Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
We only need to call this on floating point comparisons. In this
case these are known to be integer compares. One of them even
has a SUB opcode instead of CMP.
Summary: This is a first step before changing the types to llvm::Align and introduce functions to ease client code.
Reviewers: courbet
Subscribers: arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73785
ISD::FROUND is defined to round to nearest with ties rounding
away from 0. This mode isn't supported in hardware on X86.
But as long as we aren't compiling with trapping math, we can
emulate this with floor(X + copysign(nextafter(0.5, 0.0), X)).
We have to use nextafter to avoid some corner cases that adding
0.5 would have. For example, if X is nextafter(0.5, 0.0) it should
round to 0.0, but adding 0.5 would need one extra bit of mantissa
than can be stored so it rounds to 1.0. Adding nextafter(0.5, 0.0)
instead will just increase the exponent by 1 and leave the mantissa
as all 1s. This would be nextafter(1.0, 0.0) which will floor to 0.0.
Techically this requires -fno-trapping-math which isn't our default.
But if we care about exceptions we should be using constrained
intrinsics. Constrained intrinsics would use STRICT_FROUND which
won't go through this code.
Fixes PR42195.
Differential Revision: https://reviews.llvm.org/D73607
This code needs to map from the FPCW 2-bit encoding for rounding mode to the 2-bit encoding defined for FLT_ROUNDS. The previous implementation did some clever swapping of bits and adding 1 modulo 4 to do the mapping.
This patch instead uses an 8-bit immediate as a lookup table of four 2-bit values. Then we use the 2-bit FPCW encoding to index the lookup table by using a right shift and an AND. This requires extracting the 2-bit value from FPCW and multipying it by 2 to make it usable as a shift amount. But still results in less code.
Differential Revision: https://reviews.llvm.org/D73599
Summary: X86 has instructions to calculate fma and fneg at the same time. But we combine the fneg and fma only when fneg is the source operand under strict FP.
Reviewers: craig.topper, andrew.w.kaylor, uweigand, RKSimon, LiuChen3
Subscribers: LuoYuanke, llvm-commits, cfe-commits, jdoerfert, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72824
Pull out combineTargetShuffle code added in rG3fd5d1c6e7db into a helper function and extend it to handle shufps(shufps(load(),x),y) and shufps(y,shufps(load(),x)) cases as well.
Every case in the switch had a string version of themselves. Two
of them had a typo that used : instead of ::
By using a macro we can automate the string creation and avoid
the possibility of typos like this.
This is similar to what is done on the AMDGPU target.
I believe for STRICT_FP I need to use a STRICT_FP_EXTEND for the extending to f80 for returning f32/f64 in 32-bit mode when SSE is enabled. The STRICT_FP_EXTEND node requires a Chain. I need to get that node onto the chain before any CopyToRegs are emitted. This is because all the CopyToRegs are glued and chained together. So I can't put a STRICT_FP_EXTEND on the chain between the glued nodes without also glueing the STRICT_ FP_EXTEND.
This patch moves all the extend creation to a first pass and then creates the copytoregs and fills out RetOps in a second pass.
Differential Revision: https://reviews.llvm.org/D72665
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
vperm (ins ?, X, C), (ins ?, Y, C), 0x31 --> concat X, Y
This is another shuffle problem seen with PR42024:
https://bugs.llvm.org/show_bug.cgi?id=42024
We have this small crack in legalization/lowering/combining/demanded
that allows forming a vperm2f128 of high halves with AVX1 when we
could do better by peeking through the insert_subvector nodes.
AFAICT, it requires IR as shown in the diffs - much larger than legal
vectors - to avoid all of the usual folds.
Another option would prevent forming the 256-bit vperm in lowering.
Differential Revision: https://reviews.llvm.org/D73197
Currently PromoteMaskArithemtic only looks at a single operation to
skip casts. This means we miss cases where we combine multiple masks.
This patch updates PromoteMaskArithemtic to try to recursively promote
AND/XOR/AND nodes that terminate in truncates of the right size or
constant vectors.
Reviewers: craig.topper, RKSimon, spatel
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D72524
Summary:
I think whatever problem the gluing was fixing has long since been fixed. We don't have any of the restrictions on FP stack stuff that existed back when this was first added.
I had to change which type we use for FILD in BuildFILD when X86 was enabled because most of the isel patterns block f32/f64 instructions when SSE1/SSE2 are enabled. So I needed to use the f80 pattern, but this shouldn't have an effect the generated code since there is only one FILD instruction anyway. We already use f80 explicitly in other other places.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: andrew.w.kaylor, scanon, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72805
This is another part of a problem noted in PR42024:
https://bugs.llvm.org/show_bug.cgi?id=42024
The AVX2 code may use awkward 256-bit shuffles vs. the AVX code that gets split
into the expected 128-bit unpack instructions. We have to be selective in
matching the types where we try to do this though. Otherwise, we can end up
with more instructions (in the case of v8x32/v4x64).
Differential Revision: https://reviews.llvm.org/D72575
The code is trying to copy the i64 value to an xmm register to
use a 64-bit store so that the 64-bit fild can benefit from
store forwarding.
But this trick only works if f64 is going to be stored in an
XMM register. If we only have SSE1 then only float is in xmm
register. So this trick just causes 2 stores i32 stores, an f64
load into the x87, an f64 from x87, and a 64-bit fild. So we end
up with an extra stack temporary and still didn't get store forwarding.
We might be able to use v2f32 here instead, but I didn't check. I
just wanted the code to make sense.
Found by inspection as I continue to stare too hard at our
int_to_fp conversions.
We were performing an emulated i32->f64 in the SSE registers, then
storing that value to memory and doing a extload into the X87
domain.
After this patch we'll now just store the i32 to memory along
with an i32 0. Then do a 64-bit FILD to f80 completely in the X87
unit. This matches what we do without SSE.
Pass small FP values in GPRs or stack memory according the the normal
convention. This is what gcc -mno-sse does on Win64.
I adjusted the conditions under which we emit an error to check if the
argument or return value would be passed in an XMM register when SSE is
disabled. This has a side effect of no longer emitting an error for FP
arguments marked 'inreg' when targetting x86 with SSE disabled. Our
calling convention logic was already assigning it to FP0/FP1, and then
we emitted this error. That seems unnecessary, we can ignore 'inreg' and
compile it without SSE.
Reviewers: jyknight, aemerson
Differential Revision: https://reviews.llvm.org/D70465
This allows us to generate better code for selecting the fixup
to load.
Previously when the sign was set we had to load offset 0. And
when it was clear we had to load offset 4. This required a testl,
setns, zero extend, and finally a mul by 4. By switching the offsets
we can just shift the sign bit into the lsb and multiply it by 4.
By directly emitting the constants as a constant pool load we seem to avoid the build_vector/extract_subvector combines that resulted in the duplicate loads we had before.
Differential Revision: https://reviews.llvm.org/D72307
Only perform this if we are shuffling lower and upper lane elements across the lanes (otherwise splitting to lower xmm shuffles would be better).
This is a regression if we shuffle build_vectors due to getVectorShuffle canonicalizing 'blend of splat' build vectors, for now I've set this not to shuffle build_vector nodes at all to avoid this.
This causes the STRICT_FSETCC/STRICT_FSETCCS nodes to lowered
early while lowering SELECT, but the output chain doesn't get
connected. Then we visit the node again when it is its turn
because we haven't replaced the use of the chain result. In the
case of the fp128 libcall lowering, after D72341 this will cause
the libcall to be emitted twice.
Add initial support for lowering v4f64 shuffles to SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)), eventually this could be used for v8f32 (and maybe v8f64/v16f32) but I'm being conservative for the initial implementation as only v4f64 can always succeed.
This currently is only called from lowerShuffleAsLanePermuteAndShuffle so only gets used for unary shuffles, and we limit this to cases where we use upper elements as otherwise concating 2 xmm shuffles is probably the better case.
Helps with poor shuffles mentioned in D66004.
We only use lowerShuffleAsLanePermuteAndShuffle for unary shuffles at the moment, but we should consistently handle lane index calculations for multiple inputs in both the AVX1 and AVX2 paths.
Minor (almost NFC) tidyup as I'm hoping to use lowerShuffleAsLanePermuteAndShuffle for binary shuffles soon.
Only PPC seems to be using it, and only checks some simple cases and
doesn't distinguish between FP. Just switch to using LLT to simplify
use from GlobalISel.
For v4i64->v4f32 uint_to_fp on pre-avx targets where v4i64 isn't legal we create to v2i64->v2f32 uint_to_fp that need to be shuffled together. Our codegen for v2i64->v2f32 involves detecting if the number is larger than (2^31 - 1), if so we do a special divison by 2 so we can do a signed conversion which we need to scalarize, then do a multiply by 2 at the end if we divided earlier.
When v4i64 isn't legal we need to split the checking for a larger number and dividing by 2 into two v2i64 vectors. The scalar part can extract the 4 i64 values from those 4 splits. But we can reassemble the 4 scalar f32 results directly into a single v432 vector. Then we just need to combine the fixup indications from the 2 halves and we can do the final multiply by 2 fixup on all 4 values if needed at once using a single v4f32 blend and v4f32 fadd.
Differential Revision: https://reviews.llvm.org/D72368
Now that we generate decent code for (v2i64 (setlt zero, X)) on pre-sse4.2 targets I think we can use this now.
Differential Revision: https://reviews.llvm.org/D72354
Similar to D72302 but for the canonical form for the opposite case. I've changed foldVectorXorShiftIntoCmp to form a target independent setcc node instead of PCMPGT now and enabled its for v2i64 on pre-SSE4.2 targets. The setcc should eventually get lowered to PCMPGT or the new v2i64 sequence.
Differential Revision: https://reviews.llvm.org/D72318
Without sse4.2 a v2i64 setlt needs to expand into a pcmpgtd, pcmpeqd, 3 shuffles, and 2 logic ops. But if we're only interested in the sign bit of the i64 elements, we can just use one pcmpgtd and shuffle the odd elements to the even elements.
Differential Revision: https://reviews.llvm.org/D72302
Summary:
Based on Simon's D52965, but improved to handle strict fp and improve some of the shuffling.
Rather than use v2i1/v4i1 and let type legalization continue, just generate all the code with legal types and use an explicit shuffle.
I also added an explicit setcc to the v4i64 code to match the semantics of vselect which doesn't just use the sign bit. I'm also using a v4i64->v4i32 truncate instead of the shuffle in Simon's original code. With the setcc this will become a pack.
Future work can look into using X86ISD::BLENDV and a different shuffle that only moves the sign bit.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71956
Attempt to use combineLogicBlendIntoConditionalNegate for (select M, (sub 0, X), X) -> (sub (xor X, M), M)
We limit this to cases that can't easily replace the VSELECT with a shuffle (non-constant masks) or where a BLENDV is likely to occur (which tends to result in slower codegen).
This uses an alternative implementation of this conversion derived
from our v2i32->v2f32 handling. We can zero extend the v2i32 to
v2i64, or it with the bit representation of 2.0^52 which will give
us 2.0^52 plus the 32-bit integer since double's mantissa is 52 bits.
Then we just need to subtract 2.0^52 as a double and let the floating
point unit normalize the remaining bits into a valid double.
This is less instructions then our previous code, but does require
a port 5 shuffle for the zero extend or unpack.
Differential Revision: https://reviews.llvm.org/D71945
When the "disable-tail-calls" attribute was added, checks were added for
it in various backends. Now this code has proliferated, and it is
something the target is responsible for checking. Move that
responsibility back to the ISels (fast, global, and SD).
There's no major functionality change, except for targets that never
implemented this check.
This LLVM attribute was originally added in
d9699bc7bd (2015).
Reviewers: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D72118
Summary:
We previously disabled this under fast math due to aggressive
reassociation by the machine combiner. But I think we can work
around this by using a FSUB instead of FADD for the first
operation.
This matches the similar algorithm we do for uint_to_fp i64->f64
in TargetLowering::expandUINT_TO_FP. If reassociation hasn't
been a problem for that, hopefully its not a problem here.
Reviewers: RKSimon, spatel, scanon
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71968
Summary:
After bugfix the undef value case here, we used more operations to implement inserting vxi1 sub vector into vXi1 vector, I optimize it by use less operations.
The history information at https://reviews.llvm.org/D68311
Reviewers: craig.topper, LuoYuanke, yubing, annita.zhang, pengfei, LiuChen3, RKSimon
Reviewed By: craig.topper
Subscribers: hiraditya, llvm-commits
Patch by Xiang Zhang (xiangzhangllvm)
Differential Revision: https://reviews.llvm.org/D71917
If we just subtracted 1 and are checking if the result is -1. We can use the carry flag from the ADD instead of an explicit CMP. I'm using the same checks for the add users as EmitTest.
Fixes one case from PR44412
Differential Revision: https://reviews.llvm.org/D72019
If the return value is a struct of 2 doubles we need two return
registers.
If SSE2 is disabled we can't return in XMM registers like the ABI says.
After logging an error we attempt to recover by using FP0 instead
of an XMM register. But if the return needs two registers, we may have
already used FP0. So if the register we were supposed to copy to is
XMM1, copy to FP1 in the recovery instead.
This seems to fix the assertion/crash in PR44413.
These nodes should only ever be formed with an i8 TargetConstant
so we don't need to check for it to be a constant. It's also
always 8-bits so we don't need to use APInt compare functions.
We had a Custom operation action for v4i32 on SSE1. But since
v4i32 isn't legal until SSE2 this was not what was intended. The
code that get executed was intended for op legalization and
creates a bunch of v4i32 nodes that all end up scalarized.
Summary:
Previously we did this with isel patterns that used garbage in
the widened part of the source. But that's not valid for strictfp.
So now we custom widen and use zeroes for the widened elemens for
strictfp.
This replaces D71864.
Reviewers: RKSimon, spatel, andrew.w.kaylor, pengfei, LiuChen3
Reviewed By: pengfei
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71879
I believe the algorithm we use for non-strict is exception safe
for strict. The fsub won't generate any exceptions. After it we
will have an exact version of the i32 integer in a double. Then
we just round it to f32. That rounding will generate a precision
exception if it can't be represented exactly.
Previously we widened these through isel patterns, but that
didn't work for STRICT_ nodes. Those need to be padded with
zeroes in the upper bits which is harder to do in isel patterns.
Previously we were widening with isel patterns, but that wasn't
exception safe for strict FP. So now we widen to v4i32->v4f64
during type legalization. And then let op legalization further
widen to v8i32->v8f64.
The vec_int_to_fp.ll changes are caused by us no longer narrowing
extracts of strict_uint_to_fp to the v4i32->v2f64 instruction
without AVX512VL only to have isel rewiden it. Now we just keep
it wide throughout. So we don't have an opportunity to narrow
the load.
AVX512F added instruction for vector fp_to_uint conversions. With
AVX512VL we can use a specific instruction that does v2f64->v4i32 with
zeroes in the 2 extra elements. For non-strict nodes without AVX512VL
we relied on type legalization to turn it to v4f64->v4i32 which would
later be widened by op legalization to v8f64->v8i32. But type legalization
doesn't currently widen strict nodes since it doesn't know how to
safely and efficiently pad the extra elements. But for X86 we know
padding with zeroes is safe and efficient so do that ourselves.
In the worst case, this requires a 128-bit move instruction to
implicitly zero the upper bits. In the common case, we should
recognize the producing instruction already zeroed the upper bits.
On 32-bit targets we can't use the scalar instruction so we
insert the scalar into a vector and use packed conversions.
Previously we used either v4f32->v4i64 or v4f64->v4i64 to avoid
some complexity creating target specific ISD opcodes for
v4f32->v2i64. But this causes extra vzeroupper instructions and
possibly frequency throttling on Intel CPUs.
This patch changes this to create a 128-bit vector and uses a
target specific ISD opcode if needed.
Fix several several additional problems with the int <-> FP conversion
logic both in common code and in the X86 target. In particular:
- The STRICT_FP_TO_UINT expansion emits a floating-point compare. This
compare can raise exceptions and therefore needs to be a strict compare.
I've made it signaling (even though quiet would also be correct) as
signaling is the more usual default for an LT. This code exists both
in common code and in the X86 target.
- The STRICT_UINT_TO_FP expansion algorithm was incorrect for strict mode:
it emitted two STRICT_SINT_TO_FP nodes and then used a select to choose one
of the results. This can cause spurious exceptions by the STRICT_SINT_TO_FP
that ends up not chosen. I've fixed the algorithm to use only a single
STRICT_SINT_TO_FP instead.
- The !isStrictFPEnabled logic in DoInstructionSelection would sometimes do
the wrong thing because it calls getOperationAction using the result VT.
But for some opcodes, incuding [SU]INT_TO_FP, getOperationAction needs to
be called using the operand VT.
- Remove some (obsolete) code in X86DAGToDAGISel::Select that would mutate
STRICT_FP_TO_[SU]INT to non-strict versions unnecessarily.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D71840
This moves the X86 specific transform from rL364407
into DAGCombiner to generically handle 'little to big' cases
(for example: extract_subvector(v2i64 bitcast(v16i8))). This
allows us to remove both the x86 implementation and the aarch64
bitcast(extract_subvector(bitcast())) combine.
Earlier patches that dealt with regressions initially exposed
by this patch:
rG5e5e99c041e4
rG0b38af89e2c0
Patch by: @RKSimon (Simon Pilgrim)
Differential Revision: https://reviews.llvm.org/D63815