This patch fixes pr48832 by correctly generating the mask when a poison value is involved.
Consider this CFG (which is a part of the input):
```
for.body: ; preds = %for.cond
br i1 true, label %cond.false, label %land.rhs
land.rhs: ; preds = %for.body
br i1 poison, label %cond.end, label %cond.false
cond.false: ; preds = %for.body, %land.rhs
br label %cond.end
cond.end: ; preds = %land.rhs, %cond.false
%cond = phi i32 [ 0, %cond.false ], [ 1, %land.rhs ]
```
The path for.body -> land.rhs -> cond.end should be taken when 'select i1 false, i1 poison, i1 false' holds (which means it's never taken); but VPRecipeBuilder::createEdgeMask was emitting 'and i1 false, poison' instead.
The former one successfully blocks poison propagation whereas the latter one doesn't, making the condition poison and thus causing the miscompilation.
SimplifyCFG has a similar bug (which didn't expose a real-world bug yet), and a patch for this is also ongoing (see https://reviews.llvm.org/D95026).
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D95217
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
Currently undef is used as a don’t-care vector when constructing a vector using a series of insertelement.
However, this is problematic because undef isn’t undefined enough.
Especially, a sequence of insertelement can be optimized to shufflevector, but using undef as its placeholder makes shufflevector a poison-blocking instruction because undef cannot be optimized to poison.
This makes a few straightforward optimizations incorrect, such as:
```
; https://bugs.llvm.org/show_bug.cgi?id=44185
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
%xv = insertelement <4 x float> %q, float %x, i32 2
%r = shufflevector <4 x float> %y, <4 x float> %xv, <4 x i32> { 0, 6, 2, undef }
ret <4 x float> %r ; %r[3] is undef
}
=>
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
%r = insertelement <4 x float> %y, float %x, i32 1
ret <4 x float> %r ; %r[3] = %y[3], incorrect if %y[3] = poison
}
Transformation doesn't verify!
ERROR: Target is more poisonous than source
```
I’d like to suggest
1. Using poison as insertelement’s placeholder value (IRBuilder::CreateVectorSplat should be patched too)
2. Updating shufflevector’s semantics to return poison element if mask is undef
Note that poison is currently lowered into UNDEF in SelDag, so codegen part is okay.
m_Undef() matches PoisonValue as well, so existing optimizations will still fire.
The only concern is hidden miscompilations that will go incorrect when poison constant is given.
A conservative way is copying all tests having `insertelement undef` & replacing it with `insertelement poison` & run Alive2 on it, but it will create many tests and people won’t like it. :(
Instead, I’ll simply locally maintain the tests and run Alive2.
If there is any bug found, I’ll report it.
Relevant links: https://bugs.llvm.org/show_bug.cgi?id=43958 , http://lists.llvm.org/pipermail/llvm-dev/2019-November/137242.html
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93586
Use -0.0 instead of 0.0 as the start value. The previous use of 0.0
was fine for all existing uses of this function though, as it is
always generated with fast flags right now, and thus nsz.
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.
In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).
Differential Revision: https://reviews.llvm.org/D75069
This reverts commit e9761688e4. It breaks the build:
```
~/src/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp:868:10: error: no viable conversion from returned value of type 'SmallVector<[...], 8>' to function return type 'SmallVector<[...], 4>'
return ReductionOperations;
```
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.
In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).
Differential Revision: https://reviews.llvm.org/D75069
Also adds a force-reduction-intrinsics option for testing, for forcing
the generation of reduction intrinsics even when the backend is not
requesting them.