and Simon Tatham, with some modifications from me.
Differential revision: https://reviews.llvm.org/D66483
llvm-svn: 370739
This adds patterns for selecting trunc instructions from full vectors to i1's
vectors.
Differential Revision: https://reviews.llvm.org/D66201
llvm-svn: 368981
These are some better patterns for converting between predicates and floating
points. Much like the extends, we select "1"/"-1" or "0" depending on the
predicate value. Or we perform a compare against 0 to convert to a predicate.
Differential Revision: https://reviews.llvm.org/D65103
llvm-svn: 367191
The prevents us from trying to convert an i1 predicate vector to a float, or
vice-versa. Better patterns are possible, which will follow in a subsequent
commit. For now we just expand them.
Differential Revision: https://reviews.llvm.org/D65066
llvm-svn: 366931
This adds support code for building and shuffling i1 predicate registers. It
generally uses two basic principles, either converting the predicate into an
scalar (through a PREDICATE_CAST) and doing scalar operations on it there, or
by converting the register to an full vector register and back.
Some of the code here is a not super efficient but will hopefully cover most
cases of moving i1 vectors around and can be improved in subsequent patches.
Some code by David Sherwood.
Differential Revision: https://reviews.llvm.org/D65052
llvm-svn: 366890