The motivating pattern was handled in 0a2d69480d ,
but we should have this for symmetry.
But this really highlights that we could generalize for
any shifted constant if we match this in instcombine.
https://alive2.llvm.org/ce/z/MrmVNt
Add simplification of smul.fix and smul.fix.sat according to
X * 0 -> 0
X * undef -> 0
X * (1 << scale) -> X
This includes the commuted patterns and splatted vectors.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D98299
Do constant folding according to
posion * C -> poison
C * poison -> poison
undef * C -> 0
C * undef -> 0
for smul_fix and smul_fix_sat intrinsics (for any scale).
Reviewed By: nikic, aqjune, nagisa
Differential Revision: https://reviews.llvm.org/D98410
Return UGT rather than NE for icmp @g, null, which is slightly
stronger. This is consistent with what we do for more complex
folds. It is somewhat silly that @g ugt null does not get folded
while (gep @g) ugt null does.
While @g ugt null is always true (ignoring weak symbols),
@g sgt null is not necessarily the case -- that would imply that
it is forbidden to place globals in the high half of the address
space.
I noticed that we were not folding expressions like this:
icmp ult (constexpr), null
in https://llvm.org/PR49355, so we end up with extremely large
icmp instructions as the constant expressions pile up on each other.
There is no potential to mis-fold an unsigned boundary condition
with a zero/null, so this is just falling through a crack in the
pattern matching.
The more general case of comparisons of non-zero constants and
constexpr are more tricky and may require the datalayout to know
how to cast to different types, etc. Negative tests verify that
we are only changing a subset of potential patterns.
Differential Revision: https://reviews.llvm.org/D98150
Pulled out of the original D90479 patch - also includes the "impossible shift amount" filtering from computeKnownBitsFromShiftOperator.
Differential Revision: https://reviews.llvm.org/D90479
Followup to D72573 - as detailed in https://blog.regehr.org/archives/1709 we don't make use of the known leading/trailing zeros for shifted values in cases where we don't know the shift amount value.
Stop ValueTracking returning zero for poison shift patterns and use the KnownBits shift helpers directly.
Extend KnownBits::shl to combine all possible shifted combinations if both min/max shift amount values are in range.
Differential Revision: https://reviews.llvm.org/D90479
Pulled out from D90479 - this recognises invalid nsw shl patterns with signbit changes that result in poison.
Differential Revision: https://reviews.llvm.org/D97305
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
We can fold x*C1/C2 <= x to true if C1 <= C2. This is valid even
if the multiplication is not nuw: https://alive2.llvm.org/ce/z/vULors
The multiplication or division can be replaced by shifts. We don't
handle the case where both are shifts, as that should get folded
away by InstCombine.
This is a partial fix for https://bugs.llvm.org/show_bug.cgi?id=44403.
Folding gep p, q-p to q is only legal if p and q have the same
provenance. This fold should probably be guarded by something like
getUnderlyingObject(p) == getUnderlyingObject(q).
This patch is a partial fix that removes the special handling for
gep p, 0-p, which will fold to a null pointer, which would certainly
not pass an underlying object check (unless p is also null, in which
case this would fold trivially anyway). Folding to a null pointer
is particularly problematic due to the special handling it receives
in many places, making end-to-end miscompiles more likely.
Differential Revision: https://reviews.llvm.org/D93820
Similar to the Arm VCTP intrinsics, if the operands of an
active.lane.mask are both known, the constant lane mask can be
calculated. This can come up after unrolling the loops.
Differential Revision: https://reviews.llvm.org/D94103
Calling null or undef results in immediate undefined behavior.
Return poison instead of undef in this case, similar to what
we do for immediate UB due to division by zero.
Make InstSimplify return poison rather than undef for out-of-bounds
shifts, as specified by LandRef:
> If op2 is (statically or dynamically) equal to or larger than the
> number of bits in op1, this instruction returns a poison value.
Differential Revision: https://reviews.llvm.org/D93998
As the comment already indicates, performing an operation with
nnan/ninf flags on a nan/inf or undef results in poison. Now that
we have a proper poison value, we no longer need to relax it to
undef.
Div/rem by zero is immediate undefined behavior and anything goes.
Currently we fold it to undef, this patch changes it to fold to
poison instead, which is slightly stronger.
Differential Revision: https://reviews.llvm.org/D93995
This is the same change as D93990, but for extractelement rather
than insertelement.
> If idx exceeds the length of val for a fixed-length vector, the
> result is a poison value. For a scalable vector, if the value of
> idx exceeds the runtime length of the vector, the result is a
> poison value.
This is a simple patch that updates InstSimplify to return poison if the index is/can be out-of-bounds
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93990
This commit copies existing tests at llvm/Transforms containing
'shufflevector X, undef' and replaces them with 'shufflevector X, poison'.
The new copied tests have *-inseltpoison.ll suffix at its file name
(as db7a2f347f did)
See https://reviews.llvm.org/D93793
Test files listed using
grep -R -E "^[^;]*shufflevector <.*> .*, <.*> undef" | cut -d":" -f1 | uniq
Test files copied & updated using
file_org=llvm/test/Transforms/$1
if [[ "$file_org" = *-inseltpoison.ll ]]; then
file=$file_org
else
file=${file_org%.ll}-inseltpoison.ll
if [ ! -f $file ]; then
cp $file_org $file
fi
fi
sed -i -E 's/^([^;]*)shufflevector <(.*)> (.*), <(.*)> undef/\1shufflevector <\2> \3, <\4> poison/g' $file
head -1 $file | grep "Assertions have been autogenerated by utils/update_test_checks.py" -q
if [ "$?" == 1 ]; then
echo "$file : should be manually updated"
# The test is manually updated
exit 1
fi
python3 ./llvm/utils/update_test_checks.py --opt-binary=./build-releaseassert/bin/opt $file