Commit Graph

15 Commits

Author SHA1 Message Date
Sanjay Patel 1bee549737 [LoopVectorize] propagate fast-math-flags from induction instructions
This code assumed that FP math was only permissable if it was
fully "fast", so it hard-coded "fast" when creating new instructions.

The underlying code already allows matching recurrences/reductions
that are only "reassoc", so this change should prevent the potential
miscompile seen in the test diffs (we created "fast" ops even though
none existed in the original code).

I don't know if we need to create the temporary IRBuilder objects
used here, so that could be follow-up clean-up.

There's an open question about whether we should require "nsz" in
addition to "reassoc" here. InstCombine uses that combo for its
reassociative folds, but I think codegen is not as strict.
2021-03-04 17:21:32 -05:00
Sanjay Patel 36a489d194 [Analysis][LoopVectorize] rename "Unsafe" variables/methods; NFC
Similar to b3a33553ae, but this shows a TODO and a potential
miscompile is already present.

We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.

I also removed one getter method by rolling the null check into
the access. Further simplification may be possible.

The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.

The new test shows that there is an existing bug somewhere in
the callers. We assumed that the original code was fully 'fast'
and so we produced IR with 'fast' even though it was just 'reassoc'.
2021-03-04 10:40:26 -05:00
Juneyoung Lee 278aa65cc4 [IR] Let IRBuilder's CreateVectorSplat/CreateShuffleVector use poison as placeholder
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93793
2020-12-30 04:21:04 +09:00
Roman Lebedev 5cce4aff18
[SimplifyCFG] TryToSimplifyUncondBranchFromEmptyBlock() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-17 01:03:49 +03:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Daniel Neilson 9e4bbe801a [LV] Preserve inbounds on created GEPs
Summary:
This is a fix for PR23997.

The loop vectorizer is not preserving the inbounds property of GEPs that it creates.
This is inhibiting some optimizations. This patch preserves the inbounds property in
the case where a load/store is being fed by an inbounds GEP.

Reviewers: mkuper, javed.absar, hsaito

Reviewed By: hsaito

Subscribers: dcaballe, hsaito, llvm-commits

Differential Revision: https://reviews.llvm.org/D46191

llvm-svn: 331269
2018-05-01 15:35:08 +00:00
Sanjay Patel b049173157 [SimplifyCFG] use pass options and remove the latesimplifycfg pass
This is no-functional-change-intended.

This is repackaging the functionality of D30333 (defer switch-to-lookup-tables) and 
D35411 (defer folding unconditional branches) with pass parameters rather than a named
"latesimplifycfg" pass. Now that we have individual options to control the functionality,
we could decouple when these fire (but that's an independent patch if desired). 

The next planned step would be to add another option bit to disable the sinking transform
mentioned in D38566. This should also make it clear that the new pass manager needs to
be updated to limit simplifycfg in the same way as the old pass manager.

Differential Revision: https://reviews.llvm.org/D38631

llvm-svn: 316835
2017-10-28 18:43:07 +00:00
Balaram Makam b05a55787a [SimplifyCFG] Defer folding unconditional branches to LateSimplifyCFG if it can destroy canonical loop structure.
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop  unrolling and loop interleaving).

This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.

Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605

Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl

Reviewed By: efriedma

Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D35411

llvm-svn: 308422
2017-07-19 08:53:34 +00:00
Ayal Zaks 8c452d76ed [LV] Test once if vector trip count is zero, instead of twice
Generate a single test to decide if there are enough iterations to jump to the
vectorized loop, or else go to the scalar remainder loop. This test compares the
Scalar Trip Count: if STC < VF * UF go to the scalar loop. If
requiresScalarEpilogue() holds, at-least one iteration must remain scalar; the
rest can be used to form vector iterations. So in this case the test checks
instead if (STC - 1) < VF * UF by comparing STC <= VF * UF, and going to the
scalar loop if so. Otherwise the vector loop is entered for at-least one vector
iteration.

This test covers the case where incrementing the backedge-taken count will
overflow leading to an incorrect trip count of zero. In this (rare) case we will
also avoid the vector loop and jump to the scalar loop.

This patch simplifies the existing tests and effectively removes the basic-block
originally named "min.iters.checked", leaving the single test in block
"vector.ph".

Original observation and initial patch by Evgeny Stupachenko.

Differential Revision: https://reviews.llvm.org/D34150

llvm-svn: 308421
2017-07-19 05:16:39 +00:00
Matthew Simpson 1fb4064531 [LV] Delete unneeded scalar GEP creation code
The code for generating scalar base pointers in vectorizeMemoryInstruction is
not needed. We currently scalarize all GEPs and maintain the scalarized values
in VectorLoopValueMap. The GEP cloning in this unneeded code is the same as
that in scalarizeInstruction. The test cases that changed as a result of this
patch changed because we were able to reuse the scalarized GEP that we
previously generated instead of cloning a new one.

Differential Revision: https://reviews.llvm.org/D30587

llvm-svn: 298615
2017-03-23 16:07:21 +00:00
Matthew Simpson bdc9c78880 [LV] Merge floating-point and integer induction widening code
This patch merges the existing floating-point induction variable widening code
into the integer induction variable widening code, creating a single set of
functions for both kinds of inductions. The primary motivation for doing this
is to enable vector phi node creation for floating-point induction variables.

Differential Revision: https://reviews.llvm.org/D30211

llvm-svn: 296145
2017-02-24 18:20:12 +00:00
Matthew Simpson 835b246d7f [LV] Update floating-point induction test checks (NFC)
llvm-svn: 295885
2017-02-22 21:56:02 +00:00
Matthew Simpson 5ef66ef248 [LV] Add scalar floating-point induction test (NFC)
llvm-svn: 295862
2017-02-22 19:09:38 +00:00
Elena Demikhovsky 376a18bd92 [Loop Vectorizer] Handling loops FP induction variables.
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
  A[i] = x;
  x -= fp_inc;
}

The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.

Differential Revision: https://reviews.llvm.org/D21330

llvm-svn: 276554
2016-07-24 07:24:54 +00:00