Load extra bits if suitably aligned. This allows using widened
3-vector loads on SI, and fixes legalization for <9 x s32> (which LSV
apparently forms frequently on lowered kernel argument lists).
Fix incorrectly treating these as legal on SI. This should emit a
64-bit store and a 32-bit store.
I think all of the load and store rules are just about complete, but
due for a rewrite.
The isNegatibleForFree/getNegatedExpression methods currently rely on a raw char value to indicate whether a negation is beneficial or not.
This patch replaces the char return value with an NegatibleCost enum to more clearly demonstrate what is implied.
It also renames isNegatibleForFree to getNegatibleCost to more accurately reflect whats going on.
Differential Revision: https://reviews.llvm.org/D74221
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
Consider:
%r = call i32 @llvm.amdgcn.writelane(i32 0, i32 1, i32 2)
This produces a value that is 0 on lane 1, and 2 everywhere else; i.e.,
it is divergent.
Reported-by: Marek Olsak <Marek.Olsak@amd.com>
Reviewers: arsenm, foad, mareko
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74400
These should require AVX512VL not AVX512F. The legacy VEX patterns
will match first unless AVX512VL is enabled so this doesn't cause
a functional issue.
This adds a strict version of FP16_TO_FP and FP_TO_FP16 and uses
them to implement soft promotion for the half type. This is
enough to provide basic support for __fp16 with strictfp.
Add the necessary X86 support to use VCVTPS2PH/VCVTPH2PS when F16C
is enabled.
This was creating a select on true/false values, and then comparing
that later. This produced more work for later combines, which can be
avoided by just using the boolean values. This was copied from the
original DAG expansion, which also has the same problem. This doesn't
have a observable change using SelectionDAG, but since GlobalISel is
missing these optimizations, the final code was noticeably longer.
These have nicer expansions implemented in the DAG. Ideally we would
either directly implement all of these special expansions, or stop
expanding division in the IR.
This is apparently worse than 1-byte alignment. This does not attempt
to decompose 2-byte aligned wide stores, but will stop trying to
produce them.
Also fix bug in LoadStoreVectorizer which was decreasing the alignment
and vectorizing stack accesses. It was assuming a stack object was an
alloca that could have its base alignment changed, which is not true
if the pointer is derived from a function argument.
Since natural fdiv lowering is now more conservative even with
denormals disabled, we get a slower expansion from just a plain
1.0/fdiv. Directly emit the rcp intrinsic when using it to implement
integer division to avoid a pointlessly complex sequence.
We aren't doing a good job of optimizing AVX512 outside of this code. So remove the bail out for AVX512 and replace with a FIXME. This at least gets us the AVX2 codegen.
Differential Revision: https://reviews.llvm.org/D74431
This patch adds the support required for using the __riscv_save and
__riscv_restore libcalls to implement a size-optimization for prologue
and epilogue code, whereby the spill and restore code of callee-saved
registers is implemented by common functions to reduce code duplication.
Logic is also included to ensure that if both this optimization and
shrink wrapping are enabled then the prologue and epilogue code can be
safely inserted into the basic blocks chosen by shrink wrapping.
Differential Revision: https://reviews.llvm.org/D62686
Summary:
SIInstrInfo::expandPostRAPseudo converts ENTER_WWM in-place into an
S_OR_SAVEEXEC instruction that needs certain implicit operands. Without
this patch I get errors like this that make it harder to use -stop-after
to bisect the pass pipeline:
$ llc -march=amdgcn test/CodeGen/AMDGPU/wqm.ll -stop-after=postrapseudos -o - | sed -E 's/ (from|into) custom "TargetCustom[0-9]+"//' | llc -march=amdgcn -x=mir
error: <stdin>:1295:70: missing implicit register operand 'implicit-def $scc'
renamable $sgpr2_sgpr3 = S_OR_SAVEEXEC_B64 -1, implicit-def $exec
^
Note that this error is currently only generated by MIParser but it
comes with a FIXME comment:
// FIXME: Move the implicit operand verification to the machine verifier.
Reviewers: critson, arsenm, rampitec, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74428
Based on uops.info these should have 5 cycle latency as they did on Haswell/Broadwell. I have no additional internal information from Intel.
This was also shown as a discrepancy in the spreadsheet that was sent with an early llvm-dev post about llvm-exegesis.
It also matches Agner Fog.
Differential Revision: https://reviews.llvm.org/D74357
Currently, isTruncateFree() and isZExtFree() callbacks return false
as they are not implemented in BPF backend. This may cause suboptimal
code generation. For example, if the load in the context of zero extension
has more than one use, the pattern zextload{i8,i16,i32} will
not be generated. Rather, the load will be matched first and
then the result is zero extended.
For example, in the test together with this commit, we have
I1: %0 = load i32, i32* %data_end1, align 4, !tbaa !2
I2: %conv = zext i32 %0 to i64
...
I3: %2 = load i32, i32* %data, align 4, !tbaa !7
I4: %conv2 = zext i32 %2 to i64
...
I5: %4 = trunc i64 %sub.ptr.lhs.cast to i32
I6: %conv13 = sub i32 %4, %2
...
The I1 and I2 will match to one zextloadi32 DAG node, where SUBREG_TO_REG is
used to convert a 32bit register to 64bit one. During code generation,
SUBREG_TO_REG is a noop.
The %2 in I3 is used in both I4 and I6. If isTruncateFree() is false,
the current implementation will generate a SLL_ri and SRL_ri
for the zext part during lowering.
This patch implement isTruncateFree() in the BPF backend, so for the
above example, I3 and I4 will generate a zextloadi32 DAG node with
SUBREG_TO_REG is generated during lowering to Machine IR.
isZExtFree() is also implemented as it should help code gen as well.
This patch also enables the change in https://reviews.llvm.org/D73985
since it won't kick in generates MOV_32_64 machine instruction.
Differential Revision: https://reviews.llvm.org/D74101
Fix/workaround for https://bugs.llvm.org/show_bug.cgi?id=44539.
As discussed there, this pass makes some overly optimistic
assumptions, as it does not have access to actual branch weights.
This patch makes the computation of the depth of the optimized cmov
more conservative, by assuming a distribution of 75/25 rather than
50/50 and placing the weights to get the more conservative result
(larger depth). The fully conservative choice would be
std::max(TrueOpDepth, FalseOpDepth), but that would break at least
one existing test (which may or may not be an issue in practice).
Differential Revision: https://reviews.llvm.org/D74155
Summary:
Add a new method (tryParseRegister) that attempts to parse a register specification.
MASM allows the use of IFDEF <register>, as well as IFDEF <symbol>. To accommodate this, we make it possible to check whether a register specification can be parsed at the current location, without failing the entire parse if it can't.
Reviewers: thakis
Reviewed By: thakis
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73486
When more than one SelectPseudo instruction is handled a new MBB is
returned. This must not be done if that would result in leaving an undhandled
isel pseudo behind in the original MBB.
Fixes https://bugs.llvm.org/show_bug.cgi?id=44849.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D74352
A small IR change in calculating the active lanes resulted in no longer
recognising tail-predication. Now recognise both an 'add' and 'or' in
the expression that calculates the active lanes.
Differential Revision: https://reviews.llvm.org/D74394
ADDI(C.ADDI) may achieve better code size than XORI, since XORI has no C extension.
This patch transforms two patterns and gets almost equivalent results.
Differential Revision: https://reviews.llvm.org/D71774
Without PSHUFB we are better using ROTL (expanding to OR(SHL,SRL)) than using the generic v16i8 shuffle lowering - but if we can widen to v8i16 or more then the existing shuffles are still the better option.
New intrinisics are implemented for when we need to port SIMD code from other
arhitectures and only load or store portions of MSA registers.
Following intriniscs are added which only load/store element 0 of a vector:
v4i32 __builtin_msa_ldrq_w (const void *, imm_n2048_2044);
v2i64 __builtin_msa_ldr_d (const void *, imm_n4096_4088);
void __builtin_msa_strq_w (v4i32, void *, imm_n2048_2044);
void __builtin_msa_str_d (v2i64, void *, imm_n4096_4088);
Differential Revision: https://reviews.llvm.org/D73644
Summary:
As far as I know this did not affect code generation, but it did affect
the order of -debug-only=si-wqm output and the naming of autonamed
values in -print-after=si-wqm output.
Reviewers: arsenm, rampitec, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, mgrang, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74317
We need to use vector instructions for these operations. Previously
we handled this with isel patterns that used extra instructions
and copies to handle the the conversions.
Now we use custom lowering to emit the conversions. This allows
them to be pattern matched and optimized on their own. For
example we can now emit vpextrw to store the result if its going
directly to memory.
I've forced the upper elements to VCVTPHS2PS to zero to keep some
code similar. Zeroes will be needed for strictfp. I've added a
DAG combine for (fp16_to_fp (fp_to_fp16 X)) to avoid extra
instructions in between to be closer to the previous codegen.
This is a step towards strictfp support for f16 conversions.
This patch:
- enable frame pointer for AIX;
- update some of red zone comments;
- add/update testcases;
Differential Revision: https://reviews.llvm.org/D72454
SUMMARY:
The patch is enable to support Mergeable2ByteCString and Mergeable4ByteCString
Reviewers: daltenty
Subscribers: wuzish, nemanjai, hiraditya
Differential Revision: https://reviews.llvm.org/D74164
Each function is with this compiled with the SystemZSubtarget initialized
from the functions attributes.
Review: Ulrich Weigand.
Differential Revision: https://reviews.llvm.org/D74086
Non-AVX512BW targets failed to concatenate 256-bit shifts back to 512-bits (split during 512-bit shuffle lowering as they don't have v32i16/v64i8 types).
These are generated and do not need to have the same values.
We are defining separate subregs for R600 and GCN but then
using AMDGPU subregs on R600.
Differential Revision: https://reviews.llvm.org/D74248
As noted on PR44379, we didn't attempt to lower vector shuffles using bit rotations on XOP/AVX512F targets.
This patch lowers to uniform ISD:ROTL nodes - ROTR isn't supported by XOP and they are interchangeable for constant values anyway.
There might be cases where targets without ISD:ROTL support would benefit from this (expanding to SRL+SHL+OR), which I'll investigate in a future patch.
REAPPLIED rGe82e17d4d4ca after reversion at rG39eade73a567 - fixed offset matching in matchShuffleAsBitRotate.
This patch makes the following System Registers Read Only:
- CurrentEL
- ICH_MISR_EL2
- PMBIDR_EL1
- PMSIDR_EL1
as found in:
https://developer.arm.com/docs/ddi0595/e/aarch64-system-registers
Relative line numbers were also added to the tests so we get more
informative error messages on failure.
Change-Id: I963b4f01ca5737b58f9e8e7abe9ca1d99e328758
This change implements the llvm intrinsic llvm.read_register for
the SystemZ platform which returns the value of the specified
register
(http://llvm.org/docs/LangRef.html#llvm-read-register-and-llvm-write-register-intrinsics).
This implementation returns the value of the stack register, and
can be extended to return the value of other registers. The
implementation for this intrinsic exists on various other platforms
including Power, x86, ARM, etc. but missing on SystemZ.
Reviewers: uweigand
Differential Revision: https://reviews.llvm.org/D73378