The update_test_checks script can now check for global symbols and is able
to handle them properly when they differ across prefixes, e.g.,
attribute #0 might be different in different runs.
This patch simply updates all the Attributor tests with the new script.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D97906
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
This is similar to D94106, but for the
isGuaranteedToTransferExecutionToSuccessor() helper. We should not
assume that readonly functions will return, as this is only true for
mustprogress functions (in which case we already infer willreturn).
As with the DCE change, for now continue assuming that readonly
intrinsics will return, as not all target intrinsics have been
annotated yet.
Differential Revision: https://reviews.llvm.org/D95288
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
Currently LLVM is relying on ValueTracking's `isKnownNonZero` to attach `nonnull`, which can return true when the value is poison.
To make the semantics of `nonnull` consistent with the behavior of `isKnownNonZero`, this makes the semantics of `nonnull` to accept poison, and return poison if the input pointer isn't null.
This makes many transformations like below legal:
```
%p = gep inbounds %x, 1 ; % p is non-null pointer or poison
call void @f(%p) ; instcombine converts this to call void @f(nonnull %p)
```
Instead, this semantics makes propagation of `nonnull` to caller illegal.
The reason is that, passing poison to `nonnull` does not immediately raise UB anymore, so such program is still well defined, if the callee does not use the argument.
Having `noundef` attribute there re-allows this.
```
define void @f(i8* %p) { ; functionattr cannot mark %p nonnull here anymore
call void @g(i8* nonnull %p) ; .. because @g never raises UB if it never uses %p.
ret void
}
```
Another attribute that needs to be updated is `align`. This patch updates the semantics of align to accept poison as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90529
The dominating condition handling in isKnownNonZero() currently
only takes into account conditions of the form "x != 0" or "x == 0".
However, there are plenty of other conditions that imply non-zero,
a common one being "x s> 0".
Peculiarly, the handling for assumes was already dealing with more
general non-zero-ness conditions, so this just reuses the same
logic for the dominating condition case.
D70365 allows us to make attributes default. This is a follow up to
actually make nosync, nofree and willreturn default. The approach we
chose, for now, is to opt-in to default attributes to avoid introducing
problems to target specific intrinsics. Intrinsics with default
attributes can be created using `DefaultAttrsIntrinsic` class.
Summary:
The module slice describes which functions we can analyze and transform
while working on an SCC as part of the Attributor-CGSCC pass. So far we
simply restricted it to the SCC.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D86319
Even though `noundef` IR attribute might be attached to non-void type values, AANoUndef is mistakenly identified for pointer type values only.
This patch fixes that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86737
Currently, `AANoUndefImpl::initialize` mistakenly always indicates optimistic fixpoint for function returned position.
This is because an associated value is `Function` in the case, and `isGuaranteedNotToBeUndefOrPoison` returns true for Function.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86361
Comparison against null is a common pattern that usually is followed by
error handling code and the likes. We now use AANonNull to simplify
these comparisons optimistically in order to make more code dead early
on.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D86145
`AADereferenceable::getAssumedDereferenceableBytes()` is actually
deducing `dereferenceable_or_null`. We should not use that information
to deduce `nonnull`, since it doesn't imply `nonnull`.
This patch introduces a new abstract attribute `AANoUndef` which corresponds to `noundef` IR attribute and deduce them.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85184
Before we tired to create a dominator tree for a declaration when we
wanted to determine if the function pointer is `nonnull`. We now avoid
looking at global values if `Value::getPointerDereferenceableBytes` not
already determined `nonnull`.
All these tests already explicitly test against both legacy PM and NPM.
$ sed -i 's/ -attributor / -attributor -enable-new-pm=0 /g' $(rg --path-separator // -l -- -passes=)
$ sed -i 's/ -attributor-cgscc / -attributor-cgscc -enable-new-pm=0 /g' $(rg --path-separator // -l -- -passes=)
Now all tests in Transforms/Attributor/ pass under NPM.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84813
Summary:
All tests are updated, except wrapper.ll since it is not working nicely
with newly created functions.
Reviewers: jdoerfert, uenoku, baziotis, homerdin
Subscribers: arphaman, jfb, kuter, bbn, okura, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84130
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
We should never give up on AAIsDead as it guards other AAs from
unreachable code (in which SSA properties are meaningless). We did
however use required dependences on some queries in AAIsDead which
caused us to invalidate AAIsDead if the queried AA got invalidated.
We now use optional dependences instead. The bug that exposed this is
added to the liveness.ll test and other test changes show the impact.
Bug report by @sdmitriev.
As we replace values with constants interprocedurally, we also need to
do this "look-through" step during the generic value traversal or we
would derive properties from replaced values. While this is often not
problematic, it is when we use the "kind" of a value for reasoning,
e.g., accesses to arguments allow `argmemonly`.
We now use getPointerDereferenceableBytes to determine `nonnull` and
`dereferenceable` facts from the IR. We also use getPointerAlignment in
AAAlign for the same reason. The latter can interfere with callbacks so
we do restrict it to non-function-pointers for now.
In a recent patch we introduced a problem with abstract attributes that
were assumed dead at some point. Since `Attributor::updateAA` was
introduced in 95e0d28b71, we did not
remember the dependence on the liveness AA when an abstract attribute
was assumed dead and therefore not updated.
Explicit reproducer added in liveness.ll.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 509242 (345483/s)
temporary memory allocations: 98666 (66937/s)
peak heap memory consumption: 18.60MB
peak RSS (including heaptrack overhead): 103.29MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 529332 (355494/s)
temporary memory allocations: 102107 (68574/s)
peak heap memory consumption: 19.40MB
peak RSS (including heaptrack overhead): 102.79MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: 20090 (1339333/s)
temporary memory allocations: 3441 (229400/s)
peak heap memory consumption: 801.45KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
Before we eagerly put dependences into the QueryMap as soon as we
encountered them (via `Attributor::getAAFor<>` or
`Attributor::recordDependence`). Now we will wait to see if the
dependence is useful, that is if the target is not already in a fixpoint
state at the end of the update. If so, there is no need to record the
dependence at all.
Due to the abstraction via `Attributor::updateAA` we will now also treat
the very first update (during attribute creation) as we do subsequent
updates.
Finally this resolves the problematic usage of QueriedNonFixAA.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 554675 (389245/s)
temporary memory allocations: 101574 (71280/s)
peak heap memory consumption: 28.46MB
peak RSS (including heaptrack overhead): 116.26MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 512465 (345559/s)
temporary memory allocations: 98832 (66643/s)
peak heap memory consumption: 22.54MB
peak RSS (including heaptrack overhead): 106.58MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: -42210 (-727758/s)
temporary memory allocations: -2742 (-47275/s)
peak heap memory consumption: -5.92MB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
Since we use the fact that some uses are droppable in the Attributor we
need to handle them explicitly when we replace uses. As an example, an
assumed dead value can have live droppable users. In those we cannot
replace the value simply by an undef. Instead, we either drop the uses
(via `dropDroppableUses`) or keep them as they are. In this patch we do
both, depending on the situation. For values that are dead but not
necessarily removed we keep droppable uses around because they contain
information we might be able to use later. For values that are removed
we drop droppable uses explicitly to avoid replacement with undef.
When the Attributor was created the test update scripts were not well
suited to deal with the challenges of IR attribute checking. This
partially improved.
Since then we also added three additional configurations that need
testing; in total we now have the following four:
{ TUNIT, CGSCC } x { old pass manager (OPM), new pass manager (NPM) }
Finally, the number of developers and tests grew rapidly (partially due
to the addition of ArgumentPromotion and IPConstantProp tests), which
resulted in tests only being run in some configurations, different
prefixes being used, and different "styles" of checks being used.
Due to the above reasons I believed we needed to take another look at
the test update scripts. While we started to use them, via UTC_ARGS:
--enable/disable, the other problems remained. To improve the testing
situation for *all* configurations, to simplify future updates to the
test, and to help identify subtle effects of future changes, we now use
the test update scripts for (almost) all Attributor tests.
An exhaustive prefix list minimizes the number of check lines and makes
it easy to identify and compare configurations.
Tests have been adjusted in the process but we tried to keep their
intend unchanged.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D76588
When the Attributor was created the test update scripts were not well
suited to deal with the challenges of IR attribute checking. This
partially improved.
Since then we also added three additional configurations that need
testing; in total we now have the following four:
{ TUNIT, CGSCC } x { old pass manager (OPM), new pass manager (NPM) }
Finally, the number of developers and tests grew rapidly (partially due
to the addition of ArgumentPromotion and IPConstantProp tests), which
resulted in tests only being run in some configurations, different
prefixes being used, and different "styles" of checks being used.
Due to the above reasons I believed we needed to take another look at
the test update scripts. While we started to use them, via UTC_ARGS:
--enable/disable, the other problems remained. To improve the testing
situation for *all* configurations, to simplify future updates to the
test, and to help identify subtle effects of future changes, we now use
the test update scripts for (almost) all Attributor tests.
An exhaustive prefix list minimizes the number of check lines and makes
it easy to identify and compare configurations.
Tests have been adjusted in the process but we tried to keep their
intend unchanged.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D76588
This patch integrates operand bundle llvm.assumes [0] with the
Attributor. Most IRAttributes will now look at uses of the associated
value and if there are llvm.assume operand bundle uses with the right
tag we will check if they are in the must-be-executed-context (around
the context instruction). Droppable users, which is currently only
llvm::assume, are handled special in some places now as well.
[0] http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D74888
Resolution for below fixme:
(ii) Check whether the value is captured in the scope using AANoCapture.
FIXME: This is conservative though, it is better to look at CFG and
check only uses possibly executed before this callsite.
Propagates caller argument's noalias attribute to callee.
Reviewed by: jdoerfert, uenoku
Reviewers: jdoerfert, sstefan1, uenoku
Subscribers: uenoku, sstefan1, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D71617
This patch introduces the propagation of known information based on path exploration.
For example,
```
int u(int c, int *p){
if(c) {
return *p;
} else {
return *p + 1;
}
}
```
An argument `p` is dereferenced whatever c's value is.
For an instruction `CtxI`, we accumulate branch instructions in the must-be-executed-context of `CtxI` and then, we take the conjunction of the successors' known state.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D65593
Summary:
As mentioned in D71974, it is useful for must-be-executed-context to explore CFG backwardly.
This patch is ported from parts of D64975. We use a dominator tree to find the previous context if
a dominator tree is available.
Reviewers: jdoerfert, hfinkel, baziotis, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74817
If we have a replacement for a value, via AAValueSimplify, the original
value will lose all its uses. Thus, as long as a value is simplified we
can skip the uses in checkForAllUses, given that these uses are
transitive uses for the simplified version and will therefore affect the
simplified version as necessary.
Since this allowed us to remove calls without side-effects and a known
return value, we need to make sure not to eliminate `musttail` calls.
Those we keep around, or later remove the entire `musttail` call chain.
We relied on wouldInstructionBeTriviallyDead before but that functions
does not take assumed information, especially for calls, into account.
The replacement, AAIsDead::isAssumeSideEffectFree, does.
This change makes AAIsDeadCallSiteReturn more complex as we can have
a dead call or only dead users.
The test have been modified to include a side effect where there was
none in order to keep the coverage.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D73311
The changeXXXAfterManifest functions are better suited to deal with
changes so we should prefer them. These functions also recursively
delete dead instructions which is why we see test changes.
This patch modularizes the way we check for no-alias call site arguments
by putting the existing logic into helper functions. The reasoning was
not changed but special cases for readonly/readnone were added.
Summary:
New `@test13` in `Attributor/align.ll` is the main motivation - `null` pointer
really does not limit our alignment knowledge, in fact it is fully aligned
since it has no bits set.
Here we don't special-case `null` pointer because it is somewhat controversial
to add one more place where we enforce that `null` pointer is zero,
but instead we do the more general thing of trying to perform constant-fold
of pointer constant to an integer, and perform alignment inferrment on that.
Reviewers: jdoerfert, gchatelet, courbet, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, arphaman, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73131
An inbounds GEP results in poison if the value is not "inbounds", not in
UB. We accidentally derived nonnull and dereferenceable from these
inbounds GEPs even in the absence of accesses that would make the poison
to UB.
As part of the Attributor manifest we want to change the signature of
functions. This patch introduces a fairly generic interface to do so.
As a first, very simple, use case, we remove unused arguments. A second
use case, pointer privatization, will be committed with this patch as
well.
A lot of the code and ideas are taken from argument promotion and we
run all argument promotion tests through this framework as well.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D68765
Especially for callbacks, annotating the call site arguments is
important. Doing so exposed a too strong dependence of AAMemoryBehavior
on AANoCapture since we handle the case of potentially captured pointers
explicitly.
The changes to the tests are all mechanical.
Summary:
Same as D60846 and D69571 but with a fix for the problem encountered
after them. Both times it was a missing context adjustment in the
handling of PHI nodes.
The reproducers created from the bugs that caused the old commits to be
reverted are included.
Reviewers: nikic, nlopes, mkazantsev, spatel, dlrobertson, uabelho, hakzsam, hans
Subscribers: hiraditya, bollu, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71181