This patch is supposed to solve: https://bugs.llvm.org/show_bug.cgi?id=50075
The function `__dfsan_mem_transfer_callback` takes a `Len` argument of type `i64`; however, when processing a `MemTransferInst` such as `llvm.memcpy.p0i8.p0i8.i32`, the `len` argument has type `i32`. In order to make the type of `len` compatible with the one of the callback argument, this change zero-extends it when necessary.
Reviewed By: stephan.yichao.zhao, gbalats
Differential Revision: https://reviews.llvm.org/D101048
Both the alias and aliasee linkage are important.
PR27866 provides some background.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99629
This change effectively reverts 86664638, but since there have been some changes on top and I wanted to leave the tests in, it's not a mechanical revert.
Why revert this now? Two main reasons:
1) There are continuing discussion around what the semantics of nofree. I am getting increasing uncomfortable with the seeming possibility we might redefine nofree in a way incompatible with these changes.
2) There was a reported miscompile triggered by this change (https://github.com/emscripten-core/emscripten/issues/9443). At first, I was making good progress on tracking down the issues exposed and those issues appeared to be unrelated latent bugs. Now that we've found at least one bug in the original change, and the investigation has stalled, I'm no longer comfortable leaving this in tree. In retrospect, I probably should have reverted this earlier and investigated the issues once the triggering change was out of tree.
The first version of origin tracking tracks only memory stores. Although
this is sufficient for understanding correct flows, it is hard to figure
out where an undefined value is read from. To find reading undefined values,
we still have to do a reverse binary search from the last store in the chain
with printing and logging at possible code paths. This is
quite inefficient.
Tracking memory load instructions can help this case. The main issues of
tracking loads are performance and code size overheads.
With tracking only stores, the code size overhead is 38%,
memory overhead is 1x, and cpu overhead is 3x. In practice #load is much
larger than #store, so both code size and cpu overhead increases. The
first blocker is code size overhead: link fails if we inline tracking
loads. The workaround is using external function calls to propagate
metadata. This is also the workaround ASan uses. The cpu overhead
is ~10x. This is a trade off between debuggability and performance,
and will be used only when debugging cases that tracking only stores
is not enough.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D100967
We can skip check for undefs trying to find perfect/shuffled tree
entries matching, they can be ignored completely improving the final
cost/vectorization results.
Differential Revision: https://reviews.llvm.org/D101061
This commit fixes a bug where the loop vectoriser fails to predicate
loads/stores when interleaving for targets that support masked
loads and stores.
Code such as:
1 void foo(int *restrict data1, int *restrict data2)
2 {
3 int counter = 1024;
4 while (counter--)
5 if (data1[counter] > data2[counter])
6 data1[counter] = data2[counter];
7 }
... could previously be transformed in such a way that the predicated
store implied by:
if (data1[counter] > data2[counter])
data1[counter] = data2[counter];
... was lost, resulting in miscompiles.
This bug was causing some tests in llvm-test-suite to fail when built
for SVE.
Differential Revision: https://reviews.llvm.org/D99569
1. No need to call `areAllUsersVectorized` as later the cost is
calculated only if the instruction has one use and gets vectorized.
2. Need to calculate the cost of the dead extractelement more precisely,
taking the vector type of the vector operand, not the resulting
vector type.
Part of D57059.
Differential Revision: https://reviews.llvm.org/D99980
In quite a few cases in LoopVectorize.cpp we call createStepForVF
with a step value of 0, which leads to unnecessary generation of
llvm.vscale intrinsic calls. I've optimised IRBuilder::CreateVScale
and createStepForVF to return 0 when attempting to multiply
vscale by 0.
Differential Revision: https://reviews.llvm.org/D100763
This patch allows PRE of the following type of loads:
```
preheader:
br label %loop
loop:
br i1 ..., label %merge, label %clobber
clobber:
call foo() // Clobbers %p
br label %merge
merge:
...
br i1 ..., label %loop, label %exit
```
Into
```
preheader:
%x0 = load %p
br label %loop
loop:
%x.pre = phi(x0, x2)
br i1 ..., label %merge, label %clobber
clobber:
call foo() // Clobbers %p
%x1 = load %p
br label %merge
merge:
x2 = phi(x.pre, x1)
...
br i1 ..., label %loop, label %exit
```
So instead of loading from %p on every iteration, we load only when the actual clobber happens.
The typical pattern which it is trying to address is: hot loop, with all code inlined and
provably having no side effects, and some side-effecting calls on cold path.
The worst overhead from it is, if we always take clobber block, we make 1 more load
overall (in preheader). It only matters if loop has very few iteration. If clobber block is not taken
at least once, the transform is neutral or profitable.
There are several improvements prospect open up:
- We can sometimes be smarter in loop-exiting blocks via split of critical edges;
- If we have block frequency info, we can handle multiple clobbers. The only obstacle now is that
we don't know if their sum is colder than the header.
Differential Revision: https://reviews.llvm.org/D99926
Reviewed By: reames
Summary: The original logic seems to be we could collecting a CoroBegin
if one of the terminators could be dominated by one of coro.destroy,
which doesn't make sense.
This patch rewrites the logics to collect CoroBegin if all of
terminators are dominated by one coro.destroy. If there is no such
coro.destroy, we would call hasEscapePath to evaluate if we should
collect it.
Test Plan: check-llvm
Reviewed by: lxfind
Differential Revision: https://reviews.llvm.org/D100614
This revision simplifies Clang codegen for parallel regions in OpenMP GPU target offloading and corresponding changes in libomptarget: SPMD/non-SPMD parallel calls are unified under a single `kmpc_parallel_51` runtime entry point for parallel regions (which will be commonized between target, host-side parallel regions), data sharing is internalized to the runtime. Tests have been auto-generated using `update_cc_test_checks.py`. Also, the revision contains changes to OpenMPOpt for remark creation on target offloading regions.
Reviewed By: jdoerfert, Meinersbur
Differential Revision: https://reviews.llvm.org/D95976
On ELF targets, if a function has uwtable or personality, or does not have
nounwind (`needsUnwindTableEntry`), it marks that `.eh_frame` is needed in the module.
Then, a function gets `.eh_frame` if `needsUnwindTableEntry` or `-g[123]` is specified.
(i.e. If -g[123], every function gets `.eh_frame`.
This behavior is strange but that is the status quo on GCC and Clang.)
Let's take asan as an example. Other sanitizers are similar.
`asan.module_[cd]tor` has no attribute. `needsUnwindTableEntry` returns true,
so every function gets `.eh_frame` if `-g[123]` is specified.
This is the root cause that
`-fno-exceptions -fno-asynchronous-unwind-tables -g` produces .debug_frame
while
`-fno-exceptions -fno-asynchronous-unwind-tables -g -fsanitize=address` produces .eh_frame.
This patch
* sets the nounwind attribute on sanitizer module ctor/dtor.
* let Clang emit a module flag metadata "uwtable" for -fasynchronous-unwind-tables. If "uwtable" is set, sanitizer module ctor/dtor additionally get the uwtable attribute.
The "uwtable" mechanism is generic: synthesized functions not cloned/specialized
from existing ones should consider `Function::createWithDefaultAttr` instead of
`Function::create` if they want to get some default attributes which
have more of module semantics.
Other candidates: "frame-pointer" (https://github.com/ClangBuiltLinux/linux/issues/955https://github.com/ClangBuiltLinux/linux/issues/1238), dso_local, etc.
Differential Revision: https://reviews.llvm.org/D100251
This makes the memcpy-memcpy and memcpy-memset optimizations work for
variable sizes as long as they are equal, relaxing the old restriction
that they are constant integers. If they're not equal, the old
requirement that they are constant integers with certain size
restrictions is used.
The implementation works by pushing the length tests further down in the
code, which reveals some places where it's enough that the lengths are
equal (but not necessarily constant).
Differential Revision: https://reviews.llvm.org/D100870
Trying to evaluate a GEP would assert with
"Ty == cast<PointerType>(C->getType()->getScalarType())->getElementType()"
because the type of the pointer we would evaluate the GEP argument to
would be a different type than the GEP was expecting. We should treat
pointer stripping as a bitcast.
The test adds a redundant GEP that would crash due to type mismatch.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D100970
Discovered during attributor testing comparing stats with
and without the attributor. Willreturn should not be inferred
for nonexact definitions.
Differential Revision: https://reviews.llvm.org/D100988
Fix for PR49984
This was discovered during Attributor testing.
Memset was always created with alignment of 1
and in case when strncpy alignment was changed
it triggered an assertion in the AttrBuilder.
Memset will now be created with appropriate alignment.
Differential Revision: https://reviews.llvm.org/D100875
CommandLine.h is indirectly included in ~50% of TUs when building
clang, and VirtualFileSystem.h is large.
(Already remarked by jhenderson on D70769.)
No behavior change.
Differential Revision: https://reviews.llvm.org/D100957
FunctionAnalysisManagerCGSCCProxy should not be preserved if any of its
keys may be invalid. Since we are not removing/adding functions in
FuncAttrs, it's fine to preserve it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D100893
This reverts commit 13ec913bdf.
This commit introduces new uses of the overflow checking intrinsics that
depend on implementations in compiler-rt, which Windows users generally
do not link against. I filed an issue (somewhere) to make clang
auto-link the builtins library to resolve this situation, but until that
happens, it isn't reasonable for the optimizer to introduce new link
time dependencies.
It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
This is a more convoluted form of the same pattern "sext of NSW trunc",
but in this case the operand of trunc was a right-shift,
and the truncation chops off just the zero bits that were shifted-in.
Summary:
This patch registers OpenMPOpt as a Module pass in addition to a CGSCC
pass. This is so certain optimzations that are sensitive to intact
call-sites can happen before inlining. The old `openmpopt` pass name is
changed to `openmp-opt-cgscc` and `openmp-opt` calls the Module pass.
The current module pass only runs a single check but will be expanded in
the future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D99202
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100495
This fixes a subtle and nasty bug in my 86664638. The problem is that free(nullptr) is well defined (and common).
The specification for the nofree attributes talks about memory objects, and doesn't explicitly address null, but I think it's reasonable to assume that nofree doesn't disallow a call to free(nullptr). If it did, we'd have to prove nonnull on an argument to ever infer nofree which doesn't seem to be the intent.
This was found by Nuno and Alive2 over in https://reviews.llvm.org/D100141#2697374.
Differential Revision: https://reviews.llvm.org/D100779
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100495
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100495
Rather than maintaining two separate values, a `float` for the per-lane
cost and a Width for the VF, maintain a single VectorizationFactor which
comprises the two and also removes the need for converting an integer value
to float.
This simplifies the query when asking if one VF is more profitable than
another when we want to extend this for scalable vectors (which may
require additional options to determine if e.g. a scalable VF of the
some cost, is more profitable than a fixed VF of the same cost).
The patch isn't entirely NFC because it also fixes an issue in
selectEpilogueVectorizationFactor, where the cost passed to ProfitableVFs
no longer truncates the floating-point cost from `float` to `unsigned` to
then perform the calculation on the truncated cost. It now does
a cost comparison with the correct precision.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D100121
This patch is related to https://reviews.llvm.org/D100032 which define
some illegal types or operations for x86_amx. There are no arguments,
arrays, pointers, vectors or constants of x86_amx.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D100472
Previously we would use the type of the pointee to determine what to
cast the result of constant folding a load. To aid with opaque pointer
types, we should explicitly pass the type of the load rather than
looking at pointee types.
ConstantFoldLoadThroughBitcast() converts the const prop'd value to the
proper load type (e.g. [1 x i32] -> i32). Instead of calling this in
every intermediate step like bitcasts, we only call this when we
actually see the global initializer value.
In some existing uses of this API, we don't know the exact type we're
loading from immediately (e.g. first we visit a bitcast, then we visit
the load using the bitcast). In those cases we have to manually call
ConstantFoldLoadThroughBitcast() when simplifying the load to make sure
that we cast to the proper type.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100718
This patch improves https://reviews.llvm.org/D76971 (Deduce attributes for aligned_alloc in InstCombine) and implements "TODO" item mentioned in the review of that patch.
> The function aligned_alloc() is the same as memalign(), except for the added restriction that size should be a multiple of alignment.
Currently, we simply bail out if we see a non-constant size - change that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D100785
The unnamedaddr property of a function is lost when using
`-fwhole-program-vtables` and thinlto which causes size increase under linker's
safe icf mode.
The size increase of chrome on Linux when switching from all icf to safe icf
drops from 5 MB to 3 MB after this change, and from 6 MB to 4 MB on Windows.
There is a repro:
```
# a.h
struct A {
virtual int f();
virtual int g();
};
# a.cpp
#include "a.h"
int A::f() { return 10; }
int A::g() { return 10; }
# main.cpp
#include "a.h"
int g(A* a) {
return a->f();
}
int main(int argv, char** args) {
A a;
return g(&a);
}
$ clang++ -O2 -ffunction-sections -flto=thin -fwhole-program-vtables -fsplit-lto-unit -c main.cpp -o main.o && clang++ -Wl,--icf=safe -fuse-ld=lld -flto=thin main.o -o a.out && llvm-readobj -t a.out | grep -A 1 -e _ZN1A1fEv -e _ZN1A1gEv
Name: _ZN1A1fEv (480)
Value: 0x201830
--
Name: _ZN1A1gEv (490)
Value: 0x201840
```
Differential Revision: https://reviews.llvm.org/D100498
SLP supports perfect diamond matching for the vectorized tree entries
but do not support it for gathered entries and does not support
non-perfect (shuffled) matching with 1 or 2 tree entries. Patch adds
support for this matching to improve cost of the vectorized tree.
Differential Revision: https://reviews.llvm.org/D100495
This is mostly stylistic cleanup after D100226, but not entirely. When skimming the code, I found one case where we weren't accounting for attributes on the callsite at all. I'm also suspicious we had some latent bugs related to operand bundles (which are supposed to be able to *override* attributes on declarations), but I don't have concrete test cases for those, just suspicions.
Aside: The only case left in the file which directly checks attributes on the declaration is the norecurse logic. I left that because I didn't understand it; it looks obviously wrong, so I suspect I'm misinterpreting the intended semantics of the attribute.
Differential Revision: https://reviews.llvm.org/D100689
This change fixes a latent bug which was exposed by a change currently in review (https://reviews.llvm.org/D99802#2685032).
The story on this is a bit involved. Without this change, what ended up happening with the pending review was that we'd strip attributes off intrinsics, and then selectiondag would fail to lower the intrinsic. Why? Because the lowering of the intrinsic relies on the presence of the readonly attribute. We don't have a matcher to select the case where there's a glue node needed.
Now, on the surface, this still seems like a codegen bug. However, here it gets fun. I was unable to reproduce this with a standalone test at all, and was pretty much struck until skatkov provided the critical detail. This reproduces only when RS4GC and codegen are run in the same process and context. Why? Because it turns out we can't roundtrip the stripped attribute through serialized IR!
We'll happily print out the missing attribute, but when we parse it back, the auto-upgrade logic has a side effect of blindly overwriting attributes on intrinsics with those specified in Intrinsics.td. This makes it impossible to exercise SelectionDAG from a standalone test case.
At this point, I decided to treat this an RS4GC bug as a) we don't need to strip in this case, and b) I could write a test which shows the correct behavior to ensure this doesn't break again in the future.
As an aside, I'd originally set out to handle libfuncs too - since in theory they might have the same issues - but backed away quickly when I realized how the semantics of builtin, nobuiltin, and no-builtin-x all interacted. I'm utterly convinced that no part of the optimizer handles that correctly, and decided not to open that can of worms here.
During store promotion, we check whether the pointer was captured
to exclude potential reads from other threads. However, we're only
interested in captures before or inside the loop. Check this using
PointerMayBeCapturedBefore against the loop header.
Differential Revision: https://reviews.llvm.org/D100706
I guess this case hasn't come up thus far, and i'm not sure if it can
really happen for the existing usages, thus no test in *this* commit.
But, the following commit adds test coverage,
there we'd expirience a crash without this fix.
Currently, InsertNoopCastOfTo() would implicitly insert that cast,
but now that we have SCEVPtrToIntExpr, i'm hoping we could stop
InsertNoopCastOfTo() from doing that. But first all users must be fixed.
Move the findDbg* functions into lib/IR/DebugInfo.cpp from
lib/Transforms/Utils/Local.cpp.
D99169 adds a call to a function (findDbgUsers) that lives in
lib/Transforms/Utils/Local.cpp (LLVMTransformUtils) from lib/IR/Value.cpp
(LLVMCore). The Core lib doesn't include TransformUtils. The builtbots caught
this here: https://lab.llvm.org/buildbot/#/builders/109/builds/12664. This patch
moves the function, and the 3 similar ones for consistency, into DebugInfo.cpp
which is part of LLVMCore.
Reviewed By: dblaikie, rnk
Differential Revision: https://reviews.llvm.org/D100632
Recently processMinMaxIntrinsic has been added and we started to observe a number of analysis get invalidated after CVP. The problem is CVP conservatively returns 'true' even if there were no modifications to IR. I found one more place besides processMinMaxIntrinsic which has the same problem. I think processMinMaxIntrinsic and similar should better have boolean return status to prevent similar issue reappear in future.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100538
This reverts commit fa6b54c44a.
The commited patch broke mlir tests. It seems that mlir tests depend on coroutine function properties set in CoroEarly pass.
Presplit coroutines cannot be inlined. During AlwaysInliner we check if a function is a presplit coroutine, if so we skip inlining.
The presplit coroutine attributes are set in CoroEarly pass.
However in O0 pipeline, AlwaysInliner runs before CoroEarly, so the attribute isn't set yet and will still inline the coroutine.
This causes Clang to crash: https://bugs.llvm.org/show_bug.cgi?id=49920
To fix this, we set the attributes in the Clang front-end instead of in CoroEarly pass.
Reviewed By: rjmccall, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D100282
Presplit coroutines cannot be inlined. During AlwaysInliner we check if a function is a presplit coroutine, if so we skip inlining.
The presplit coroutine attributes are set in CoroEarly pass.
However in O0 pipeline, AlwaysInliner runs before CoroEarly, so the attribute isn't set yet and will still inline the coroutine.
This causes Clang to crash: https://bugs.llvm.org/show_bug.cgi?id=49920
Differential Revision: https://reviews.llvm.org/D100282
Debug intrinsics are free to hoist and should be skipped when looking
for terminator-only blocks. As a consequence, we have to delegate to the
main hoisting loop to hoist any dbg intrinsics instead of jumping to the
terminator case directly.
This fixes PR49982.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100640
It will not do anything useful for them, as we already know that
they don't modref with any accessible memory.
In particular, this prevents noalias metadata from being placed
on noalias.scope.decl intrinsics. This reduces the amount of
metadata needed, and makes it more likely that unnecessary decls
can be eliminated.
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
If we have a nobuiltin function, we can't assume we know anything about the implementation.
I noticed this when tracing through a log from an in the wild miscompile (https://github.com/emscripten-core/emscripten/issues/9443) triggered after 8666463. We were incorrectly assuming that a custom allocator could not free. (It's not clear yet this is the only problem in said issue.)
I also noticed something similiar mentioned in the commit message of ab243e when scrolling back through history. Through, from what I can tell, that commit fixed symptom not root cause.
The interface we have for library function detection is extremely error prone, but given the interaction between ``nobuiltin`` decls and ``builtin`` callsites, it's really hard to imagine something much cleaner. I may iterate on that, but it'll be invasive enough I didn't want to hold an obvious functional fix on it.
Have funcattrs expand all implied attributes into the IR. This expands the infrastructure from D100400, but for definitions not declarations this time.
Somewhat subtly, this mostly isn't semantic. Because the accessors did the inference, any client which used the accessor was already getting the stronger result. Clients that directly checked presence of attributes (there are some), will see a stronger result now.
The old behavior can end up quite confusing for two reasons:
* Without this change, we have situations where function-attrs appears to fail when inferring an attribute (as seen by a human reading IR), but that consuming code will see that it should have been implied. As a human trying to sanity check test results and study IR for optimization possibilities, this is exceeding error prone and confusing. (I'll note that I wasted several hours recently because of this.)
* We can have transforms which trigger without the IR appearing (on inspection) to meet the preconditions. This change doesn't prevent this from happening (as the accessors still involve multiple checks), but it should make it less frequent.
I'd argue in favor of deleting the extra checks out of the accessors after this lands, but I want that in it's own review as a) it's purely stylistic, and b) I already know there's some disagreement.
Once this lands, I'm also going to do a cleanup change which will delete some now redundant duplicate predicates in the inference code, but again, that deserves to be a change of it's own.
Differential Revision: https://reviews.llvm.org/D100226
This patch clarifies the semantics of the nofree function attribute to make clear that it provides an "as if" semantic. That is, a nofree function is guaranteed not to free memory which existed before the call, but might allocate and then deallocate that same memory within the lifetime of the callee.
This is the result of the discussion on llvm-dev under the thread "Ambiguity in the nofree function attribute".
The most important part of this change is the LangRef wording. The rest is minor comment changes to emphasize the new semantics where code was accidentally consistent, and fix one place which wasn't consistent. That one place is currently narrowly used as it is primarily part of the ongoing (and not yet enabled) deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D100141
These were misleading, they're more of a "clear" than an "invalidate".
We shouldn't be individually clearing analysis results. Either we clear
all analyses when some IR becomes invalid, or we properly go through
invalidation.
There was only one use of this, which can be simulated with
AM.invalidate(F, PA).
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D100519
str(n)cat appends a copy of the second argument to the end of the first
argument. To find the end of the first argument, str(n)cat has to read
from it until it finds the terminating 0. So it should not be marked as
writeonly. I think this means the argument should not be marked as
writeonly.
(This is causing a mis-compile with legacy DSE, before it got removed)
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D100601
Avoid visiting repeated instructions for processHeaderPhiOperands as it can cause a scenario of endless loop. Test case is attached and can be ran with `opt -basic-aa -tbaa -loop-unroll-and-jam -allow-unroll-and-jam -unroll-and-jam-count=4`.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D97407
This patch changed the isLegalUse check to ensure that
LSRInstance::GenerateConstantOffsetsImpl generates an
offset that results in a legal addressing mode and
formula. The check is changed to look similar to the
assert check used for illegal formulas.
Differential Revision: https://reviews.llvm.org/D100383
Change-Id: Iffb9e32d59df96b8f072c00f6c339108159a009a
Add an initial version of a helper to determine whether a recipe may
have side-effects.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100259
There were a few places in widenPHIInstruction where calculations of
offsets were failing to take the runtime calculation of VF into
account for scalable vectors. I've fixed those cases in this patch
as well as adding an assert that we should not be scalarising for
scalable vectors.
Tests are added here:
Transforms/LoopVectorize/AArch64/sve-widen-phi.ll
Differential Revision: https://reviews.llvm.org/D99254
There are a few places in LoopVectorize.cpp where we have been too
cautious in adding VF.isScalable() asserts and it can be confusing.
It also makes it more difficult to see the genuine places where
work needs doing to improve scalable vectorization support.
This patch changes getMemInstScalarizationCost to return an
invalid cost instead of firing an assert for scalable vectors. Also,
vectorizeInterleaveGroup had multiple asserts all for the same
thing. I have removed all but one assert near the start of the
function, and added a new assert that we aren't dealing with masks
for scalable vectors.
Differential Revision: https://reviews.llvm.org/D99727
If the PHI-of-ops simplifies to an existing value, no real PHI is
created, which means the dependencies between the
PHI-of-ops and its operands is not materialized in IR. At the
moment, we fail to create a real PHI node for the PHI-of-ops,
because the PHI-of-ops root instruction is not re-visited if
one of the PHI-of-ops operands changes. We need to add the
operands as additional users in this case.
Even with this patch, there are still some dependencies
missing. I will continue tackling the outstanding
reporeted crashes in this area.
Fixes PR36501, PR42422, PR42557.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D66924
This reverts commit ab98f2c712 and 98eea392cd.
It includes a fix for the clang test which triggered the revert. I failed to notice this one because there was another AMDGPU llvm test with a similiar name and the exact same text in the error message. Odd. Since only one build bot reported the clang test, I didn't notice that one.
Breaks check-clang, see comments on D100400
Also revert follow-up "[NFC] Move a recently added utility into a location to enable reuse"
This reverts commit 3ce61fb6d6.
This reverts commit 61a85da882.
We have some cases today where attributes can be inferred from another on access, but the result is not explicitly materialized in IR. This change is a step towards changing that.
Why? Two main reasons:
* Human clarity. It's really confusing trying to figure out why a transform is triggering when the IR doesn't appear to have the required attributes.
* This avoids the need to special case declarations in e.g. functionattrs. Since we can assume the attribute is present, we can work directly from attributes (and only attributes) without also needing to query accessors on Function to avoid missing cases due to unannotated (but infered on use) declarations. (This piece will appear must easier to follow once D100226 also lands.)
Differential Revision: https://reviews.llvm.org/D100400
Currently, the InstCombineCompare is combining two add operations
into a single add operation which always has a nsw flag, without
checking the conditions to see if this flag should be present
according to the original two add operations or not.
This patch will change the InstCombineCompare to emit the nsw or
nuw only when these flags are allowed to be generated according to
the original add operations and remove the possibility of applying
wrong optimization with passes that will perform on the IR later
in the pipeline.
To confirm that the current results are buggy and the results after
proposed patch are the correct IR the following examples from Alive2
are attached; the same results can be seen in the case of nuw flag
and nsw is just used as an example. The following link shows that
the generated IR with current LLVM is a buggy IR when none of the
original add operations have nsw flag.
https://alive2.llvm.org/ce/z/WGaDrm
The following link proves that the generated IR after the patch in
the former case is the correct IR.
https://alive2.llvm.org/ce/z/wQ7G_e
Differential Revision: https://reviews.llvm.org/D100095
This transformation is fundamentally broken when it comes to dominance,
it just happened to work when the source of the memcpy can be moved into
the place of the alloca. The bug shows up a lot more often since
077bff39d4 allows the source to be a
switch.
It would be possible to check dominance of the source and all its
operands, but that seems very heavy for instcombine.
Only attempt to propagateIRFlags if we have both SelectInst - afaict we shouldn't have matched a min/max reduction without both SelectInst, but static analyzer doesn't know that.
This refactors SCCP and creates a SCCPSolver interface and class so that it can
be used by other passes and transformations. We will use this in D93838, which
adds a function specialisation pass.
This is based on an early version by Vinay Madhusudan.
Differential Revision: https://reviews.llvm.org/D93762
After 077bff39d4,
isDereferenceableForAllocaSize() can recurse into selects,
which is causing a problem for the new test case,
reduced from https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20210412/904154.html
because the replacement (the select) is defined after the first use
of an alloca, so we'd end up with a verifier error.
Now, this new check is too restrictive.
We likely can handle *some* cases, by trying to sink all uses of an alloca
to after the the def.
As a side-effect of the change to default HoistCommonInsts to false
early in the pipeline, we fail to convert conditional branch & phis to
selects early on, which prevents vectorization for loops that contain
conditional branches that effectively are selects (or if the loop gets
vectorized, it will get vectorized very inefficiently).
This patch updates SimplifyCFG to perform hoisting if the only
instruction in both BBs is an equal branch. In this case, the only
additional instructions are selects for phis, which should be cheap.
Even though we perform hoisting, the benefits of this kind of hoisting
should by far outweigh the negatives.
For example, the loop in the code below will not get vectorized on
AArch64 with the current default, but will with the patch. This is a
fundamental pattern we should definitely vectorize. Besides that, I
think the select variants should be easier to use for reasoning across
other passes as well.
https://clang.godbolt.org/z/sbjd8Wshx
```
double clamp(double v) {
if (v < 0.0)
return 0.0;
if (v > 6.0)
return 6.0;
return v;
}
void loop(double* X, double *Y) {
for (unsigned i = 0; i < 20000; i++) {
X[i] = clamp(Y[i]);
}
}
```
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100329
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Jump threading can replace select then unconditional branch with
conditional branch, but when doing so loses debug info.
This destructive transform is eventually leading to a failed Verifier
run during full LTO builds of the Linux kernel with CFI and KCOV
enabled, as reported in PR39531.
ModuleSanitizerCoveragePass will insert calls to
__sanitizer_cov_trace_pc, and sometimes split critical edges,
using whatever debug info may or may not exist for the branch for
the added libcall. Since we can inline calls to
__sanitizer_cov_trace_pc due to LTO, this can lead to the error
observed in PR39531 when the debug info isn't propagated to
the libcall, because of prior destructive transforms that failed to
retain debug info.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100137
Turning on -fstrict-vtable-pointers in Chrome caused an extra global
initializer. Turns out that a llvm.strip.invariant.group intrinsic was
causing GlobalOpt to fail to step through some simple code.
We can treat *.invariant.group uses as simply their operand.
Value::stripPointerCastsForAliasAnalysis() does exactly this. This
should be safe because the Evaluator does not skip memory accesses due
to invariants or alias analysis.
However, we don't want to leak that we've stripped arbitrary pointer
casts to users of Evaluator, so we bail out if we evaluate a function to
any constant, since we may have looked through *.invariant.group calls
and aliasing pointers cannot be arbitrarily substituted.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D98843
Instruction::getDebugLoc can return an invalid DebugLoc. For such cases
where metadata was accidentally removed from the libcall insertion
point, simply insert a DILocation with line 0 scoped to the caller. When
we can inline the libcall, such as during LTO, then we won't fail a
Verifier check that all calls to functions with debug metadata
themselves must have debug metadata.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100158
Retry of 330619a3a6 that includes a clang test update.
Original commit message:
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898 <https://reviews.llvm.org/D98898>.
In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.
We make the same change to the old pass manager to keep things synchronized.
Differential Revision: https://reviews.llvm.org/D100213
D24453 enabled libcalls simplication for ARM PCS. This may cause
caller/callee calling conventions mismatch in some situations such as
LTO. This patch makes instcombine aware that the compatible calling
conventions differences are benign (not emitting undef idom).
Differential Revision: https://reviews.llvm.org/D99773
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898.
In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.
We make the same change to the old pass manager to keep things synchronized.
Differential Revision: https://reviews.llvm.org/D100213
Say we have
%1=min(%a,%b)
%2=min(%b,%c)
%3=min(%2,%a)
The optimization will try to reassociate the later one so that we can rewrite it to %3=min(%1, %c) and remove %2.
But if %2 has another uses outside of %3 then we can't remove %2 and end up with:
%1=min(%a,%b)
%2=min(%b,%c)
%3=min(%1, %c)
This doesn't harm by itself except it is not profitable and changes IR for no good reason.
What is bad it triggers next iteration which finds out that optimization is applicable to %2 and %3 and generates:
%1=min(%a,%b)
%2=min(%b,%c)
%3=min(%1,%c)
%4=min(%2,%a)
and so on...
The solution is to prevent optimization in the first place if intermediate result (%2) has side uses and
known to be not removed.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D100170
First, we don't need vector-ness for the predecessor lists.
Secondly, like elsewhere, do insertions before deletions.
Lastly, the check that we actually need to insert an edge,
that it doesn't exist already, is backwards. Instead of
looking at successors of every single 'PredOfBB',
just always look at predecessors of the 'Succ'.
The result is always the same, but we avoid *really* inefficient code.
The default is likely wrong.
Out of all the callees, only a single one needs to pass-in false (JumpThread),
everything else either already passes true, or should pass true.
Until the default is flipped, at least make it harder to unintentionally
add new callees with UseBlockValue=false.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
This patch updates the linkage name in the DISubprogram of coro-split
functions, which is particularly important for Swift, where the
funclets have a special name mangling. This patch does not affect C++
coroutines, since the DW_AT_specification is expected to hold the
(original) linkage name. I believe this is mostly due to limitations
in AsmPrinter, so we might be able to relax this restriction in the
future.
Differential Revision: https://reviews.llvm.org/D99693
As suggested in the review thread for 5094e12 and seen in the
motivating example from https://llvm.org/PR49885, it's not
clear if we have a way to create the optimal code without
this heuristic.
Add an ability to store `Offset` between partially aliased location. Use this
storage within returned `ResultAlias` instead of caching it in `AAQueryInfo`.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98718
Main reason is preparation to transform AliasResult to class that contains
offset for PartialAlias case.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98027
Previously loading the vtable used in calling a virtual method in a loop
was not hoisted out of the loop. This fixes that.
canSinkOrHoistInst() itself doesn't check that the load operands are
loop invariant, callers also check that separately.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99784
meetBDVState looks pretty difficult to read and follow.
This is purely NFC but doing several things:
1) Combine meet and meetBDVState
2) Move the function to be a member of BDVState
3) Make BDVState be a mutable object
4) Convert switch to sequence of ifs
5) Adds comments.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D99064
Pretty straightforward use of existing infrastructure and port of the attributor inference rules for nosync.
A couple points of interest:
* I deliberately switched from "monotonic or better" to "unordered or better". This is simply me being conservative and is better in line with the rest of the optimizer. We treat monotonic conservatively pretty much everywhere.
* The operand bundle test change is suspicious. It looks like we might have missed something here, but if so, it's an issue with the existing nofree inference as well. I'm going to take a closer look at that separately.
* I needed to keep the previous inference from readnone. This surprised me, but made sense once I realized readonly inference goes to lengths to reason about local vs non-local memory and that writes to local memory are okay. This is fine for the purpose of nosync, but would e.g. prevent us from inferring nofree from readnone - which is slightly surprising.
Differential Revision: https://reviews.llvm.org/D99769
This fixes a "Cached first special instruction is wrong!" assert.
The assert fires because replacing a value with another can cause an
instruction to no longer be "special" to ICF. In this case,
devirtualization happened, turning an indirect call to a
call to a willreturn function which is no longer special.
Reviewed By: nikic, rnk
Differential Revision: https://reviews.llvm.org/D99977
After D99249 we use three different loop pass managers for LICM,
LoopRotate and LICM+LoopUnswitch. This happens because LazyBFI
and LazyBPI are not preserved by LoopRotate (note that D74640
is no longer needed). Avoid this by marking them as preserved.
My understanding of D86156 is that it is okay to simply preserve
them (which LoopUnswitch already does for the same reason) and
rely on callbacks to deal with deleted blocks.
Differential Revision: https://reviews.llvm.org/D99843
After loop interchange, the (old) outer loop header should not jump to
the `LoopExit`. Note that the old outer loop becomes the new inner loop
after interchange. If we branched to `LoopExit` then after interchange
we would jump directly from the (new) inner loop header to `LoopExit`
without executing the rest of outer loop.
This patch modifies adjustLoopBranches() such that the old outer
loop header (which becomes the new inner loop header) jumps to the
old inner loop latch which becomes the new outer loop latch after
interchange.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D98475
Instead of passing the start value and the defined value to
widenPHIInstruction, pass the VPWidenPHIRecipe directly, which can be
used to get both (and more in future patches).
During LoopStrengthReduce, some of the SSA values that are used by debug values
may be lost and/or salvaged. After LSR we attempt to recover any undef debug
values, including any that were salvaged but then lost their values afterwards,
by replacing the lost values with any live equal values (plus a possible
constant offset) that have been gathered prior to running LSR. When we do this
we restore the debug value's original DIExpression, to undo any salvaging (as we
have gone back to using the original debug value).
This process can currently produce invalid debug info if the number of operands
has changed by salvaging during LSR. Replacing old values during the
applyEqualValues step does not change the number of location operands, which
means that when we restore the old DIExpression we may have a mismatch between
the number of operands used by the debug value and the number of operands
referenced by the DIExpression. This patch fixes this by restoring the full
original location metadata at the start of the applyEqualValues step, so that
there is no mismatch in operand count between the debug value and its
DIExpression.
Differential Revision: https://reviews.llvm.org/D98644
D99674 stopped the folding of certain select operations into and/or, due
to incorrect folding in the presence of poison. D97360 added some costs
to attempt to account for the change, but only worked at the getUserCost
level, not the getCmpSelInstrCost that the vectorizer will use directly.
This adds similar logic into the vectorizer to handle these logical
and/or selects, treating them like and/or directly.
This fixes 60% performance regressions from code like the attached test
case.
Differential Revision: https://reviews.llvm.org/D99884
After loop interchange, the (old) outer loop header should not jump to
`LoopExit`. Note that the old outer loop becomes the new inner loop
after interchange. If we branched to `LoopExit` then after interchange
we would jump directly from the (new) inner loop header to `LoopExit`
without executing the rest of (new) outer loop.
This patch modifies adjustLoopBranches() such that the old outer
loop header (which becomes the new inner loop header) jumps to the
old inner loop latch which becomes the new outer loop latch after
interchange.
Reviewed By: bmahjour
Differential Revision: https://reviews.llvm.org/D98475
-Make sure of the CreateShl/LShr/AShr methods that take a uint64_t
instead of creating a ConstantInt for 1 ourselves.
-Use Builder.getInt1 or ConstantInt::getBool instead of a conditional.
-Pull out repeated calls to getType.
All of the code that handles general constant here (other than the more
restrictive APInt-dealing code) expects that it is an immediate,
because otherwise we won't actually fold the constants, and increase
instruction count. And it isn't obvious why we'd be okay with
increasing the number of constant expressions,
those still will have to be run..
But after 2829094a8e
this could also cause endless combine loops.
So actually properly restrict this code to immediates.
This fixes the examples from
D99674 and
https://llvm.org/PR49878
The matchers succeed on partial undef/poison vector constants,
but the transform creates a full 'not' (-1) constant, so it
would undo a demanded vector elements change triggered by the
extractelement.
Differential Revision: https://reviews.llvm.org/D100044
We see a regression related to low probe factor(0.01) which prevents some callsites being promoted in ICPPass and later cause the missing inline in CGSCC inliner. The root cause is due to redundant(the second) multiplication of the probe factor and this change try to fix it.
`Sum` does multiply a factor right after findCallSamples but later when using as the parameter in setProbeDistributionFactor, it multiplies one again.
This change could get ~2% perf back on mcf benchmark. In mcf, previously the corresponding factor is 1 and it's the recent feature introducing the <1 factor then trigger this bug.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D99787
No need to lookup through and/or try to vectorize operands of the
CmpInst instructions during attempts to find/vectorize min/max
reductions. Compiler implements postanalysis of the CmpInsts so we can
skip extra attempts in tryToVectorizeHorReductionOrInstOperands and save
compile time.
Differential Revision: https://reviews.llvm.org/D99950
The swap of the operands can affect later transforms that
are expecting a constant as operand 1. I don't think we
can trigger a bug with the current code, but I hit that
problem while drafting a new transform for min/max intrinsics.
This reverts commit a547b4e26b,
relanding commit 31d219d299,
which was reverted because there was a conflicting inverse transform,
which was causing an endless combine loop, which has now been adjusted.
Original commit message:
https://alive2.llvm.org/ce/z/67w-wQ
We prefer `add`s over `sub`, and this particular xform
allows further folds to happen:
Fixes https://bugs.llvm.org/show_bug.cgi?id=49858
I.e., if any/all of the consants is an expression, don't do it.
Since those constants won't reduce into an immediate,
but would be left as an constant expression, they could cause
endless combine loops after 31d219d299
added an inverse transformation.
Summary:
The function SplitCriticalEdge (called by SplitEdge) can return a nullptr in
cases where the edge is a critical. SplitEdge uses SplitCriticalEdge assuming it
can always split all critical edges, which is an incorrect assumption.
The three cases where the function SplitCriticalEdge will return a nullptr is:
1. DestBB is an exception block
2. Options.IgnoreUnreachableDests is set to true and
isa(DestBB->getFirstNonPHIOrDbgOrLifetime()) is not equal to a nullptr
3. LoopSimplify form must be preserved (Options.PreserveLoopSimplify is true)
and it cannot be maintained for a loop due to indirect branches
For each of these situations they are handled in the following way:
1. Modified the function ehAwareSplitEdge originally from
llvm/lib/Transforms/Coroutines/CoroFrame.cpp to handle the cases when the DestBB
is an exception block. This function is called directly in SplitEdge.
SplitEdge does not call SplitCriticalEdge in this case
2. Options.IgnoreUnreachableDests is set to false by default, so this situation
does not apply.
3. Return a nullptr in this situation since the SplitCriticalEdge also returned
nullptr. Nothing we can do in this case.
Reviewed By: asbirlea
Differential Revision:https://reviews.llvm.org/D94619
Follow up to a6d2a8d6f5. These were found by simply grepping for "::assume", and are the subset of that result which looked cleaner to me using the isa/dyn_cast patterns.
Follow up to a6d2a8d6f5. This covers all the public interfaces of the bundle related code. I tried to cleanup the internals where the changes were obvious, but there's definitely more room for improvement.
Fixes the ASan RISC-V memory mapping (originally introduced by D87580 and
D87581). This should be an improvement both in terms of first principles
soundness and observed test failures --- test failures would occur
non-deterministically depending on the ASLR random offset.
On RISC-V Linux (64-bit), `TASK_UNMAPPED_BASE` is currently defined as
`PAGE_ALIGN(TASK_SIZE / 3)`. The non-power-of-two divisor makes the result
be the not very round number 0x1555556000. That address had to be further
rounded to ensure page alignment after the shadow scale shifting is applied.
Still, that value explains why the mapping table may look less regular than
expected.
Further cleanups:
- Moved the mapping table comment, to ensure that the two Linux/AArch64
tables stayed together;
- Removed mention of Sv48. Neither the original mapping nor this one are
compatible with an actual Linux Sv48 address space (mainline Linux still
operates Sv48 in Sv39 mode). A future patch can improve this;
- Removed the additional comments, for consistency.
Differential Revision: https://reviews.llvm.org/D97646
Add the subclass, update a few places which check for the intrinsic to use idiomatic dyn_cast, and update the public interface of AssumptionCache to use the new class. A follow up change will do the same for the newer assumption query/bundle mechanisms.
performScalarPREInsertion() inserts instructions into blocks that we
need to tell ImplicitControlFlowTracking about, otherwise the ICF cache
may be invalid.
Fixes PR49193.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99909
The key change (4f5e92c) to switch gc.result and gc.relocate to being readnone landed nearly two weeks ago, and we haven't seen any fallout. Time to remove the code added to make reverting easy.
Previously we could only vectorize FP reductions if fast math was enabled, as this allows us to
reorder FP operations. However, it may still be beneficial to vectorize the loop by moving
the reduction inside the vectorized loop and making sure that the scalar reduction value
be an input to the horizontal reduction, e.g:
%phi = phi float [ 0.0, %entry ], [ %reduction, %vector_body ]
%load = load <8 x float>
%reduction = call float @llvm.vector.reduce.fadd.v8f32(float %phi, <8 x float> %load)
This patch adds a new flag (IsOrdered) to RecurrenceDescriptor and makes use of the changes added
by D75069 as much as possible, which already teaches the vectorizer about in-loop reductions.
For now in-order reduction support is off by default and controlled with the `-enable-strict-reductions` flag.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D98435
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
Changes getRecurrenceIdentity to always return a neutral value of -0.0 for FAdd.
Reviewed By: dmgreen, spatel
Differential Revision: https://reviews.llvm.org/D98963
For VPWidenPHIRecipes that model all incoming values as VPValue
operands, print those operands instead of printing the original PHI.
D99294 updates recipes of reduction PHIs to use the VPValue for the
incoming value from the loop backedge, making use of this new printing.
This patch enhances hasAddressTaken() to ignore bitcasts as a
callee in callbase instruction. Such bitcast usage doesn't really take
the address in a useful meaningful way.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D98884
When we are able to SROA an alloca, we know all uses of it, meaning we
don't have to preserve the invariant group intrinsics and metadata.
It's possible that we could lose information regarding redundant
loads/stores, but that's unlikely to have any real impact since right
now the only user is Clang and vtables.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99760
As shown in the example based on:
https://llvm.org/PR49832
...and the existing test, we can't substitute
a vector value because the equality compare
replacement that we are attempting requires
that the comparison is true for the entire
value. Vector select can be partly true/false.
During vectorization better to postpone the vectorization of the CmpInst
instructions till the end of the basic block. Otherwise we may vectorize
it too early and may miss some vectorization patterns, like reductions.
Reworked part of D57059
Differential Revision: https://reviews.llvm.org/D99796
This is identical to 781d077afb,
but for the other function.
For certain shift amount bit widths, we must first ensure that adding
shift amounts is safe, that the sum won't have an unsigned overflow.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49778
This is discussed in https://llvm.org/PR48999 ,
but it does not solve that request.
The difference in the vector test shows that some
other logic transform is limited to scalar types.
When converting a switch with two cases and a default into a
select, also handle the denegerate case where two cases have the
same value.
Generate this case directly as
%or = or i1 %cmp1, %cmp2
%res = select i1 %or, i32 %val, i32 %default
rather than
%sel1 = select i1 %cmp1, i32 %val, i32 %default
%res = select i1 %cmp2, i32 %val, i32 %sel1
as InstCombine is going to canonicalize to the former anyway.
This patch fixes llvm.org/pr49688 by conditionally folding select i1 into and/or:
```
select cond, cond2, false
->
and cond, cond2
```
This is not safe if cond2 is poison whereas cond isn’t.
Unconditionally disabling this transformation affects later pipelines that depend on and/or i1s.
To minimize its impact, this patch conservatively checks whether cond2 is an instruction that
creates a poison or its operand creates a poison.
This approach is similar to what InstSimplify's SimplifyWithOpReplaced is doing.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99674
When run under valgrind, or with a malloc that poisons freed memory,
this can lead to segfaults or other problems.
To avoid modifying the AdditionalUsers DenseMap while still iterating,
save the instructions to be notified in a separate SmallPtrSet, and use
this to later call OperandChangedState on each instruction.
Fixes PR49582.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D98602
This patch moves mapping of IR operands to VPValues out of
tryToCreateWidenRecipe. This allows using existing VPValue operands when
widening recipes directly, which will be introduced in future patches.
The safepoints being inserted exists to free memory, or coordinate with another thread to do so. Thus, we must strip any inferred attributes and reinfer them after the lowering.
I'm not aware of any active miscompiles caused by this, but since I'm working on strengthening inference of both and leveraging them in the optimization decisions, I figured a bit of future proofing was warranted.
The ultimate reduction node may have multiple uses, but if the ultimate
reduction is min/max reduction and based on SelectInstruction, the
condition of this select instruction must have only single use.
Differential Revision: https://reviews.llvm.org/D99753
The motivation for this patch is to better estimate the cost of
extracelement instructions in cases were they are going to be free,
because the source vector can be used directly.
A simple example is
%v1.lane.0 = extractelement <2 x double> %v.1, i32 0
%v1.lane.1 = extractelement <2 x double> %v.1, i32 1
%a.lane.0 = fmul double %v1.lane.0, %x
%a.lane.1 = fmul double %v1.lane.1, %y
Currently we only consider the extracts free, if there are no other
users.
In this particular case, on AArch64 which can fit <2 x double> in a
vector register, the extracts should be free, independently of other
users, because the source vector of the extracts will be in a vector
register directly, so it should be free to use the vector directly.
The SLP vectorized version of noop_extracts_9_lanes is 30%-50% faster on
certain AArch64 CPUs.
It looks like this does not impact any code in
SPEC2000/SPEC2006/MultiSource both on X86 and AArch64 with -O3 -flto.
This originally regressed after D80773, so if there's a better
alternative to explore, I'd be more than happy to do that.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D99719
Support reassociation for min/max. With that we should be able to transform min(min(a, b), c) -> min(min(a, c), b) if min(a, c) is already available.
Reviewed By: mkazantsev, lebedev.ri
Differential Revision: https://reviews.llvm.org/D88287
This is a patch to fix the bug in alignment calculation (see https://reviews.llvm.org/D90529#2619492).
Consider this code:
```
call void @llvm.assume(i1 true) ["align"(i32* %a, i32 32, i32 28)]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 -1
; aligment of %arrayidx?
```
The llvm.assume guarantees that `%a - 28` is 32-bytes aligned, meaning that `%a` is 32k + 28 for some k.
Therefore `a - 4` cannot be 32-bytes aligned but the existing code was calculating the pointer as 32-bytes aligned.
The reason why this happened is as follows.
`DiffSCEV` stores `%arrayidx - %a` which is -4.
`OffSCEV` stores the offset value of “align”, which is 28.
`DiffSCEV` + `OffSCEV` = 24 should be used for `a - 4`'s offset from 32k, but `DiffSCEV` - `OffSCEV` = 32 was being used instead.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D98759
The code is assuming that having an exact exit count for the loop implies that exit counts for every exit are known. This used to be true, but when we added handling for dead exits we broke this invariant. The new invariant is that an exact loop count implies that any exits non trivially dead have exit counts.
We could have fixed this by either a) explicitly checking for a dead exit, or b) just testing for SCEVCouldNotCompute. I chose the second as it was simpler.
(Debugging this took longer than it should have since I'd mistyped the original assert and it wasn't checking what it was meant to...)
p.s. Sorry for the lack of test case. Getting things into a state to actually hit this is difficult and fragile. The original repro involves loop-deletion leaving SCEV in a slightly inprecise state which lets us bypass other transforms in IndVarSimplify on the way to this one. All of my attempts to separate it into a standalone test failed.
This implements the most basic possible nosync inference. The choice of inference rule is taken from the comments in attributor and the discussion on the review of the change which introduced the nosync attribute (0626367202).
This is deliberately minimal. As noted in code comments, I do plan to add a more robust inference which actually scans the function IR directly, but a) I need to do some refactoring of the attributor code to use common interfaces, and b) I wanted to get something in. I also wanted to minimize the "interesting" analysis discussion since that's time intensive.
Context: This combines with existing nofree attribute inference to help prove dereferenceability in the ongoing deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D99749
We have this logic duplicated in several cases, none of which were exhaustive. Consolidate it in one place.
I don't believe this actually impacts behavior of the callers. I think they all filter their inputs such that their partial implementations were correct. If not, this might be fixing a cornercase bug.
1. Need to cleanup InstrElementSize map for each new tree, otherwise might
use sizes from the previous run of the vectorization attempt.
2. No need to include into analysis the instructions from the different basic
blocks to save compile time.
Differential Revision: https://reviews.llvm.org/D99677
Removes CFGAnalyses from the preserved analyses set
returned by LoopFlattenPass::run().
Reviewed By: Dave Green, Ta-Wei Tu
Differential Revision: https://reviews.llvm.org/D99700
Name GVN uses name 'LI' for two different unrelated things:
LoadInst and LoopInfo. This patch relates the variables with
former meaning into 'Load' to disambiguate the code.
Before this change, the `llvm.access.group` metadata was dropped
when moving a load instruction in GVN. This prevents vectorizing
a C/C++ loop with `#pragma clang loop vectorize(assume_safety)`.
This change propagates the metadata as well as other metadata if
it is safe (the move-destination basic block and source basic
block belong to the same loop).
Differential Revision: https://reviews.llvm.org/D93503
This commit adjusts the order of two swappable if statements to
make code cleaner.
Reviewed By: lattner, nikic
Differential Revision: https://reviews.llvm.org/D99648
Use SetVector instead of SmallPtrSet to track values with uniform use. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test consecutive-ptr-uniforms.ll .
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99549
This marks FSIN and other operations to EXPAND for scalable
vectors, so that they are not assumed to be legal by the cost-model.
Depends on D97470
Reviewed By: dmgreen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D97471
Summary: Try to insert dbg.declare to entry.resume basic block in resume
function. In this way, we could print alloca such as __promise in
gdb/lldb under O2, which would be beneficial to debug coroutine program.
Test Plan: check-llvm
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D96938
Use SetVector instead of SmallPtrSet for external definitions created for VPlan.
Doing this can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM-Unit test VPRecipeTest.dump.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99544
Currently prof metadata with branch counts is added only for BranchInst and SwitchInst, but not for IndirectBrInst. As a result, BPI/BFI make incorrect inferences for indirect branches, which can be very hot.
This diff adds metadata for IndirectBrInst, in addition to BranchInst and SwitchInst.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99550
Use profiled call edges to augment the top-down order. There are cases that the top-down order computed based on the static call graph doesn't reflect real execution order. For example:
1. Incomplete static call graph due to unknown indirect call targets. Adjusting the order by considering indirect call edges from the profile can enable the inlining of indirect call targets by allowing the caller processed before them.
2. Mutual call edges in an SCC. The static processing order computed for an SCC may not reflect the call contexts in the context-sensitive profile, thus may cause potential inlining to be overlooked. The function order in one SCC is being adjusted to a top-down order based on the profile to favor more inlining.
3. Transitive indirect call edges due to inlining. When a callee function is inlined into into a caller function in LTO prelink, every call edge originated from the callee will be transferred to the caller. If any of the transferred edges is indirect, the original profiled indirect edge, even if considered, would not enforce a top-down order from the caller to the potential indirect call target in LTO postlink since the inlined callee is gone from the static call graph.
4. #3 can happen even for direct call targets, due to functions defined in header files. Header functions, when included into source files, are defined multiple times but only one definition survives due to ODR. Therefore, the LTO prelink inlining done on those dropped definitions can be useless based on a local file scope. More importantly, the inlinee, once fully inlined to a to-be-dropped inliner, will have no profile to consume when its outlined version is compiled. This can lead to a profile-less prelink compilation for the outlined version of the inlinee function which may be called from external modules. while this isn't easy to fix, we rely on the postlink AutoFDO pipeline to optimize the inlinee. Since the survived copy of the inliner (defined in headers) can be inlined in its local scope in prelink, it may not exist in the merged IR in postlink, and we'll need the profiled call edges to enforce a top-down order for the rest of the functions.
Considering those cases, a profiled call graph completely independent of the static call graph is constructed based on profile data, where function objects are not even needed to handle case #3 and case 4.
I'm seeing an average 0.4% perf win out of SPEC2017. For certain benchmark such as Xalanbmk and GCC, the win is bigger, above 2%.
The change is an enhancement to https://reviews.llvm.org/D95988.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99351
This fixes the miscompilation reported in https://reviews.llvm.org/rG5bb38e84d3d0#986154 .
`select _, true, false` matches both m_LogicalAnd and m_LogicalOr, making later
transformations confused.
Simplify the branch condition to not have the form.
This patch adds support for the vectorization of induction variables when
using scalable vectors, which required the following changes:
1. Removed assert from InnerLoopVectorizer::getStepVector.
2. Modified InnerLoopVectorizer::createVectorIntOrFpInductionPHI to use
a runtime determined value for VF and removed an assert.
3. Modified InnerLoopVectorizer::buildScalarSteps to work for scalable
vectors. I did this by calculating the full vector value for each Part
of the unroll factor (UF) and caching this in the VP state. This means
that we are always able to extract an arbitrary element from the vector
if necessary. In addition to this, I also permitted the caching of the
individual lane values themselves for the known minimum number of elements
in the same way we do for fixed width vectors. This is a further
optimisation that improves the code quality since it avoids unnecessary
extractelement operations when extracting the first lane.
4. Added an assert to InnerLoopVectorizer::widenPHIInstruction, since while
testing some code paths I noticed this is currently broken for scalable
vectors.
Various tests to support different cases have been added here:
Transforms/LoopVectorize/AArch64/sve-inductions.ll
Differential Revision: https://reviews.llvm.org/D98715
Use SmallVector instead of SmallSet to track the context profiles mapped. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test profile-context-tracker-debug.ll .
Reviewed By: MaskRay, wenlei
Differential Revision: https://reviews.llvm.org/D99547
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
This change sets up a framework in llvm-profgen to estimate inline decision and adjust context-sensitive profile based on that. We call it a global pre-inliner in llvm-profgen.
It will serve two purposes:
1) Since context profile for not inlined context will be merged into base profile, if we estimate a context will not be inlined, we can merge the context profile in the output to save profile size.
2) For thinLTO, when a context involving functions from different modules is not inined, we can't merge functions profiles across modules, leading to suboptimal post-inline count quality. By estimating some inline decisions, we would be able to adjust/merge context profiles beforehand as a mitigation.
Compiler inline heuristic uses inline cost which is not available in llvm-profgen. But since inline cost is closely related to size, we could get an estimate through function size from debug info. Because the size we have in llvm-profgen is the final size, it could also be more accurate than the inline cost estimation in the compiler.
This change only has the framework, with a few TODOs left for follow up patches for a complete implementation:
1) We need to retrieve size for funciton//inlinee from debug info for inlining estimation. Currently we use number of samples in a profile as place holder for size estimation.
2) Currently the thresholds are using the values used by sample loader inliner. But they need to be tuned since the size here is fully optimized machine code size, instead of inline cost based on not yet fully optimized IR.
Differential Revision: https://reviews.llvm.org/D99146
Re-apply 25fbe803d4, with a small update to emit the right remark
class.
Original message:
[LV] Move runtime pointer size check to LVP::plan().
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
This is a 2nd try of:
3c8473ba53
which was reverted at:
a26312f9d4
because of crashing.
This version includes extra code and tests to avoid the known
crashing examples as discussed in PR49730.
Original commit message:
As noted in D98152, we need to patch SLP to avoid regressions when
we start canonicalizing to integer min/max intrinsics.
Most of the real work to make this possible was in:
7202f47508
Differential Revision: https://reviews.llvm.org/D98981
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98634
Using $ breaks demangling of the symbols. For example,
$ c++filt _Z3foov\$123
_Z3foov$123
This causes problems for developers who would like to see nice stack traces
etc., but also for automatic crash tracking systems which try to organize
crashes based on the stack traces.
Instead, use the period as suffix separator, since Itanium demanglers normally
ignore such suffixes:
$ c++filt _Z3foov.123
foo() [clone .123]
This is already done in some places; try to do it everywhere.
Differential revision: https://reviews.llvm.org/D97484
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This is a small patch to make FoldBranchToCommonDest poison-safe by default.
After fc3f0c9c, only two syntactic changes are needed to fix unit tests.
This does not cause any assembly difference in testsuite as well (-O3, X86-64 Manjaro).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99452
During context promotion, intermediate nodes that are on a call path but do not come with a profile can be promoted together with their parent nodes. Do not print sample context string for such nodes since they do not have profile.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D99441
This reverts commit 3c8473ba53 and includes test diffs to
maintain testing status.
There's at least 1 place that was not updated with 7202f47508 ,
so we can crash mismatching select and intrinsics as shown in
PR49730.
This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.
unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
return N * TTI.getArithmeticInstrCost(...
After some investigation it seems that there are only these cases that occur
in practice:
1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast with scalar uses, or b) this is an update to an induction variable
that remains scalar.
I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. For all other cases I have added an assert that none of the
users needs scalarising, which didn't fire in any unit tests.
Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.
Differential Revision: https://reviews.llvm.org/D98512
When prioritize call site to consider for inlining in sample loader, use number of samples as a first tier breaker before using name/guid comparison. This would favor smaller functions when hotness is the same (from the same block). We could try to retrieve accurate function size if this turns out to be more important.
Differential Revision: https://reviews.llvm.org/D99370
In DeadArgumentElimination pass, if a function's argument is never used, corresponding caller's parameter can be changed to undef. If the param/arg has attribute noundef or other related attributes, LLVM LangRef(https://llvm.org/docs/LangRef.html#parameter-attributes) says its behavior is undefined. SimplifyCFG(D97244) takes advantage of this behavior and does bad transformation on valid code.
To avoid this undefined behavior when change caller's parameter to undef, this patch removes noundef attribute and other attributes imply noundef on param/arg.
Differential Revision: https://reviews.llvm.org/D98899
This *only* changes the cases where we *really* don't care
about the iteration order of the underlying contained,
namely when we will use the values from it to form DTU updates.
The SCEV commit b46c085d2b [NFCI] SCEVExpander:
emit intrinsics for integral {u,s}{min,max} SCEV expressions
seems to reveal a new crash in SLPVectorizer.
SLP crashes expecting a SelectInst as an externally used value
but umin() call is found.
The patch relaxes the assumption to make the IR flag propagation safe.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D99328
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
We do not need to scan further if the upper end or lower end of the
basic block is reached already and the instruction is not found. It
means that the instruction is definitely in the lower part of basic
block or in the upper block relatively.
This should improve compile time for the very big basic blocks.
Differential Revision: https://reviews.llvm.org/D99266
Unswitching a loop on a non-trivial divergent branch is expensive
since it serializes the execution of both version of the
loop. But identifying a divergent branch needs divergence analysis,
which is a function level analysis.
The legacy pass manager handles this dependency by isolating such a
loop transform and rerunning the required function analyses. This
functionality is currently missing in the new pass manager, and there
is no safe way for the SimpleLoopUnswitch pass to depend on
DivergenceAnalysis. So we conservatively assume that all non-trivial
branches are divergent if the target has divergence.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D98958
This is yet another attempt to fix tightlyNested().
Add checks in tightlyNested() for the inner loop exit block,
such that 1) if there is control-flow divergence in between the inner
loop exit block and the outer loop latch, or 2) if the inner loop exit
block contains unsafe instructions, tightlyNested() returns false.
The reasoning behind is that after interchange, the original inner loop
exit block, which was part of the outer loop, would be put into the new
inner loop, and will be executed different number of times before and
after interchange. Thus it should be dealt with appropriately.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D98263
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
LICM can sink instructions that have uses inside the loop, as
long as these uses are considered "free". However, if there were
only free uses inside the loop, and no uses outside the loop at
all, the instruction would still count towards the NumSunk
statistic. This resulted in a wild inflation of the NumSunk metric.
After this patch it drops down from 1141787 to 5852 on test-suite O3.
FindAvailableLoadedValue() relies on FindAvailablePtrLoadStore() to run
the alias analysis when searching for an equivalent value. However,
FindAvailablePtrLoadStore() calls the alias analysis framework with a
memory location for the load constructed from an address and a size,
which thus lacks TBAA metadata info. This commit modifies
FindAvailablePtrLoadStore() to accept an optional memory location as
parameter to allow FindAvailableLoadedValue() to create it based on the
load instruction, which would then have TBAA metadata info attached.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99206
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
We know if the loop contains FP instructions preventing vectorization
after we are done with legality checks. This patch updates the code the
check for un-vectorizable FP operations earlier, to avoid unnecessarily
running the cost model and picking a vectorization factor. It also makes
the code more direct and moves the check to a position where similar
checks are done.
I might be missing something, but I don't see any reason to handle this
check differently to other, similar checks.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98633
The `InductionPHI` is not necessarily the increment instruction, as
demonstrated in pr49571.ll.
This patch removes the assertion and instead bails out from the
`LoopFlatten` pass if that happens.
This fixes https://bugs.llvm.org/show_bug.cgi?id=49571
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99252
Added getPointersDiff function to LoopAccessAnalysis and used it instead
direct calculatoin of the distance between pointers and/or
isConsecutiveAccess function in SLP vectorizer to improve compile time
and detection of stores consecutive chains.
Part of D57059
Differential Revision: https://reviews.llvm.org/D98967
Added getPointersDiff function to LoopAccessAnalysis and used it instead
direct calculatoin of the distance between pointers and/or
isConsecutiveAccess function in SLP vectorizer to improve compile time
and detection of stores consecutive chains.
Part of D57059
Differential Revision: https://reviews.llvm.org/D98967
`FoldBranchToCommonDest()` has a certain budget (`-bonus-inst-threshold=`)
for bonus instruction duplication. And currently it calculates the cost
as-if it will actually duplicate into each predecessor.
But ignoring the budget, it won't always duplicate into each predecessor,
there are some correctness and profitability checks.
So when calculating the cost, we should first check into which blocks
will we *actually* duplicate, and only then use that block count
to do budgeting.
We clone bonus instructions to the end of the predecessor block,
and then use `SSAUpdater::RewriteUseAfterInsertions()`.
But that only deals with the cases where the use-to-be-rewritten
are either in different block from the def, or come after the def.
But in some loop cases, the external use may be in the beginning of
predecessor block, before the newly cloned bonus instruction.
`SSAUpdater::RewriteUseAfterInsertions()` does not deal with that.
Notably, the external use can't happen to be both in the same block
and *after* the newly-cloned instruction, because of the fold preconditions.
To properly handle these cases, when the use is in the same block,
we should instead use `SSAUpdater::RewriteUse()`.
TBN, they do the same thing for PHI users.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49510
Likely Fixes https://bugs.llvm.org/show_bug.cgi?id=49689
2nd try (original: 27ae17a6b0) with fix/test for crash. We must make
sure that TTI is available before trying to use it because it is not
required (might be another bug).
Original commit message:
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
As noted in D98152, we need to patch SLP to avoid regressions when
we start canonicalizing to integer min/max intrinsics.
Most of the real work to make this possible was in:
7202f47508
Differential Revision: https://reviews.llvm.org/D98981
- Give unwieldy repeated expression a name
- Use a ranged `for` basic block iterator
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
Hoist early return for decl-only clones to before DIFinder
calculation.
Also fix an out of date assert message after invariants changed in
22a52dfddc.
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
A bug was found within InstCombineCasts where a function call
is only implemented to work with FixedVectors. This caused a
crash when a ScalableVector was passed to this function.
This commit introduces a regression test which recreates the
failure and a bug fix.
Differential Revision: https://reviews.llvm.org/D98351
The summary remarks are generated on a per-function basis. Using the
first instruction's location is sub-optimal for 2 reasons:
1. Sometimes the first instruction is missing !dbg
2. The location of the first instruction may be mis-leading.
Instead, just use the location of the function directly.
In places where we create a ConstantVector whose elements are a
linear sequence of the form <start, start + 1, start + 2, ...>
I've changed the code to make use of CreateStepVector, which creates
a vector with the sequence <0, 1, 2, ...>, and a vector addition
operation. This patch is a non-functional change, since the output
from the vectoriser remains unchanged for fixed length vectors and
there are existing asserts that still fire when attempting to use
scalable vectors for vectorising induction variables.
In a later patch we will enable support for scalable vectors
in InnerLoopVectorizer::getStepVector(), which relies upon the new
stepvector intrinsic in IRBuilder::CreateStepVector.
Differential Revision: https://reviews.llvm.org/D97861
The name is included when printing in DOT mode. Also print it in non-DOT
mode after 93a9d2de8f.
This will become more important to distinguish different plans once
VPlans are gradually refined.
meetBDVState utility may sets the base pointer for the conflict state.
At this moment the base for conflict state does not have any meaning but
is used in comparison of BDV states. This comparison is used as an indicator
of progress done on iteration and RS4GC pass uses infinite loop to reach
fixed point.
As a result for added test on each iteration state for some phi nodes is updated
with other base value for conflict state and it indicates as a progress while
for conflict state there is no any progress more possible.
In reality the base value is transferred from one state to another and pass
detects the progress on these states.
The test is very fragile. The traversal order of states and operands of phi nodes
plays important role.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D99058
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Sometimes you want to get a type with same vector element count
as the current type, but different element type,
but there's no QOL wrapper to do that. Add one.
This reverts commit 27ae17a6b0.
There are bot failures that end with:
#4 0x00007fff7ae3c9b8 CrashRecoverySignalHandler(int) CrashRecoveryContext.cpp:0:0
#5 0x00007fff84e504d8 (linux-vdso64.so.1+0x4d8)
#6 0x00007fff7c419a5c llvm::TargetTransformInfo::getPredictableBranchThreshold() const (/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1.install/bin/../lib/libLLVMAnalysis.so.13git+0x479a5c)
...but not sure how to trigger that yet.
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
This is no-functional-change intended (NFC), but needed to allow
optimizer passes to use the API. See D98898 for a proposed usage
by SimplifyCFG.
I'm simplifying the code by removing the cl::opt. That was added
back with the original commit in D19488, but I don't see any
evidence in regression tests that it was used. Target-specific
overrides can use the usual patterns to adjust as necessary.
We could also restore that cl::opt, but it was not clear to me
exactly how to do it in the convoluted TTI class structure.
Make sure we use PowerOf2Floor instead of PowerOf2Ceil when
calculating max number of elements that fits inside a vector
register (otherwise we could end up creating vectors larger
than the maximum vector register size).
Also make sure we honor the min/max VF (as given by TTI or
cmd line parameters) when doing vectorizeStores.
Reviewed By: anton-afanasyev
Differential Revision: https://reviews.llvm.org/D97691
Subsequent patches will implement page-aliasing mode for x86_64, which
will initially only work for the primary heap allocator. We force
callback instrumentation to simplify the initial aliasing
implementation.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98069
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
When eliminating comparisons, we can use common dominator of
all its users as context. This gives better results when ICMP is not
computed right before the branch that uses it.
Differential Revision: https://reviews.llvm.org/D98924
Reviewed By: lebedev.ri
08196e0b2e exposed LowerExpectIntrinsic's
internal implementation detail in the form of
LikelyBranchWeight/UnlikelyBranchWeight options to the outside.
While this isn't incorrect from the results viewpoint,
this is suboptimal from the layering viewpoint,
and causes confusion - should transforms also use those weights,
or should they use something else, D98898?
So go back to status quo by making LikelyBranchWeight/UnlikelyBranchWeight
internal again, and fixing all the code that used it directly,
which currently is only clang codegen, thankfully,
to emit proper @llvm.expect intrinsics instead.
Upon reviewing D98898 i've come to realization that these are
implementation detail of LowerExpectIntrinsicPass,
and they should not be exposed to outside of it.
This reverts commit ee8b53815d.
This makes the settings available for use in other passes by housing
them within the Support lib, but NFC otherwise.
See D98898 for the proposed usage in SimplifyCFG
(where this change was originally included).
Differential Revision: https://reviews.llvm.org/D98945
Now that intrinsic name mangling can cope with unnamed types, the custom name mangling in PredicateInfo (introduced by D49126) can be removed.
(See D91250, D48541)
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91661
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those when the checks are enabled (which is by default with
expensive checks on).
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
This is a reland of https://reviews.llvm.org/D98820 which was reverted
due to unacceptably large compile time regressions in normal debug
builds.
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those.
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
Only verify MSSA when VerifyMemorySSA, normally it's very expensive.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98820
This patch is plumbing to support work towards the goal outlined in the recent llvm-dev post "[llvm-dev] RFC: Decomposing deref(N) into deref(N) + nofree".
The point of this change is purely to simplify iteration on other pieces on way to making the switch. Rebuilding with a change to Value.h is slow and painful, so I want to get the API change landed. Once that's done, I plan to more closely audit each caller, add the inference rules in their own patch, then post a patch with the langref changes and test diffs. The value of the command line flag is that we can exercise the inference logic in standalone patches without needing the whole switch ready to go just yet.
Differential Revision: https://reviews.llvm.org/D98908
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
We can prove more predicates when we have a context when eliminating ICmp.
As first (and very obvious) approximation we can use the ICmp instruction itself,
though in the future we are going to use a common dominator of all its users.
Need some refactoring before that.
Observed ~0.5% negative compile time impact.
Differential Revision: https://reviews.llvm.org/D98697
Reviewed By: lebedev.ri
On ELF, we place the metadata sections (`__sancov_guards`, `__sancov_cntrs`,
`__sancov_bools`, `__sancov_pcs` in section groups (either `comdat any` or
`comdat noduplicates`).
With `--gc-sections`, LLD since D96753 and GNU ld `-z start-stop-gc` may garbage
collect such sections. If all `__sancov_bools` are discarded, LLD will error
`error: undefined hidden symbol: __start___sancov_cntrs` (other sections are similar).
```
% cat a.c
void discarded() {}
% clang -fsanitize-coverage=func,trace-pc-guard -fpic -fvisibility=hidden a.c -shared -fuse-ld=lld -Wl,--gc-sections
...
ld.lld: error: undefined hidden symbol: __start___sancov_guards
>>> referenced by a.c
>>> /tmp/a-456662.o:(sancov.module_ctor_trace_pc_guard)
```
Use the `extern_weak` linkage (lowered to undefined weak symbols) to avoid the
undefined error.
Differential Revision: https://reviews.llvm.org/D98903
This is only adding support to the dfsan instrumentation pass but not
to the runtime.
Added more RUN lines for testing: for each instrumentation test that
had a -dfsan-fast-16-labels invocation, a new invocation was added
using fast8.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D98734
This reverts commit 6b053c9867.
The build is broken:
ld.lld: error: undefined symbol: llvm::VPlan::printDOT(llvm::raw_ostream&) const
>>> referenced by LoopVectorize.cpp
>>> LoopVectorize.cpp.o:(llvm::LoopVectorizationPlanner::printPlans(llvm::raw_ostream&)) in archive lib/libLLVMVectorize.a
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
value profile annotated after inlining.
In https://reviews.llvm.org/D96806 and https://reviews.llvm.org/D97350, we
use the magic number -1 in the value profile to avoid repeated indirect call
promotion to the same target for an indirect call. Function updateIDTMetaData
is used to mark an target as being promoted in the value profile with the
magic number. updateIDTMetaData is also used to update the value profile
when an indirect call is inlined and new inline instance profile should be
applied. For the second case, currently updateIDTMetaData mixes up the
existing value profile of the indirect call with the new profile, leading
to the problematic senario that a target count is larger than the total count
in the value profile.
The patch fixes the problem. When updateIDTMetaData is used to update the
value profile after inlining, all the values in the existing value profile
will be dropped except the values with the magic number counts.
Differential Revision: https://reviews.llvm.org/D98835
Not doing it here can lead to subtle bugs - the analysis results are
associated by the Function object's address. Nothing stops the memory
allocator from allocating new functions at the same address.
If SLP vectorizer tries to extend the scheduling region and runs out of
the budget too early, but still extends the region to the new ending
instructions (i.e., it was able to extend the region for the first
instruction in the bundle, but not for the second), the compiler need to
recalculate dependecies in full, just like if the extending was
successfull. Without it, the schedule data chunks may end up with the
wrong number of (unscheduled) dependecies and it may end up with the
incorrect function, where the vectorized instruction does not dominate
on the extractelement instruction.
Differential Revision: https://reviews.llvm.org/D98531
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those.
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98805
It is not legal to form a phi node with token type. The generic LCSSA construction code handles this correctly - by not forming LCSSA for such cases - but the adhoc fixup implementation in LICM did not.
This was noticed in the context of PR49607, but can be demonstrated on ToT with the tweaked test case. This is not specific to gc.relocate btw, it also applies to usage of the preallocated family of intrinsics as well.
Differential Revision: https://reviews.llvm.org/D98728
This adds an Mask ArrayRef to getShuffleCost, so that if an exact mask
can be provided a more accurate cost can be provided by the backend.
For example VREV costs could be returned by the ARM backend. This should
be an NFC until then, laying the groundwork for that to be added.
Differential Revision: https://reviews.llvm.org/D98206
Fixed section of code that iterated through a SmallDenseMap and added
instructions in each iteration, causing non-deterministic code; replaced
SmallDenseMap with MapVector to prevent non-determinism.
This reverts commit 01ac6d1587.
The `hasIrregularType` predicate checks whether an array of N values of type Ty is "bitcast-compatible" with a <N x Ty> vector.
The previous check returned invalid results in some cases where there's some padding between the array elements: eg. a 4-element array of u7 values is considered as compatible with <4 x u7>, even though the vector is only loading/storing 28 bits instead of 32.
The problem causes LLVM to generate incorrect code for some targets: for AArch64 the vector loads/stores are lowered in terms of ubfx/bfi, effectively losing the top (N * padding bits).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D97465
This caused non-deterministic compiler output; see comment on the
code review.
> This patch updates the various IR passes to correctly handle dbg.values with a
> DIArgList location. This patch does not actually allow DIArgLists to be produced
> by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
> Other than that, it should cover every IR pass.
>
> Most of the changes simply extend code that operated on a single debug value to
> operate on the list of debug values in the style of any_of, all_of, for_each,
> etc. Instances of setOperand(0, ...) have been replaced with with
> replaceVariableLocationOp, which takes the value that is being replaced as an
> additional argument. In places where this value isn't readily available, we have
> to track the old value through to the point where it gets replaced.
>
> Differential Revision: https://reviews.llvm.org/D88232
This reverts commit df69c69427.
This adds the cost of an i1 extract and a branch to the cost in
getMemInstScalarizationCost when the instruction is predicated. These
predicated loads/store would generate blocks of something like:
%c1 = extractelement <4 x i1> %C, i32 1
br i1 %c1, label %if, label %else
if:
%sa = extractelement <4 x i32> %a, i32 1
%sb = getelementptr inbounds float, float* %pg, i32 %sa
%sv = extractelement <4 x float> %x, i32 1
store float %sa, float* %sb, align 4
else:
So this increases the cost by the extract and branch. This is probably
still too low in many cases due to the cost of all that branching, but
there is already an existing hack increasing the cost using
useEmulatedMaskMemRefHack. It will increase the cost of a memop if it is
a load or there are more than one store. This patch improves the cost
for when there is only a single store, and hopefully at some point in
the future the hack can be removed.
Differential Revision: https://reviews.llvm.org/D98243
Current SLP pass has this piece of code that inserts a trunc instruction
after the vectorized instruction. In the case that the vectorized instruction
is a phi node and not the last phi node in the BB, the trunc instruction
will be inserted between two phi nodes, which will trigger verify problem
in debug version or unpredictable error in another pass.
This patch changes the algorithm to 'if the last vectorized instruction
is a phi, insert it after the last phi node in current BB' to fix this problem.
The motivation is to handle integer min/max reductions independently
of whether they are in the current cmp+sel form or the planned intrinsic
form.
We assumed that min/max included a select instruction, but we can
decouple that implementation detail by checking the instructions
themselves rather than relying on the recurrence (reduction) type.
Previously we created a new node, then filled in the pieces. Now, we clone the existing node, then change the respective fields. The only change in handling is with phis since we have to handle multiple incoming edges from the same block a bit differently.
Differential Revision: https://reviews.llvm.org/D98316
A broadcast is a shufflevector where only one input is used. Because of the way we handle constants (undef is a constant), the canonical shuffle sees a meet of (some value) and (nullptr). Given this, every broadcast gets treated as a conflict and a new base pointer computation is added.
The other way to tackle this would be to change constant handling specifically for undefs, but this seems easier.
Differential Revision: https://reviews.llvm.org/D98315
RS4GC needs to rewrite the IR to ensure that every relocated pointer has an associated base pointer. The existing code isn't particularly smart about avoiding duplication of existing IR when it turns out the original pointer we were asked to materialize a base pointer for is itself a base pointer.
This patch adds a stage to the algorithm which prunes nodes proven (with a simple forward dataflow fixed point) to be base pointers from the list of nodes considered for duplication. This does require changing some of the later invariants slightly, that's probably the riskiest part of the change.
Differential Revision: D98122
Add MemorySSAWrapperPass as a dependency to MemCpyOptLegacyPass,
since MemCpyOpt now uses MemorySSA by default.
Differential Revision: https://reviews.llvm.org/D98484
This was (partially) reverted in cfe8f8e0 because the conversion from readonly to readnone in Intrinsics.td exposed a couple of problems. This change has been reworked to not need that change (via some explicit checks in client code). This is being done to address the original optimization issue and simplify the testing of the readonly changes. I'm working on that piece under 49607.
Original commit message follows:
The last two operands to a gc.relocate represent indices into the associated gc.statepoint's gc bundle list. (Effectively, gc.relocates are projections from the gc.statepoints multiple return values.)
We can use this to recognize when two gc.relocates are equivalent (and can be CSEd), even when the indices are non-equal. This is particular useful when considering a chain of multiple statepoints as it lets us eliminate all duplicate gc.relocates in a single pass.
Differential Revision: https://reviews.llvm.org/D97974
Instead of maintaining a separate map from predicated instructions to
recipes, we can instead directly look at the VP operands. If the operand
comes from a predicated instruction, the operand will be a
VPPredInstPHIRecipe with a VPReplicateRecipe as its operand.
This patch adds support for reverse loop vectorization.
It is possible to vectorize the following loop:
```
for (int i = n-1; i >= 0; --i)
a[i] = b[i] + 1.0;
```
with fixed or scalable vector.
The loop-vectorizer will use 'reverse' on the loads/stores to make
sure the lanes themselves are also handled in the right order.
This patch adds support for scalable vector on IRBuilder interface to
create a reverse vector. The IR function
CreateVectorReverse lowers to experimental.vector.reverse for scalable vector
and keedp the original behavior for fixed vector using shuffle reverse.
Differential Revision: https://reviews.llvm.org/D95363
For ThinLTO's prelink compilation, we need to put external inline candidates into an import list attached to function's entry count metadata. This enables ThinLink to treat such cross module callee as hot in summary index, and later helps postlink to import them for profile guided cross module inlining.
For AutoFDO, the import list is retrieved by traversing the nested inlinee functions. For CSSPGO, since profile is flatterned, a few things need to happen for it to work:
- When loading input profile in extended binary format, we need to load all child context profile whose parent is in current module, so context trie for current module includes potential cross module inlinee.
- In order to make the above happen, we need to know whether input profile is CSSPGO profile before start reading function profile, hence a flag for profile summary section is added.
- When searching for cross module inline candidate, we need to walk through the context trie instead of nested inlinee profile (callsite sample of AutoFDO profile).
- Now that we have more accurate counts with CSSPGO, we swtiched to use entry count instead of total count to decided if an external callee is potentially beneficial to inline. This make it consistent with how we determine whether call tagert is potential inline candidate.
Differential Revision: https://reviews.llvm.org/D98590
This is a patch to add nonnull and align to assume's operand bundle
only if noundef exists.
Since nonnull and align in fn attr have poison semantics, they should be
paired with noundef or noundef-implying attributes to be immediate UB.
Reviewed By: jdoerfert, Tyker
Differential Revision: https://reviews.llvm.org/D98228
This is an alternative to D98120. Herein, instead of deleting the transformation entirely, we check
that the underlying objects are both the same and therefore this transformation wouldn't incur a
provenance change, if applied.
https://alive2.llvm.org/ce/z/SYF_yv
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98588
The load/store instruction will be transformed to amx intrinsics
in the pass of AMX type lowering. Prohibiting the pointer cast
make that pass happy.
Differential Revision: https://reviews.llvm.org/D98247
This fixes a regression from the MemDep-based implementation:
MemDep completely ignores lifetime.start intrinsics that aren't
MustAlias -- this is probably unsound, but it does mean that the
MemDep based implementation successfully eliminated memcpy's from
lifetime.start if the memcpy happens at an offset, rather than
the base address of the alloca.
Add a special case for the case where the lifetime.start spans the
whole alloca (which is pretty much the only kind of lifetime.start
that frontends ever emit), as we don't need to figure out our exact
aliasing relationship in that case, the whole alloca is dead prior
to the call.
If this doesn't cover all practically relevant cases, then it
would be possible to make use of the recently added PartialAlias
clobber offsets to make this more precise.
The structure of this fold is suspect vs. most of instcombine
because it creates instructions and tries to delete them
immediately after.
If we don't have the operand types for the icmps, then we are
not behaving as assumed. And as shown in PR49475, we can inf-loop.
The added test case crashes before this fix:
```
opt: /repositories/llvm-project/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp:5172: BasicBlock::iterator (anonymous namespace)::LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator, const (anonymous namespace)::LSRFixup &, const (anonymous namespace)::LSRUse &, llvm::SCEVExpander &) const: Assertion `!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>(LowestIP) && "Insertion point must be a normal instruction"' failed.
```
This is fully analogous to the previous commit,
with the pointer constant replaced to be something non-null.
The comparison here can be strength-reduced,
but the second operand of the comparison happens to be identical
to the constant pointer in the `catch` case of `landingpad`.
While LSRInstance::CollectLoopInvariantFixupsAndFormulae()
already gave up on uses in blocks ending up with EH pads,
it didn't consider this case.
Eventually, `LSRInstance::AdjustInsertPositionForExpand()`
will be called, but the original insertion point it will get
is the user instruction itself, and it doesn't want to
deal with EH pads, and asserts as much.
It would seem that this basically never happens in-the-wild,
otherwise it would have been reported already,
so it seems safe to take the cautious approach,
and just not deal with such users.
If a memset destination is overwritten by a memcpy and the sizes
are exactly the same, then the memset is simply dead. We can
directly drop it, instead of replacing it with a memset of zero
size, which is particularly ugly for the case of a dynamic size.
".llvm." suffix".
The recommit fixed a bug that symbols with "." at the beginning is not
properly handled in the last commit.
Original commit message:
Currently IndirectCallPromotion simply strip everything after the first "."
in LTO mode, in order to match the symbol name and the name with ".llvm."
suffix in the value profile. However, if -funique-internal-linkage-names
and thinlto are both enabled, the name may have both ".__uniq." suffix and
".llvm." suffix, and the current mechanism will strip them both, which is
unexpected. The patch fixes the problem.
Differential Revision: https://reviews.llvm.org/D98389
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.
This patch fixes a crash when trying to get a scalar value using
VPTransformState::get() for uniform induction values or truncated
induction values. IVs and truncated IVs can be uniform and the updated
code accounts for that, fixing the crash.
This should fix
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=31981
The test is reduced from a C source example in:
https://llvm.org/PR49541
It's possible that the test could be reduced further or
the predicate generalized further, but it seems to require
a few ingredients (including the "late" SimplifyCFG options
on the RUN line) to fall into the infinite-loop trap.
This broke the check-profile tests on Mac, see comment on the code
review.
> This is no longer needed, we can add __llvm_profile_runtime directly
> to llvm.compiler.used or llvm.used to achieve the same effect.
>
> Differential Revision: https://reviews.llvm.org/D98325
This reverts commit c7712087cb.
Also reverting the dependent follow-up commit:
Revert "[InstrProfiling] Generate runtime hook for ELF platforms"
> When using -fprofile-list to selectively apply instrumentation only
> to certain files or functions, we may end up with a binary that doesn't
> have any counters in the case where no files were selected. However,
> because on Linux and Fuchsia, we pass -u__llvm_profile_runtime, the
> runtime would still be pulled in and incur some non-trivial overhead,
> especially in the case when the continuous or runtime counter relocation
> mode is being used. A better way would be to pull in the profile runtime
> only when needed by declaring the __llvm_profile_runtime symbol in the
> translation unit only when needed.
>
> This approach was already used prior to 9a041a7522, but we changed it
> to always generate the __llvm_profile_runtime due to a TAPI limitation.
> Since TAPI is only used on Mach-O platforms, we could use the early
> emission of __llvm_profile_runtime there, and on other platforms we
> could change back to the earlier approach where the symbol is generated
> later only when needed. We can stop passing -u__llvm_profile_runtime to
> the linker on Linux and Fuchsia since the generated undefined symbol in
> each translation unit that needed it serves the same purpose.
>
> Differential Revision: https://reviews.llvm.org/D98061
This reverts commit 87fd09b25f.
As readnone function they become movable and LICM can hoist them
out of a loop. As a result in LCSSA form phi node of type token
is created. No one is ready that GCRelocate first operand is phi node
but expects to be token.
GVN test were also updated, it seems it does not do what is expected.
Test for LICM is also added.
This reverts commit f352463ade.
Since D86233 we have `mustprogress` which, in combination with
`readonly`, implies `willreturn`. The idea is that every side-effect
has to be modeled as a "write". Consequently, `readonly` means there
is no side-effect, and `mustprogress` guarantees that we cannot "loop"
forever without side-effect.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94125
Splitting this out as the change is non-trivial: The way this code
handled pointer types doesn't really make sense, as GEPs can only
apply an offset to the outermost pointer, but can't drill down
into interior pointer types (which would require dereferencing
memory).
Instead give special treatment to the first (pointer) index.
I've hardcoded it to zero as that's the only way the function is
used right now, but handling non-zero indexes would be
straightforward.
The original goal here was to have an element type for CreateGEP.
When using -fprofile-list to selectively apply instrumentation only
to certain files or functions, we may end up with a binary that doesn't
have any counters in the case where no files were selected. However,
because on Linux and Fuchsia, we pass -u__llvm_profile_runtime, the
runtime would still be pulled in and incur some non-trivial overhead,
especially in the case when the continuous or runtime counter relocation
mode is being used. A better way would be to pull in the profile runtime
only when needed by declaring the __llvm_profile_runtime symbol in the
translation unit only when needed.
This approach was already used prior to 9a041a7522, but we changed it
to always generate the __llvm_profile_runtime due to a TAPI limitation.
Since TAPI is only used on Mach-O platforms, we could use the early
emission of __llvm_profile_runtime there, and on other platforms we
could change back to the earlier approach where the symbol is generated
later only when needed. We can stop passing -u__llvm_profile_runtime to
the linker on Linux and Fuchsia since the generated undefined symbol in
each translation unit that needed it serves the same purpose.
Differential Revision: https://reviews.llvm.org/D98061
Associative reduction matcher in SLP begins with select instruction but when
it reached call to llvm.umax (or alike) via def-use chain the latter also matched
as UMax kind. The routine's later code assumes matched instruction to be a select
and thus it merely died on the first encountered cast that did not fit.
Differential Revision: https://reviews.llvm.org/D98432
For CGSCC inline, we need to scale down a function's branch weights and entry counts when thee it's inlined at a callsite. This is done through updateCallProfile. Additionally, we also scale the weigths for the inlined clone based on call site count in updateCallerBFI. Neither is needed for inlining during sample profile loader as it's using context profile that is separated from inlinee's own profile. This change skip the inlinee profile scaling for sample loader inlining.
Differential Revision: https://reviews.llvm.org/D98187
1. PGOMemOPSizeOpt grabs only the first, up to five (by default) entries from
the value profile metadata and preserves the remaining entries for the fallback
memop call site. If there are more than five entries, the rest of the entries
would get dropped. This is fine for PGOMemOPSizeOpt itself as it only promotes
up to 3 (by default) values, but potentially not for other downstream passes
that may use the value profile metadata.
2. PGOMemOPSizeOpt originally assumed that only values 0 through 8 are kept
track of. When the range buckets were introduced, it was changed to skip the
range buckets, but since it does not grab all entries (only five), if some range
buckets exist in the first five entries, it could potentially cause fewer
promotion opportunities (eg. if 4 out of 5 were range buckets, it may be able to
promote up to one non-range bucket, as opposed to 3.) Also, combined with 1, it
means that wrong entries may be preserved, as it didn't correctly keep track of
which were entries were skipped.
To fix this, PGOMemOPSizeOpt now grabs all the entries (up to the maximum number
of value profile buckets), keeps track of which entries were skipped, and
preserves all the remaining entries.
Differential Revision: https://reviews.llvm.org/D97592
This patch improves salvageDebugInfoImpl by allowing it to salvage arithmetic
operations with two or more non-const operands; this includes the GetElementPtr
instruction, and most Binary Operator instructions. These salvages produce
DIArgList locations and are only valid for dbg.values, as currently variadic
DIExpressions must use DW_OP_stack_value. This functionality is also only added
for salvageDebugInfoForDbgValues; other functions that directly call
salvageDebugInfoImpl (such as in ISel or Coroutine frame building) can be
updated in a later patch.
Differential Revision: https://reviews.llvm.org/D91722
Relative to the previous implementation, this always uses
aliasesUnknownInst() instead of aliasesPointer() to correctly
handle atomics. The added test case was previously miscompiled.
-----
Even when MemorySSA-based LICM is used, an AST is still populated
for scalar promotion. As the AST has quadratic complexity, a lot
of time is spent in this step despite the existing access count
limit. This patch optimizes the identification of promotable stores.
The idea here is pretty simple: We're only interested in must-alias
mod sets of loop invariant pointers. As such, only populate the AST
with loop-invariant loads and stores (anything else is definitely
not promotable) and then discard any sets which alias with any of
the remaining, definitely non-promotable accesses.
If we promoted something, check whether this has made some other
accesses loop invariant and thus possible promotion candidates.
This is much faster in practice, because we need to perform AA
queries for O(NumPromotable^2 + NumPromotable*NumNonPromotable)
instead of O(NumTotal^2), and NumPromotable tends to be small.
Additionally, promotable accesses have loop invariant pointers,
for which AA is cheaper.
This has a signicant positive compile-time impact. We save ~1.8%
geomean on CTMark at O3, with 6% on lencod in particular and 25%
on individual files.
Conceptually, this change is NFC, but may not be so in practice,
because the AST is only an approximation, and can produce
different results depending on the order in which accesses are
added. However, there is at least no impact on the number of promotions
(licm.NumPromoted) in test-suite O3 configuration with this change.
Differential Revision: https://reviews.llvm.org/D89264
This is no longer needed, we can add __llvm_profile_runtime directly
to llvm.compiler.used or llvm.used to achieve the same effect.
Differential Revision: https://reviews.llvm.org/D98325
This patch makes uses of the context bridges introduced in D83299 to make
AAValueConstantRange call site specific.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D83744
Add support to widen select instructions in VPlan native path by using a correct recipe when such instructions are encountered. This is already used by inner loop vectorizer.
Previously select instructions get handled by the wrong recipe and resulted in unreachable instruction errors like this one: https://bugs.llvm.org/show_bug.cgi?id=48139.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D97136
The isOverwrite function is making sure to identify if two stores
are fully overlapping and ideally we would like to identify all the
instances of OW_Complete as they'll yield possibly killable stores.
The current implementation is incapable of spotting instances where
the earlier store is offsetted compared to the later store, but
still fully overlapped. The limitation seems to lie on the
computation of the base pointers with the
GetPointerBaseWithConstantOffset API that often yields different
base pointers even if the stores are guaranteed to partially overlap
(e.g. the alias analysis is returning AliasResult::PartialAlias).
The patch relies on the offsets computed and cached by BatchAAResults
(available after D93529) to determine if the offsetted overlapping
is OW_Complete.
Differential Revision: https://reviews.llvm.org/D97676
D96109 was recently submitted which contains the refactored implementation of
-funique-internal-linakge-names by adding the unique suffixes in clang rather
than as an LLVM pass. Deleting the former implementation in this change.
Differential Revision: https://reviews.llvm.org/D98234
This patch refactors out the salvaging of GEP and BinOp instructions into
separate functions, in preparation for further changes to the salvaging of these
instructions coming in another patch; there should be no functional change as a
result of this refactor.
Differential Revision: https://reviews.llvm.org/D92851
See: https://bugs.llvm.org/show_bug.cgi?id=47613
There was an extra sqrt call because shrinking emitted a new powf and at the same time optimizePow replaces the previous pow with sqrt and as the result we have two instructions that will be in worklist of InstCombie despite the fact that %powf is not used by anyone (it is alive because of errno).
As the result we have two instructions:
%powf = call fast float @powf(float %x, float 5.000000e-01)
%sqrt = call fast double @sqrt(double %dx)
%powf will be converted to %sqrtf on a later iteration.
As a quick fix for that I moved shrinking to the end of optimizePow so that pow is replaced with sqrt at first that allows not to emit a new shrunk powf.
Differential Revision: https://reviews.llvm.org/D98235
Currently DSE misses cases where the size is a non-const IR value, even
if they match. For example, this means that llvm.memcpy/llvm.memset
calls are not eliminated, even if they write the same number of bytes.
This patch extends isOverwite to try to get IR values for the number of
bytes written from the analyzed instructions. If the values match,
alias checks are performed and the result is returned.
At the moment this only covers llvm.memcpy/llvm.memset. In the future,
we may enable MemoryLocation to also track variable sizes, but this
simple approach should allow us to cover the important cases in DSE.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98284
now -funique-internal-linkage-name flag is available, and we want to flip
it on by default since it is beneficial to have separate sample profiles
for different internal symbols with the same name. As a preparation, we
want to avoid regression caused by the flip.
When we flip -funique-internal-linkage-name on, the profile is collected
from binary built without -funique-internal-linkage-name so it has no uniq
suffix, but the IR in the optimized build contains the suffix. This kind of
mismatch may introduce transient regression.
To avoid such mismatch, we introduce a NameTable section flag indicating
whether there is any name in the profile containing uniq suffix. Compiler
will decide whether to keep uniq suffix during name canonicalization
depending on the NameTable section flag. The flag is only available for
extbinary format. For other formats, by default compiler will keep uniq
suffix so they will only experience transient regression when
-funique-internal-linkage-name is just flipped.
Another type of regression is caused by places where we miss to call
getCanonicalFnName. Those places are fixed.
Differential Revision: https://reviews.llvm.org/D96932
We encountered an issue where LTO running on IR that used the DSOLocalEquivalent
constant would result in bad codegen. The underlying issue was ValueMapper wasn't
properly handling DSOLocalEquivalent, so this just adds the machinery for handling
it. This code path is triggered by a fix to DSOLocalEquivalent::handleOperandChangeImpl
where DSOLocalEquivalent could potentially not have the same type as its underlying GV.
This updates DSOLocalEquivalent::handleOperandChangeImpl to change the type if
the GV type changes and handles this constant in ValueMapper.
Differential Revision: https://reviews.llvm.org/D97978
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.
Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.
Differential Revision: https://reviews.llvm.org/D88232
This is another step towards parity between existing select
transforms and min/max intrinsics (D98152)..
The existing 'not' folds around select are complicated, so
it's likely that we will need to enhance this, but this
should be a safe step.
This is a partial translation of the existing select-based
folds. We need to recreate several different transforms to
avoid regressions as noted in D98152.
https://alive2.llvm.org/ce/z/teuZ_J
If the incoming values of a phi are pointer casts of the same original
value, replace the phi with a single cast. Such redundant phis are
somewhat common after loop-rotate and removing them can avoid some
unnecessary code bloat, e.g. because an iteration of a loop is peeled
off to make the phi invariant. It should also simplify further analysis
on its own.
InstCombine already uses stripPointerCasts in a couple of places and
also simplifies phis based on the incoming values, so the patch should
fit in the existing scope.
The patch causes binary changes in 47 out of 237 benchmarks in
MultiSource/SPEC2000/SPEC2006 with -O3 -flto on X86.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98058
For CS profile, the callsite count of previously inlined callees is populated with the entry count of the callees. Therefore when trying to get a weight for calliste probe after inlinining, the callsite count should always be used. The same fix has already been made for non-probe case.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D98094
Revert 3d8f842712
Revision triggers a miscompile sinking a store incorrectly outside a
threading loop. Detected by tsan.
Reverting while investigating.
Differential Revision: https://reviews.llvm.org/D89264
If we have a recurrence of the form <Start, Or, Step> we know that the value taken by the recurrence stabilizes on the first iteration (provided step is loop invariant). We can exploit that fact to remove the loop carried dependence in the recurrence.
Differential Revision: https://reviews.llvm.org/D97578 (or part)
If we have a recurrence of the form <Start, And, Step> we know that the value taken by the recurrence stabilizes on the first iteration (provided step is loop invariant). We can exploit that fact to remove the loop carried dependence in the recurrence.
Differential Revision: https://reviews.llvm.org/D97578 (and part)
The code used for propagating equalities (e.g. assume facts) was conservative in two ways - one of which this patch fixes. Specifically, it shifts the code reasoning about whether a use is dominated by the end of the assume block to consider phi uses to exist on the predecessor edge. This matches the dominator tree handling for dominates(Edge, Use), and simply extends it to dominates(BB, Use).
Note that the decision to use the end of the block is itself a conservative choice. The more precise option would be to use the later of the assume and the value, and replace all uses after that. GVN handles that case separately (with the replace operand mechanism) because it used to be expensive to ask dominator questions within blocks. With the new instruction ordering support, we should probably rewrite this code at some point to simplify.
Differential Revision: https://reviews.llvm.org/D98082
Some intrinsics wrapper code has the habit of ignoring the type of the
elements in vectors, thinking of vector registers as a "bag of bits". As
a consequence, some operations are shared between vectors of different
types are shared. For example, functions that rearrange elements in a
vector can be shared between vectors of int32 and float.
This can result in bitcasts in awkward places that prevent the backend
from recognizing some instructions. For AArch64 in particular, it
inhibits the selection of dup from a general purpose register (GPR), and
mov from GPR to a vector lane.
This patch adds a pattern in InstCombine to move the bitcasts past the
shufflevector if this is possible. Sometimes this even allows
InstCombine to remove the bitcast entirely, as in the included tests.
Alternatively this could be done with a few extra patterns in the
AArch64 backend, but InstCombine seems like a better place for this.
Differential Revision: https://reviews.llvm.org/D97397
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
The check `tightlyNested()` in `LoopInterchange` is similar to the one in `LoopNest`.
In fact, the former misses some cases where loop-interchange is not feasible and results in incorrect behaviour.
Replacing it with the much robust version provided by `LoopNest` reduces code duplications and fixes https://bugs.llvm.org/show_bug.cgi?id=48113.
`LoopInterchange` has a weaker definition of tightly or perfectly nesting-ness than the one implemented in `LoopNest::arePerfectlyNested()`.
Therefore, `tightlyNested()` is instead implemented with `LoopNest::checkLoopsStructure` and additional checks for unsafe instructions.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D97290
This reverts commit 99108c791d.
Clang is miscompiling LLVM with this change, a stage-2 build hits
multiple failures.
As a repro, I built clang in a stage1 directory and used it this way:
cmake -G Ninja ../llvm \
-DCMAKE_CXX_COMPILER=`pwd`/../build-stage1/bin/clang++ \
-DCMAKE_C_COMPILER=`pwd`/../build-stage1/bin/clang \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX;AMDGPU" \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=ON \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=On
ninja check-mlir
This is a patch that adds folding of two logical and/ors that share one variable:
a && (a && b) -> a && b
a && (a & b) -> a && b
...
This is towards removing the poison-unsafe select optimization (D93065 has more context).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96945
The MemorySSA-based implementation has been enabled without issue
for a while now, so keeping the old implementation around doesn't
seem useful anymore. This drops the MemDep-based implementation.
Differential Revision: https://reviews.llvm.org/D97877
This fixes another unsafe select folding by disabling it if
EnableUnsafeSelectTransform is set to false.
EnableUnsafeSelectTransform's default value is true, hence it won't
affect generated code (unless the flag is explicitly set to false).
This patch makes FoldBranchToCommonDest merge branch conditions into `select i1` rather than `and/or i1` when it is called by SimplifyCFG.
It is known that merging conditions into and/or is poison-unsafe, and this is towards making things *more* correct by removing possible miscompilations.
Currently, InstCombine simply consumes these selects into and/or of i1 (which is also unsafe), so the visible effect would be very small. The unsafe select -> and/or transformation will be removed in the future.
There has been efforts for updating optimizations to support the select form as well, and they are linked to D93065.
The safe transformation is fired when it is called by SimplifyCFG only. This is done by setting the new `PoisonSafe` argument as true.
Another place that calls FoldBranchToCommonDest is LoopSimplify. `PoisonSafe` flag is set to false in this case because enabling it has a nontrivial impact in performance because SCEV is more conservative with select form and InductiveRangeCheckElimination isn't aware of select form of and/or i1.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95026
Hello all,
I'm trying to fix unsafe propagation of poison values in and/or conditions by using
equivalent select forms (`select i1 A, i1 B, i1 false` and `select i1 A, i1 true, i1 false`)
instead.
D93065 has links to patches for this.
This patch allows unswitch to happen if the condition is in this form as well.
`collectHomogenousInstGraphLoopInvariants` is updated to keep traversal if
Root and the visiting I matches both m_LogicalOr()/m_LogicalAnd().
Other than this, the remaining changes are almost straightforward and simply replaces
Instruction::And/Or check with match(m_LogicalOr()/m_LogicalAnd()).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D97756
When materializing an available load value, do not explicitly
materialize the undef values from dead blocks. Doing so will
will force creation of a phi with an undef operand, even if there
is a dominating definition. The phi will be folded away on
subsequent GVN iterations, but by then we may have already
poisoned MDA cache slots.
Simply don't register these values in the first place, and let
SSAUpdater do its thing.
Add support to widen call instructions in VPlan native path by using a correct recipe when such instructions are encountered. This is already used by inner loop vectorizer.
Previously call instructions got handled by wrong recipes and resulted in unreachable instruction errors like this one: https://bugs.llvm.org/show_bug.cgi?id=48139.
Patch by Mauri Mustonen <mauri.mustonen@tuni.fi>
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D97278
It's just a wrong thing to do.
We introduce inttoptr where there were none, which results in
loosing all provenance information because we no longer have a GEP{i,},
and pessimize all future optimizations,
because we are basically not allowed to look past `inttoptr`.
(gep i8* X, -(ptrtoint Y)) *is* the canonical form.
So just drop this fold.
Noticed while reviewing D98120.
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.
This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.
Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.
Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
We have the `enable-loopinterchange` option in legacy pass manager but not in NPM.
Add `LoopInterchange` pass to the optimization pipeline (at the same position as before)
when `enable-loopinterchange` is turned on.
Reviewed By: aeubanks, fhahn
Differential Revision: https://reviews.llvm.org/D98116
GVN basically doesn't handle phi nodes at all. This is for a reason - we can't value number their inputs since the predecessor blocks have probably not been visited yet.
However, it also creates a significant pass ordering problem. As it stands, instcombine and simplifycfg ends up implementing CSE of phi nodes. This means that for any series of CSE opportunities intermixed with phi nodes, we end up having to alternate instcombine/simplifycfg and gvn to make progress.
This patch handles the simplest case by simply preprocessing the phi instructions in a block, and CSEing them if they are syntactically identical. This turns out to be powerful enough to handle many cases in a single invocation of GVN since blocks which use the cse'd phi results are visited after the block containing the phi. If there's a CSE opportunity in one the phi predecessors required to recognize the phi CSE opportunity, that will require a second iteration on the function. (Still within a single run of gvn though.)
Compile time wise, this could go either way. On one hand, we're potentially causing GVN to iterate over the function more. On the other, we're cutting down on iterations between two passes and potentially shrinking the IR aggressively. So, a bit unclear what to expect.
Note that this does still rely on instcombine to canonicalize block order of the phis, but that's a one time transformation independent of the values incoming to the phi.
Differential Revision: https://reviews.llvm.org/D98080
The last two operands to a gc.relocate represent indices into the associated gc.statepoint's gc bundle list. (Effectively, gc.relocates are projections from the gc.statepoints multiple return values.)
We can use this to recognize when two gc.relocates are equivalent (and can be CSEd), even when the indices are non-equal. This is particular useful when considering a chain of multiple statepoints as it lets us eliminate all duplicate gc.relocates in a single pass.
Differential Revision: https://reviews.llvm.org/D97974
(Note: Part of the reviewed change was split and landed as f352463a)
For some reason, we had been marking gc.relocates as reading memory. There's no known reason for this, and I suspect it to be a legacy of very early implementation conservatism. gc.relocate and gc.result are simply projections of the return values from the associated statepoint. Note that the LangRef has always declared them readnone.
The EarlyCSE change is simply moving the special casing from readonly to readnone handling.
As noted by the test diffs, this does allow some additional CSE when relocates are separated by stores, but since we generate gc.relocates in batches, this is unlikely to help anything in practice.
This was reviewed as part of https://reviews.llvm.org/D97974, but split at reviewer request before landing. The motivation is to enable the GVN changes in that patch.
If we have a value live over a call which is used for deopt at the call, we know that the value must be a base pointer. We can avoid potentially inserting IR to materialize a base for this value.
In it's current form, this is mostly a compile time optimization. Building the base pointer graph (and then optimizing it away again) is a relatively expensive operation. We also sometimes end up with better codegen in practice - due to failures in optimizing away the inserted base pointer propogation - but those are optimization bugs we're fixing concurrently.
The alternative to this would be to extend the base pointer inference with the ability to generally reuse multiple-base input instructions (phis and selects). That's somewhat invasive and complicated, so we're defering it a bit longer.
Differential Revision: https://reviews.llvm.org/D97885
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
There are certain loops like this below:
for (int i = 0; i < n; i++) {
a[i] = b[i] + 1;
*inv = a[i];
}
that can only be vectorised if we are able to extract the last lane of the
vectorised form of 'a[i]'. For fixed width vectors this already works since
we know at compile time what the final lane is, however for scalable vectors
this is a different story. This patch adds support for extracting the last
lane from a scalable vector using a runtime determined lane value. I have
added support to VPIteration for runtime-determined lanes that still permit
the caching of values. I did this by introducing a new class called VPLane,
which describes the lane we're dealing with and provides interfaces to get
both the compile-time known lane and the runtime determined value. Whilst
doing this work I couldn't find any explicit tests for extracting the last
lane values of fixed width vectors so I added tests for both scalable and
fixed width vectors.
Differential Revision: https://reviews.llvm.org/D95139
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
sample loader pass.
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
to prevent repeated indirect call promotion for the same indirect call
and the same target, we used zero-count value profile to indicate an
indirect call has been promoted for a certain target. We removed
PromotedInsns cache in the same patch. However, there was a problem in
that patch described below, and that problem led me to add PromotedInsns
back as a mitigation in
https://reviews.llvm.org/rG4ffad1fb489f691825d6c7d78e1626de142f26cf.
When we get value profile from metadata by calling getValueProfDataFromInst,
we need to specify the maximum possible number of values we expect to read.
We uses MaxNumPromotions in the last patch so the maximum number of value
information extracted from metadata is MaxNumPromotions. If we have many
values including zero-count values when we write the metadata, some of them
will be dropped when we read them because we only read MaxNumPromotions
values. It will allow repeated indirect call promotion again. We need to
make sure if there are values indicating promoted targets, those values need
to be saved in metadata with higher priority than other values.
The patch fixed that problem. We change to use -1 to represent the count
of a promoted target instead of 0 so it is easier to sort the values.
When we prepare to update the metadata in updateIDTMetaData, we will sort
the values in the descending count order and extract only MaxNumPromotions
values to write into metadata. Since -1 is the max uint64_t number, if we
have equal to or less than MaxNumPromotions of -1 count values, they will
all be kept in metadata. If we have more than MaxNumPromotions of -1 count
values, we will only save MaxNumPromotions such values maximally. In such
case, we have logic in place in doesHistoryAllowICP to guarantee no more
promotion in sample loader pass will happen for the indirect call, because
it has been promoted enough.
With this change, now we can remove PromotedInsns without problem.
Differential Revision: https://reviews.llvm.org/D97350
This is included from IR files, and IR doesn't/can't depend on Analysis
(because Analysis depends on IR).
Also fix the implementation - don't use non-member static in headers, as
it leads to ODR violations, inaccurate "unused function" warnings, etc.
And fix the header protection macro name (we don't generally include
"LIB" in the names, so far as I can tell).
This code assumed that FP math was only permissable if it was
fully "fast", so it hard-coded "fast" when creating new instructions.
The underlying code already allows matching recurrences/reductions
that are only "reassoc", so this change should prevent the potential
miscompile seen in the test diffs (we created "fast" ops even though
none existed in the original code).
I don't know if we need to create the temporary IRBuilder objects
used here, so that could be follow-up clean-up.
There's an open question about whether we should require "nsz" in
addition to "reassoc" here. InstCombine uses that combo for its
reassociative folds, but I think codegen is not as strict.
This enhances the auto-init remark with information about the variable
that is auto-initialized.
This is based of debug info if available, or alloca names (mostly for
development purposes).
```
auto-init.c:4:7: remark: Call to memset inserted by -ftrivial-auto-var-init. Memory operation size: 4096 bytes.Variables: var (4096 bytes). [-Rpass-missed=annotation-remarks]
int var[1024];
^
```
This allows to see things like partial initialization of a variable that
the optimizer won't be able to completely remove.
Differential Revision: https://reviews.llvm.org/D97734
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
This patch updates the scope line to point to the suspend point. This
makes the first address in the function point to the first source line
in the resume function rather than the function declaration. Without
this the line table "jumps" from the beginning of the function to the
suspend point at the beginning.
rdar://73386346
Differential Revision: https://reviews.llvm.org/D97345
For logical or/and reductions we emit regular intrinsics @llvm.vector.reduce.or/and.vxi1 calls.
These intrinsics are not effective for the logical or/and reductions,
especially if the optimizer is able to emit short circuit versions of
the scalar or/and instructions and vector code gets less effective than
the scalar version.
Instead, or reduction for i1 can be represented as:
```
%val = bitcast <ReduxWidth x i1> to iReduxWidth
%res = cmp ne iReduxWidth %val, 0
```
and reduction for i1 can be represented as:
```
%val = bitcast <ReduxWidth x i1> to iReduxWidth
%res = cmp eq iReduxWidth %val, 11111
```
This improves perfromance of the vector code significantly and make it
to outperform short circuit scalar code.
Part of D57059.
Differential Revision: https://reviews.llvm.org/D97406
Similar to b3a33553ae, but this shows a TODO and a potential
miscompile is already present.
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.
I also removed one getter method by rolling the null check into
the access. Further simplification may be possible.
The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
The new test shows that there is an existing bug somewhere in
the callers. We assumed that the original code was fully 'fast'
and so we produced IR with 'fast' even though it was just 'reassoc'.
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.
I also removed one getter method by rolling the null check into
the access. Further simplification seems possible.
The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the same original block. Therefore, there's no need to keep multiple copies of them. I've seen jump threading created tons of redundant dangling probes that slowed down the compiler dramatically. Other optimization passes can also result in redundant probes though without an observed impact so far.
This change removes block-wise redundant dangling probes specifically introduced by jump threading. To support removing redundant dangling probes caused by all other passes, a final function-wise deduplication is also added.
An 18% size win of the .pseudo_probe section was seen for SPEC2017. No performance difference was observed.
Differential Revision: https://reviews.llvm.org/D97482
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This is an attempt to improve handling of partial overlaps in case of unaligned begin\end.
Existing implementation just bails out if it encounters such cases. Even when it doesn't I believe existing code checking alignment constraints is not quite correct. It tries to ensure alignment of the "later" start/end offset while should be preserving relative alignment between earlier and later start/end.
The idea behind the change is simple. When start/end is not aligned as we wish instead of bailing out let's adjust it as necessary to get desired alignment.
I'll update with performance results as measured by the test-suite...it's still running...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D93530
statepoint intrinsic can be used in invoke context,
so it should be handled in visitCallBase to cover both call and invoke.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97833
See pr46990(https://bugs.llvm.org/show_bug.cgi?id=46990). LICM should not sink store instructions to loop exit blocks which cross coro.suspend intrinsics. This breaks semantic of coro.suspend intrinsic which return to caller directly. Also this leads to use-after-free if the coroutine is freed before control returns to the caller in multithread environment.
This patch disable promotion by check whether loop contains coro.suspend intrinsics.
This is a resubmit of D86190.
Disabling LICM for loops with coroutine suspension is a better option not only for correctness purpose but also for performance purpose.
In most cases LICM sinks memory operations. In the case of coroutine, sinking memory operation out of the loop does not improve performance since coroutien needs to get data from the frame anyway. In fact LICM would hurt coroutine performance since it adds more entries to the frame.
Differential Revision: https://reviews.llvm.org/D96928
Probably should have done this before landing, but I forgot.
Basic idea is to avoid using the SCEV predicate when it doesn't buy us anything. Also happens to set us up for handling non-add recurrences in the future if desired.
LSR goes to some lengths to schedule IV increments such that %iv and %iv.next never need to overlap. This is fairly fundamental to LSRs cost model. LSR assumes that an addrec can be represented with a single register. If %iv and %iv.next have to overlap, then that assumption does not hold.
The bug - which this patch is fixing - is that LSR only does this scheduling for IVs which it inserts, but it's cost model assumes the same for existing IVs that it reuses. It will rewrite existing IV users such that the no-overlap property holds, but will not actually reschedule said IV increment.
As you can see from the relatively lack of test updates, this doesn't actually impact codegen much. The main reason for doing it is to make a follow up patch series which improves post-increment use and scheduling easier to follow.
Differential Revision: https://reviews.llvm.org/D97219
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (LLD 13 (D96914); GNU ld 2.37 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker does not let `__start_/__stop_` references retain their sections.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on COFF/Mach-O are not affected.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D97649
Before we used the same argument as the entry point. The resume partial
function might want to use a different ABI for its context argument
Differential Revision: https://reviews.llvm.org/D97333
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
This is a part of https://reviews.llvm.org/D95835.
One issue is about origin load optimization: see the
comments of useCallbackLoadLabelAndOrigin
@gbalats This change may have some conflicts with your 8bit change. PTAL the change at visitLoad.
Reviewed By: morehouse, gbalats
Differential Revision: https://reviews.llvm.org/D97570
This addresses ~50 clang-tidy warnings on dfsan instrumentation pass.
It also contains some refactoring (all non-functional changes) to eliminate some variables and simplify code.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D97714
Even when MemorySSA-based LICM is used, an AST is still populated
for scalar promotion. As the AST has quadratic complexity, a lot
of time is spent in this step despite the existing access count
limit. This patch optimizes the identification of promotable stores.
The idea here is pretty simple: We're only interested in must-alias
mod sets of loop invariant pointers. As such, only populate the AST
with loop-invariant loads and stores (anything else is definitely
not promotable) and then discard any sets which alias with any of
the remaining, definitely non-promotable accesses.
If we promoted something, check whether this has made some other
accesses loop invariant and thus possible promotion candidates.
This is much faster in practice, because we need to perform AA
queries for O(NumPromotable^2 + NumPromotable*NumNonPromotable)
instead of O(NumTotal^2), and NumPromotable tends to be small.
Additionally, promotable accesses have loop invariant pointers,
for which AA is cheaper.
This has a signicant positive compile-time impact. We save ~1.8%
geomean on CTMark at O3, with 6% on lencod in particular and 25%
on individual files.
Conceptually, this change is NFC, but may not be so in practice,
because the AST is only an approximation, and can produce
different results depending on the order in which accesses are
added. However, there is at least no impact on the number of promotions
(licm.NumPromoted) in test-suite O3 configuration with this change.
Differential Revision: https://reviews.llvm.org/D89264
It is possible to merge reuse and reorder shuffles and reduce the total
cost of the vectorization tree/number of final instructions.
Differential Revision: https://reviews.llvm.org/D94992
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (D96914 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker no longer lets `__start_/__stop_` references retain them.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on other COFF/Mach-O are not affected.
Differential Revision: https://reviews.llvm.org/D97649
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.
Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.
Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D97608
Update the deletion order when destroying VPBasicBlocks. This ensures
recipes that depend on earlier ones in the block are removed first.
Otherwise this may cause issues when recipes have remaining users later
in the block.
This patch updates LV to generate the runtime checks just after cost
modeling, to allow a more precise estimate of the actual cost of the
checks. This information will be used in future patches to generate
larger runtime checks in cases where the checks only make up a small
fraction of the expected scalar loop execution time.
The runtime checks are created up-front in a temporary block to allow better
estimating the cost and un-linked from the existing IR. After deciding to
vectorize, the checks are moved backed. If deciding not to vectorize, the
temporary block is completely removed.
This patch is similar in spirit to D71053, but explores a different
direction: instead of delaying the decision on whether to vectorize in
the presence of runtime checks it instead optimistically creates the
runtime checks early and discards them later if decided to not
vectorize. This has the advantage that the cost-modeling decisions
can be kept together and can be done up-front and thus preserving the
general code structure. I think delaying (part) of the decision to
vectorize would also make the VPlan migration a bit harder.
One potential drawback of this patch is that we speculatively
generate IR which we might have to clean up later. However it seems like
the code required to do so is quite manageable.
Reviewed By: lebedev.ri, ebrevnov
Differential Revision: https://reviews.llvm.org/D75980
In the example based on:
https://llvm.org/PR49218
...we are crashing because poison is a subclass of undef, so we merge blocks and create:
PHI node has multiple entries for the same basic block with different incoming values!
%k3 = phi i64 [ poison, %entry ], [ %k3, %g ], [ undef, %entry ]
If both poison and undef values are incoming, we soften the poison values to undef.
Differential Revision: https://reviews.llvm.org/D97495
Many optimizers (e.g. GlobalOpt/ConstantMerge) do not respect linker semantics
for comdat and may not discard the sections as a unit.
The interconnected `__llvm_prf_{cnts,data}` sections (in comdat for ELF)
are similar to D97432: `__profd_` is not directly referenced, so
`__profd_` may be discarded while `__profc_` is retained, breaking the
interconnection. We currently conservatively add all such sections to
`llvm.used` and let the linker do GC for ELF.
In D97448, we will change GlobalObject's in the llvm.used list to use SHF_GNU_RETAIN,
causing the metadata sections to be unnecessarily retained (some `check-profile` tests check for GC).
Use `llvm.compiler.used` to retain the current GC behavior.
Differential Revision: https://reviews.llvm.org/D97585
This will allow identifying exactly how many shadow bytes were used
during compilation, for when fast8 mode is introduced.
Also, it will provide a consistent matching point for instrumentation
tests so that the exact llvm type used (i8 or i16) for the shadow can
be replaced by a pattern substitution. This is handy for tests with
multiple prefixes.
Reviewed by: stephan.yichao.zhao, morehouse
Differential Revision: https://reviews.llvm.org/D97409
This is a part of https://reviews.llvm.org/D95835.
Each customized function has two wrappers. The
first one dfsw is for the normal shadow propagation. The second one dfso is used
when origin tracking is on. It calls the first one, and does additional
origin propagation. Which one to use can be decided at instrumentation
time. This is to ensure minimal additional overhead when origin tracking
is off.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97483
`__sancov_pcs` parallels the other metadata section(s). While some optimizers
(e.g. GlobalDCE) respect linker semantics for comdat and retain or discard the
sections as a unit, some (e.g. GlobalOpt/ConstantMerge) do not. So we have to
conservatively retain all unconditionally in the compiler.
When a comdat is used, the COFF/ELF linkers' GC semantics ensure the
associated parallel array elements are retained or discarded together,
so `llvm.compiler.used` is sufficient.
Otherwise (MachO (see rL311955/rL311959), COFF special case where comdat is not
used), we have to use `llvm.used` to conservatively make all sections retain by
the linker. This will fix the Windows problem once internal linkage
GlobalObject's in `llvm.used` are retained via `/INCLUDE:`.
Reviewed By: morehouse, vitalybuka
Differential Revision: https://reviews.llvm.org/D97432
collectBitParts uses int8_t for the bit indices, leaving a 128-bit limit.
We already test for this before calling collectBitParts, but rGb94c215592bd added truncate handling which meant we could end up processing wider integers.
Thanks to @manojgupta for the repro.
This patch modifies TryToSinkInstruction in the InstCombine pass, to prevent
redundant debug intrinsics from being produced, and also prevent the intrinsics
from being emitted in an incorrect order. It does this by ensuring that when
this pass sinks an instruction and creates clones of the debug intrinsics that
use that instruction, it inserts those debug intrinsics in their original order,
and only inserts the last debug intrinsic for each variable in the Instruction's
block.
Differential revision: https://reviews.llvm.org/D95463
DFSan at store does store shadow data; store app data; and at load does
load shadow data; load app data.
When an application data is atomic, one overtainting case is
thread A: load shadow
thread B: store shadow
thread B: store app
thread A: load app
If the application address had been used by other flows, thread A reads
previous shadow, causing overtainting.
The change is similar to MSan's solution.
1) enforce ordering of app load/store
2) load shadow after load app; store shadow before shadow app
3) do not track atomic store by reseting its shadow to be 0.
The last one is to address a case like this.
Thread A: load app
Thread B: store shadow
Thread A: load shadow
Thread B: store app
This approach eliminates overtainting as a trade-off between undertainting
flows via shadow data race.
Note that this change addresses only native atomic instructions, but
does not support builtin libcalls yet.
https://llvm.org/docs/Atomics.html#libcalls-atomic
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97310
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
This now analyzes calls to both intrinsics and functions.
For intrinsics, grab the ones we know and care about (mem* family) and
analyze the arguments.
For calls, use TLI to get more information about the libcalls, then
analyze the arguments if known.
```
auto-init.c:4:7: remark: Call to memset inserted by -ftrivial-auto-var-init. Memory operation size: 4096 bytes. [-Rpass-missed=annotation-remarks]
int var[1024];
^
```
Differential Revision: https://reviews.llvm.org/D97489
This adds support for analyzing the instruction with the !annotation
"auto-init" in order to generate a more user-friendly remark.
For now, support the store size, and whether it's atomic/volatile.
Example:
```
auto-init.c:4:7: remark: Store inserted by -ftrivial-auto-var-init.Store size: 4 bytes. [-Rpass-missed=annotation-remarks]
int var;
^
```
Differential Revision: https://reviews.llvm.org/D97412
Using the !annotation metadata, emit remarks pointing to code added by
`-ftrivial-auto-var-init` that survived the optimizer.
Example:
```
auto-init.c:4:7: remark: Initialization inserted by -ftrivial-auto-var-init. [-Rpass-missed=annotation-remarks]
int buf[1024];
^
```
The tests are testing various situations like calls/stores/other
instructions, with debug locations, and extra debug information on
purpose: more patches will come to improve the reporting to make it more
user-friendly, and these tests will show how the reporting evolves.
Differential Revision: https://reviews.llvm.org/D97405
This doesn't actually reproduce with a dbg.declare(i8* null, ...)
which produces a non-null null Value, but I have seen this show up in
crash logs. I'm suspecting that there may be another pass forcibly
setting the operand to a nullptr.
In SanitizerCoverage, the metadata sections (`__sancov_guards`,
`__sancov_cntrs`, `__sancov_bools`) are referenced by functions. After
inlining, such a `__sancov_*` section can be referenced by more than one
functions, but its sh_link still refers to the original function's section.
(Note: a SHF_LINK_ORDER section referenced by a section other than its linked-to
section violates the invariant.)
If the original function's section is discarded (e.g. LTO internalization +
`ld.lld --gc-sections`), ld.lld may report a `sh_link points to discarded section` error.
This above reasoning means that `!associated` is not appropriate to be called by
an inlinable function. Non-interposable functions are inline candidates, so we
have to drop `!associated`. A `__sancov_pcs` is not referenced by other sections
but is expected to parallel a metadata section, so we have to make sure the two
sections are retained or discarded at the same time. A section group does the
trick. (Note: we have a module ctor, so `getUniqueModuleId` guarantees to
return a non-empty string, and `GetOrCreateFunctionComdat` guarantees to return
non-null.)
For interposable functions, we could keep using `!associated`, but
LTO can change the linkage to `internal` and allow such functions to be inlinable,
so we have to drop `!associated`, too. To not interfere with section
group resolution, we need to use the `noduplicates` variant (section group flag 0).
(This allows us to get rid of the ModuleID parameter.)
In -fno-pie and -fpie code (mostly dso_local), instrumented interposable
functions have WeakAny/LinkOnceAny linkages, which are rare. So the
section group header overload should be low.
This patch does not change the object file output for COFF (where `!associated` is ignored).
Reviewed By: morehouse, rnk, vitalybuka
Differential Revision: https://reviews.llvm.org/D97430
This patch makes SampleProfileLoaderBaseImpl a template class so it
can be used in CodeGen transformation.
Noticeable changes:
* use one template parameter and use IRTraits to get other used
types an type specific functions.
* remove the temporary "inline" keywords in previous refactor
patch.
* change the template function findEquivalencesFor to a regular
function. This function has a single caller with type of
PostDominatorTree. It's simpler to use the type directly
because MachinePostDominatorTree is not a derived type of
template DominatorTreeBase.
Differential Revision: https://reviews.llvm.org/D96981
Support reassociation for min/max. With that we should be able to transform min(min(a, b), c) -> min(min(a, c), b) if min(a, c) is already available.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88287
In the existing logic, we look at the lifetime.start marker of each alloca, and check all uses of the alloca, to see if any pair of the lifetime marker and an use of alloca crosses suspension point.
This approach is unfortunately incorrect. An use of alloca does not need to be a direct use, but can be an indirect use through alias.
Only checking direct uses can miss cases where indirect uses are crossing suspension point.
This can be demonstrated in the newly added test case 007.
In the test case, both x and y are only directly used prior to suspend, but they are captured into an alias, merged through a PHINode (so they couldn't be materialized), and used after CoroSuspend.
If we only check whether the lifetime starts cross suspension points with direct uses, we will put the allocas to the stack, and then capture their addresses in the frame.
Instead of fixing it in D96441 and D96566, this patch takes a different approach which I think is better.
We still checks the lifetime info in the same way as before, but with two differences:
1. The collection of liftime.start is moved into AllocaUseVisitor to make the logic more concentrated.
2. When looking at lifetime.start and use pairs, we not only checks the direct uses as before, but in this patch we check all uses collected by AllocaUseVisitor, which would include all indirect uses through alias. This will make the analysis more accurate without throwing away the lifetime optimization.
Differential Revision: https://reviews.llvm.org/D96922
This extends b40fde062c for the especially non-standard
powi pattern. We want to avoid being completely wrong
on the negation-of-int-min corner case, so I'm adding
an extra FMF check for 'ninf' assuming that gives us
the flexibility to handle that possibility.
https://llvm.org/PR49147
This is a follow up to 22a52dfddc and a
revert of df763188c9.
With this change, we only skip cloning distinct nodes in
MDNodeMapper::mapDistinct if RF_ReuseAndMutateDistinctMDs, dropping the
no-longer-needed local helper `cloneOrBuildODR()`. Skipping cloning in
other cases is unsound and breaks CloneModule, which is why the textual
IR for PR48841 didn't pass previously. This commit adds the test as:
Transforms/ThinLTOBitcodeWriter/cfi-debug-info-cloned-type-references-global-value.ll
Cloning less often exposed a hole in subprogram cloning in
CloneFunctionInto thanks to df763188c9a1ecb1e7e5c4d4ea53a99fbb755903's
test ThinLTO/X86/Inputs/dicompositetype-unique-alias.ll. If a function
has a subprogram attachment whose scope is a DICompositeType that
shouldn't be cloned, but it has no internal debug info pointing at that
type, that composite type was being cloned. This commit plugs that hole,
calling DebugInfoFinder::processSubprogram from CloneFunctionInto.
As hinted at in 22a52dfddcefad4f275eb8ad1cc0e200074c2d8a's commit
message, I think we need to formalize ownership of metadata a bit more
so that ValueMapper/CloneFunctionInto (and similar functions) can deal
with cloning (or not) metadata in a more generic, less fragile way.
This fixes PR48841.
Differential Revision: https://reviews.llvm.org/D96734
Putting globals in a comdat for dead-stripping changes the semantic and
can potentially cause false negative odr violations at link time.
If odr indicators are used, we keep the comdat sections, as link time
odr violations will be dectected for the odr indicator symbols.
This fixes PR 47925
This reverts the revert commit 437f0bbcd5.
It adds a new toVPRecipeResult, which forces VPRecipeOrVPValueTy to be
constructed with a VPRecipeBase *. This should address ambiguous
constructor issues for recipe sub-types that also inherit from VPValue.
Previously there was no way to control how module destructors were emitted
by `ModuleAddressSanitizerPass`. However, we want language frontends (e.g. Clang)
to be able to decide how to emit these destructors (if at all).
This patch introduces the `AsanDtorKind` enum that represents the different ways
destructors can be emitted. There are currently only two valid ways to emit destructors.
* `Global` - Use `llvm.global_dtors`. This was the previous behavior and is the default.
* `None` - Do not emit module destructors.
The `ModuleAddressSanitizerPass` and the various wrappers around it have been updated
to take the `AsanDtorKind` as an argument.
The `-asan-destructor-kind=` command line argument has been introduced to make this
easy to test from `opt`. If this argument is specified it overrides the value passed
to the `ModuleAddressSanitizerPass` constructor.
Note that `AsanDtorKind` is not `bool` because we will introduce a new way to
emit destructors in a subsequent patch.
Note that `AsanDtorKind` is given its own header file because if it is declared
in `Transforms/Instrumentation/AddressSanitizer.h` it leads to compile error
(Module is ambiguous) when trying to use it in
`clang/Basic/CodeGenOptions.def`.
rdar://71609176
Differential Revision: https://reviews.llvm.org/D96571
This is a simple patch to update SimplifyCFG's passingValueIsAlwaysUndefined to inspect more attributes.
A new function `CallBase::isPassingUndefUB` checks attributes that imply noundef.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D97244
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Depends on D97128 (which added a new SmallVecImpl overload for collectUsedGlobalVariables).
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97139
Iterating on `SmallPtrSet<GlobalValue *, 8>` with more than 8 elements
is not deterministic. Use a SmallVector instead because `Used` is guaranteed to contain unique elements.
While here, decrease inline element counts from 8 to 4. The number of
`llvm.used`/`llvm.compiler.used` elements is usually 0 or 1. For full
LTO/hybrid LTO, the number may be large, so we need to be careful.
According to tejohnson's analysis https://reviews.llvm.org/D97128#2582399 , 4 is
good for a large project with WholeProgramDevirt, when available_externally
vtables are placed in the llvm.compiler.used set.
Differential Revision: https://reviews.llvm.org/D97128
The fix in 3c4c205060 caused an assert in
the case of a pure virtual base class. In that case, the vTableFuncs
list on the summary will be empty, so we were hitting the new assert
that the linkage type was not available_externally.
In the case of pure virtual, we do not want to assert, and additionally
need to set VS so that we don't treat it conservatively and quit the
analysis of the type id early.
This exposed a pre-existing issue where we were not updating the vcall
visibility on pure virtual functions when whole program visibility was
specified. We were skipping updating the visibility on any global vars
that didn't have any vTableFuncs, which meant all pure virtual were not
updated, and the later analysis would block any devirtualization of
calls that had a type id used on those pure virtual vtables (see the
handling in the other code modified in this patch). Simply remove that
check. It will mean that we may update the vcall visibility on global
vars that aren't vtables, but that setting is ignored for any global
vars that didn't have type metadata anyway.
Added a new test case that asserted without removing the assert, and
that requires the other fixes in this patch (updateVCallVisibilityInIndex
and not skipping all vtables without virtual funcs) to get a successful
devirtualization with index-only WPD. I added cases to test hybrid and
regular LTO for completeness, although those already worked without the
fixes here.
With this final fix, a clang multistage bootstrap with WPD builds and
runs all tests successfully.
Differential Revision: https://reviews.llvm.org/D97126
Under certain (currently unknown) conditions, llvm-profdata is outputting
profiles that have two consecutive entries in the MemOPSize section for the
value 0. This causes the PGOMemOPSizeOpt pass to output an invalid switch
instruction with two cases for 0. As mentioned, we’re not quite sure what’s
causing this to happen, but this patch prevents llvm-profdata from outputting a
profile that has this problem and gives an error with a request for a
reproducible.
Differential Revision: https://reviews.llvm.org/D92074
Generalize the return value of tryToCreateWidenRecipe to return either a
newly create recipe or an existing VPValue. Use this to avoid creating
unnecessary VPBlendRecipes.
Fixes PR44800.
The new intrinsic replaces the size in one specified AsyncFunctionPointer with
the size in another. This ability is necessary for functions which merely
forward to async functions such as those defined for partial applications.
Reviewed By: aschwaighofer
Differential Revision: https://reviews.llvm.org/D97229
As a followup to D95291, getOperandsScalarizationOverhead was still
using a VF as a vector factor if the arguments were scalar, and would
assert on certain matrix intrinsics with differently sized vector
arguments. This patch removes the VF arg, instead passing the Types
through directly. This should allow it to more accurately compute the
cost without having to guess at which operands will be vectorized,
something difficult with more complex intrinsics.
This adjusts one SVE test as it is now calling the wrong intrinsic vs
veccall. Without invalid InstructCosts the cost of the scalarized
intrinsic is too low. This should get fixed when the cost of
scalarization is accounted for with scalable types.
Differential Revision: https://reviews.llvm.org/D96287
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.
Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.
Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.
Differential Revision: https://reviews.llvm.org/D95291
The **IsGuaranteedLoopInvariant** function is making sure to check if the
incoming pointer is guaranteed to be loop invariant, therefore I think
the case where the pointer is defined in the entry block of a function
automatically guarantees the pointer to be loop invariant, as the entry
block of a function cannot have predecessors or be part of a loop.
I implemented this small patch and tested it using
**ninja check-llvm-unit** and **ninja check-llvm**. I added a contained test
file that shows the problem and used **opt -O3 -debug** on it to make sure
the case is not currently handled (in fact the debug log is showing that
the DSE pass is bailing out when testing if the killer store is able to
clobber the dead store).
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96979
This is a patch to explicitly mark the size parameter of allocator functions like malloc/realloc/... as noundef.
For C/C++: undef can be created from reading an uninitialized variable or padding.
Calling a function with uninitialized variable is already UB.
Calling malloc with padding value is.. something that's not expected. Padding bits may appear in a coerced aggregate, which doesn't apply to malloc's size.
Therefore, malloc's size can be marked as noundef.
For transformations that introduce malloc/realloc/..: I ran LLVM unit tests with an updated Alive2 semantics, and found no regression, so it seems okay.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D97045
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
Pointer operand of scatter loads does not remain scalar in the tree (it
gest vectorized) and thus must not be marked as the scalar that remains
scalar in vectorized form.
Differential Revision: https://reviews.llvm.org/D96818
ICMP_NE predicates cannot be directly represented as constraint. But we
can use ICMP_UGT instead ICMP_NE for %x != 0.
See https://alive2.llvm.org/ce/z/XlLCsW
If the call is readnone, then there may not be any MemoryAccess
associated with the call. Bail out in that case.
This fixes the issue reported at
https://reviews.llvm.org/D94376#2578312.
When cloning instructions during jump threading, also clone and
adapt any declared scopes. This is primarily important when
threading loop exits, because we'll end up with two dominating
scope declarations in that case (at least after additional loop
rotation). This addresses a loose thread from
https://reviews.llvm.org/rG2556b413a7b8#975012.
Differential Revision: https://reviews.llvm.org/D97154
This patch extends VPWidenPHIRecipe to manage pairs of incoming
(VPValue, VPBasicBlock) in the VPlan native path. This is made possible
because we now directly manage defined VPValues for recipes.
By keeping both the incoming value and block in the recipe directly,
code-generation in the VPlan native path becomes independent of the
predecessor ordering when fixing up non-induction phis, which currently
can cause crashes in the VPlan native path.
This fixes PR45958.
Reviewed By: sguggill
Differential Revision: https://reviews.llvm.org/D96773
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
FindAvailableLoadedValue() accepts an iterator by reference. If no
available value is found, then the iterator will either be left
at a clobbering instruction or the beginning of the basic block.
This allows using FindAvailableLoadedValue() across multiple blocks.
If this functionality is not needed, as is the case in InstCombine,
then we can use a much more efficient implementation: First try
to find an available value, and only perform clobber checks if
we actually found one. As this function only looks at a very small
number of instructions (6 by default) and usually doesn't find an
available value, this saves many expensive alias analysis queries.
Currently, if there is a module that contains a strong definition of
a global variable and a module that has both a weak definition for
the same global and a reference to it, it may result in an undefined symbol error
while linking with ThinLTO.
It happens because:
* the strong definition become internal because it is read-only and can be imported;
* the weak definition gets replaced by a declaration because it's non-prevailing;
* the strong definition failed to be imported because the destination module
already contains another definition of the global yet this def is non-prevailing.
The patch adds a check to computeImportForReferencedGlobals() that allows
considering a global variable for being imported even if the module contains
a definition of it in the case this def has an interposable linkage type.
Note that currently the check is based only on the linkage type
(and this seems to be enough at the moment), but it might be worth to account
the information whether the def is prevailing or not.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95943
Follow-up to:
D96648 / b40fde062
...for the special-case base calls.
From the earlier commit:
This is unusual in the general (non-reciprocal) case because we need
an extra instruction, but that should be better for general FP
reassociation and codegen. We conservatively check for "arcp" FMF
here as we do with existing fdiv folds, but it is not strictly
necessary to have that.
Refines the fix in 3c4c205060 to only
put globals whose defs were cloned into the split regular LTO module
on the cloned llvm*.used globals. This avoids an issue where one of the
attached values was a local that was promoted in the original module
after the module was cloned. We only need to have the values defined in
the new module on those globals.
Fixes PR49251.
Differential Revision: https://reviews.llvm.org/D97013
recognizeBSwapOrBitReverseIdiom + collectBitParts have pattern matching to bail out early if a bswap/bitreverse pattern isn't possible - we should be able to rely on this instead without any notable change in compile time.
This is part of a cleanup towards letting matchBSwapOrBitReverse /recognizeBSwapOrBitReverseIdiom use 'root' instructions that aren't ORs (FSHL/FSHRs in particular which can be prematurely created).
Differential Revision: https://reviews.llvm.org/D97056
I think we can use here same logic as for nonnull.
strlen(X) - X must be noundef => valid pointer.
for libcalls with size arg, we add noundef only if size is known and greater than 0 - so pointers must be noundef (valid ones)
Reviewed By: jdoerfert, aqjune
Differential Revision: https://reviews.llvm.org/D95122
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
We use 0 count value profile to memorize which target has been promoted
and prevent repeated ICP for the same target, so we delete PromotedInsns.
However, I found the implementation in the patch has some shortcomings
to be fixed otherwise there will still be repeated ICP. So I add
PromotedInsns back temorarily. Will remove it after I get a thorough fix.
This enables use of MemorySSA instead of MemDep in MemCpyOpt. To
allow this without significant compile-time impact, the MemCpyOpt
pass is moved directly before DSE (in the cases where this was not
already the case), which allows us to reuse the existing MemorySSA
analysis.
Unlike the MemDep-based implementation, the MemorySSA-based MemCpyOpt
can also perform simple optimizations across basic blocks.
Differential Revision: https://reviews.llvm.org/D94376
Now that all state for generated instructions is managed directly in
VPTransformState, VPCallBack is no longer needed. This patch updates the
last use of `getOrCreateScalarValue` to instead manage the value
directly in VPTransformState and removes VPCallback.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95383
In both ADCE and BDCE (via DemandedBits) we should not remove
instructions that are not guaranteed to return. This issue was
pointed out by fhahn in the recent llvm-dev thread.
Differential Revision: https://reviews.llvm.org/D96993
This moves the willReturn() helper from CallBase to Instruction,
so that it can be used in a more generic manner. This will make
it easier to fix additional passes (ADCE and BDCE), and will give
us one place to change if additional instructions should become
non-willreturn (e.g. there has been talk about handling volatile
operations this way).
I have also included the IntrinsicInst workaround directly in
here, so that it gets applied consistently. (As such this change
is not entirely NFC -- FuncAttrs will now use this as well.)
Differential Revision: https://reviews.llvm.org/D96992
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
As discussed in D94834, we don't really need to do complicated analysis. It's safe to just drop the tail call attribute.
Differential Revision: https://reviews.llvm.org/D96926
Found a problem in indirect call promotion in sample loader pass. Currently
if an indirect call is promoted for a target, and if the parent function is
inlined into some other function, the indirect call can be promoted for the
same target again. That is redundent which can harm performance and can cause
excessive compile time in some extreme case.
The patch fixes the issue. If a target is promoted for an indirect call, the
patch will write ICP metadata with the target call count being set to 0.
In the later ICP in sample profile loader, if it sees a target has 0 count
for an indirect call, it knows the target has been promoted and won't do
indirect call promotion for the indirect call.
The fix brings 0.1~0.2% performance on our search benchmark.
Differential Revision: https://reviews.llvm.org/D96806
With CSSPGO all indirect call targets are counted torwards the original indirect call site in the profile, including both inlined and non-inlined targets. Therefore no need to look for callee entry counts. This also fixes the issue where callee entry count doesn't match callsite count due to the nature of CS sampling.
I'm also cleaning up the orginal code that called `findIndirectCallFunctionSamples` just to compute the sum, the return value of which was disgarded.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D96990
We can always look through single-argument (LCSSA) phi nodes when
performing alias analysis. getUnderlyingObject() already does this,
but stripPointerCastsAndInvariantGroups() does not. We still look
through these phi nodes with the usual aliasPhi() logic, but
sometimes get sub-optimal results due to the restrictions on value
equivalence when looking through arbitrary phi nodes. I think it's
generally beneficial to keep the underlying object logic and the
pointer cast stripping logic in sync, insofar as it is possible.
With this patch we get marginally better results:
aa.NumMayAlias | 5010069 | 5009861
aa.NumMustAlias | 347518 | 347674
aa.NumNoAlias | 27201336 | 27201528
...
licm.NumPromoted | 1293 | 1296
I've renamed the relevant strip method to stripPointerCastsForAliasAnalysis(),
as we're past the point where we can explicitly spell out everything
that's getting stripped.
Differential Revision: https://reviews.llvm.org/D96668
This fixes https://bugs.llvm.org/show_bug.cgi?id=49185
When `NDEBUG` is not set, `LPMUpdater` checks if the added loops have the same parent loop as the current one in `addSiblingLoops`.
If multiple loop passes are executed through `LoopPassManager`, `U.ParentL` will be the same across all passes.
However, the parent loop might change after running a loop pass, resulting in assertion failures in subsequent passes.
This patch resets `U.ParentL` after running individual loop passes in `LoopPassManager`.
Reviewed By: asbirlea, ychen
Differential Revision: https://reviews.llvm.org/D96727
This patch simply implements the documented UB of the current nofree attributes as specified. It doesn't try to be fancy about inference (yet), it just implements the cases already specified and inferred.
Note: When this lands, it may expose miscompiles. If so, please revert and provide a test case. It's likely the bug is in the existing inference code and without a relatively complete test case, it will be hard to debug.
Differential Revision: https://reviews.llvm.org/D96349
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
Floating point conversions inside vectorized loops have performance
implications but are very subtle. The user could specify a floating
point constant, or call a function without realizing that it will
force a change in the vector width. An example of this behaviour is
seen in https://godbolt.org/z/M3nT6c . The vectorizer should indicate
when this happens becuase it is most likely unintended behaviour.
This patch adds a simple check for this behaviour by following floating
point stores in the original loop and checking if a floating point
conversion operation occurs.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D95539
This adds an internal option -wholeprogramdevirt-check which if enabled
will guard each devirtualization with a runtime check against the
expected target, and an invocation of a debug trap if the check fails.
This is useful for debugging WPD failures involving undefined behavior
(e.g. casting to another class type not in the inheritance chain).
Differential Revision: https://reviews.llvm.org/D95969
Apply the patch for the third time after fixing buildbot failures.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
(4) Add inline keyword to avoid duplicated symbols -- they will
be removed later when the class is changed to a template.
Differential Revision: https://reviews.llvm.org/D96455
Adds a lld test for a case that the handling added for dynamically
exported symbols in 1487747e99 already
fixes. Because isExportDynamic returns true when the symbol is
SharedKind with default visibility, it will treat as dynamically
exported and block devirtualization when the definition of a vtable
comes from a shared library. This is desireable as it is dangerous to
devirtualize in that case, since there could be hidden overrides in the
shared library. Typically that happens when the shared library header
contains available externally definitions, which applications can
override. An example is std::error_category, which is overridden in LLVM
and causing failures after a self build with WPD enabled, because
libstdc++ contains hidden overrides of the virtual base class methods.
The regular LTO case in the new test already worked, but there are
2 fixes in this patch needed for the index-only case and the hybrid
LTO case. For the index-only case, WPD should not simply ignore
available externally vtables. A follow on fix will be made to clang to
emit type metadata for those vtables, which the new test is modeling.
For the hybrid case, we need to ensure when the module is split that any
llvm.*used globals are cloned to the regular LTO split module so
available externally vtable definitions are not prematurely deleted.
Another follow on fix will add the equivalent gold test, which requires
a small fix to the plugin to treat symbols in dynamic libraries the same
way lld already is.
Differential Revision: https://reviews.llvm.org/D96721
Revert "[SampleFDO] Add missing #includes to unbreak modules build after D96455"
This reverts commit c73cbf218a.
Revert "[SampleFDO] Fix MSVC "namespace uses itself" warning (NFC)"
This reverts commit a23e6b321c.
Revert "[SampleFDO] Reapply: Refactor SampleProfile.cpp"
This reverts commit 6fd5ccff72.
Still seeing link failures when building llc (or other tools), due to
the new SampleProfileLoaderBaseImpl.h containing definitions that get
duplicated across multiple TU's.
```
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::findEquivalenceClasses(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::buildEdges(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::computeDominanceAndLoopInfo(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getFunctionLoc(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getBlockWeight(llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockWeight(llvm::raw_ostream&, llvm::BasicBlock const*) const' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockEquivalence(llvm::raw_ostream&, llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printEdgeWeight(llvm::raw_ostream&, std::__1::pair<llvm::BasicBlock const*, llvm::BasicBlock const*>)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
```
SROA does not correctly account for offsets in TBAA/TBAA struct metadata.
This patch creates functionality for generating new MD with the corresponding
offset and updates SROA to use this functionality.
Differential Revision: https://reviews.llvm.org/D95826
This is the preliminary patch of converting `LoopInterchange` pass to a loop-nest pass and has no intended functional change.
Changes that are not loop-nest related are split to D96650.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D96644
This adds a new flag -lsr-preferred-addressing-mode to override the target's
preferred addressing mode. It replaces flag -lsr-backedge-indexing, which is
equivalent to preindexed addressing that is one of the options that
-lsr-preferred-addressing-mode accepts.
Differential Revision: https://reviews.llvm.org/D96855
As discussed in:
https://llvm.org/PR49179
...this pattern shows up in library code.
There are several potential generalizations as noted,
but we need to be careful that we get FP special-values
right, and it's not clear how much variation we should
expect to see from this exact idiom.
This is a follow up D96600 and cleans up most calls to
getPreferredAddresingMode. I.e., we really don't need to query the same things
again and again, but get the preferred addressing mode once for each loop. So
this should be a lot friendlier for compile times, especially if we start
implementing getPreferredAddresingMode.
Differential Revision: https://reviews.llvm.org/D96772
Reapply patch after fixing buildbot failure.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
This reverts commit 310b35304c.
The build is broken with -DBUILD_SHARED_LIBS=ON :
lib/ProfileData/CMakeFiles/LLVMProfileData.dir/SampleProfileLoaderBaseUtil.cpp.o: In function `llvm::sampleprofutil::callsiteIsHot(llvm::sampleprof::FunctionSamples const*, llvm::ProfileSummaryInfo*, bool)':
SampleProfileLoaderBaseUtil.cpp:(.text._ZN4llvm14sampleprofutil13callsiteIsHotEPKNS_10sampleprof15FunctionSamplesEPNS_18ProfileSummaryInfoEb+0x1a): undefined reference to `llvm::ProfileSummaryInfo::isColdCount(unsigned long) const'
SampleProfileLoaderBaseUtil.cpp:(.text._ZN4llvm14sampleprofutil13callsiteIsHotEPKNS_10sampleprof15FunctionSamplesEPNS_18ProfileSummaryInfoEb+0x28): undefined reference to `llvm::ProfileSummaryInfo::isHotCount(unsigned long) const'
...
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
Also don't call function to update the call graph if there are no
clones. The function will fail.
rdar://74277860
Differential Revision: https://reviews.llvm.org/D96620
This is a split patch of D96644.
Explicitly pass both `InnerLoop` and `OuterLoop` to function `processLoop` to remove the need to swap elements in loop list and allow making loop list an `ArrayRef`.
Also, fix inconsistent spellings of `OuterLoopId` and `Inner Loop Id` in debug log.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96650
This patch enables scalable vectorization of loops with integer/fast reductions, e.g:
```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
}
```
A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.
Reviewed By: david-arm, fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D95245
This patch changes costAndCollectOperands to use InstructionCost for
accumulated cost values.
isHighCostExpansion will return true if the cost has exceeded the budget.
Reviewed By: CarolineConcatto, ctetreau
Differential Revision: https://reviews.llvm.org/D92238
This patch updates codegen to use VPValues to manage the generated
scalarized instructions.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D92285
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
Loop canonicalization may end up deleting blocks from CFG. And
Scalar Evolution may still keep cached referenced to those blocks
unless updated properly.
This refactors shouldFavorPostInc() and shouldFavorBackedgeIndex() into
getPreferredAddressingMode() so that we have one interface to steer LSR in
generating the preferred addressing mode.
Differential Revision: https://reviews.llvm.org/D96600
This is unusual in the general (non-reciprocal) case because we need
an extra instruction, but that should be better for general FP
reassociation and codegen. We conservatively check for "arcp" FMF
here as we do with existing fdiv folds, but it is not strictly
necessary to have that.
This is part of solving:
https://llvm.org/PR49147
(The powi variant potentially has a different constraint.)
Differential Revision: https://reviews.llvm.org/D96648
This patch fixes pr48832 by correctly generating the mask when a poison value is involved.
Consider this CFG (which is a part of the input):
```
for.body: ; preds = %for.cond
br i1 true, label %cond.false, label %land.rhs
land.rhs: ; preds = %for.body
br i1 poison, label %cond.end, label %cond.false
cond.false: ; preds = %for.body, %land.rhs
br label %cond.end
cond.end: ; preds = %land.rhs, %cond.false
%cond = phi i32 [ 0, %cond.false ], [ 1, %land.rhs ]
```
The path for.body -> land.rhs -> cond.end should be taken when 'select i1 false, i1 poison, i1 false' holds (which means it's never taken); but VPRecipeBuilder::createEdgeMask was emitting 'and i1 false, poison' instead.
The former one successfully blocks poison propagation whereas the latter one doesn't, making the condition poison and thus causing the miscompilation.
SimplifyCFG has a similar bug (which didn't expose a real-world bug yet), and a patch for this is also ongoing (see https://reviews.llvm.org/D95026).
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D95217
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
Perform DSOLocal propagation within summary list of every GV. This
avoids the repeated query of this information during function
importing.
Differential Revision: https://reviews.llvm.org/D96398
This allows for suspend point specific resume function types.
Return values from a suspend point can therefore be modelled as
arguments to the resume function. Allowing for directly passed return
types.
Differential Revision: https://reviews.llvm.org/D96136
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Changes `getScalarizationOverhead` to return an invalid cost for scalable VFs
and adds some simple tests for loops containing a function for which
there is a vectorized variant available.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D96356
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
The individual recipes have been updated to manage their operands using
VPUser a while back. Now that the transition is done, we can instead
make VPRecipeBase a VPUser and get rid of the toVPUser helper.
This patch changes the VecDesc struct to use ElementCount
instead of an unsigned VF value, in preparation for
future work that adds support for vectorized versions of
math functions using scalable vectors. Since all I'm doing
in this patch is switching the type I believe it's a
non-functional change. I changed getWidestVF to now return
both the widest fixed-width and scalable VF values, but
currently the widest scalable value will be zero.
Differential Revision: https://reviews.llvm.org/D96011
Functions are currently processed by the sample profiler loader in a top-down order defined by the static call graph. The order is being adjusted to be a top-down order based on the input context-sensitive profile. One benefit is that the processing order of caller and callee in one SCC would follow the context order in the profile to favor more inlining. Another benefit is that the processing order of caller and callee through an indirect call (which is not on the static call graph) can be honored which in turn allows for more inlining.
The profile top-down order for SCC is also extended to support non-CS profiles.
Two switches `-mllvm -use-profile-indirect-call-edges` and `-mllvm -use-profile-top-down-order` are being introduced.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95988
This reverts commit b7d870eae7 and the
subsequent fix "[Polly] Fix build after AssumptionCache change (D96168)"
(commit e6810cab09).
It caused indeterminism in the output, such that e.g. the
polly-x86_64-linux buildbot failed accasionally.
This will be needed in the loop-vectorizer where the minimum VF
requested may be a scalable VF. getMinimumVF now takes an additional
operand 'IsScalableVF' that indicates whether a scalable VF is required.
Reviewed By: kparzysz, rampitec
Differential Revision: https://reviews.llvm.org/D96020
This patch is NFC and changes occurrences of `unsigned Width`
and `unsigned i` to work on type ElementCount instead.
This patch is a preparatory patch with the ultimate goal of making
`computeMaxVF()` return both a max fixed VF and a max scalable VF,
so that `selectVectorizationFactor()` can pick the most cost-effective
vectorization factor.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D96019
Rename the `RF_MoveDistinctMDs` flag passed into `MapValue` and
`MapMetadata` to `RF_ReuseAndMutateDistinctMDs` in order to more
precisely describe its effect and clarify the header documentation.
Found this while helping to investigate PR48841, which pointed out an
unsound use of the flag in `CloneModule()`. For now I've just added a
FIXME there, but I'm hopeful that the new (more precise) name will
prevent other similar errors.
Break SampleProfileLoader into to a base and a derived class.
Base class (SampleProfileLoaderBaseImpl) includes the common
code for IR and MachineIR (CodeGen) sample loader.
It will be templatelized in the later patch.
Inline and Probe related code will remain in the derived class of
SampleProfileLoader and stays in SampleProfile.cpp.
We need to refactor some functions:
(1) getInstWeight() to enable the code sharing -- put the core into
getInstWeightImpl().
(2) emitAnnotation() and propagateWeights() to carve out the code
specific to SampleProfileLoader.
(3) make getInstWeight() and findFunctionSamples() virtual and override
in SampleProfileLoader as they need to access the fields in the derived
class.
Differential Revision: https://reviews.llvm.org/D95832
The IR/MIR pseudo probe intrinsics don't get materialized into real machine instructions and therefore they don't incur runtime cost directly. However, they come with indirect cost by blocking certain optimizations. Some of the blocking are intentional (such as blocking code merge) for better counts quality while the others are accidental. This change unblocks perf-critical optimizations that do not affect counts quality. They include:
1. IR InstCombine, sinking load operation to shorten lifetimes.
2. MIR LiveRangeShrink, similar to #1
3. MIR TwoAddressInstructionPass, i.e, opeq transform
4. MIR function argument copy elision
5. IR stack protection. (though not perf-critical but nice to have).
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95982
This is a special-case multiply that replicates bits of
the source operand. We need this fold to avoid regression
if we make canonicalization to `mul` more aggressive for
shl+or patterns.
I did not see a way to make Alive generalize the bit width
condition for even-number-of-bits only, but an example of
the proof is:
Name: i32
Pre: isPowerOf2(C1 - 1) && log2(C1) == C2 && (C2 * 2 == width(C2))
%m = mul nuw i32 %x, C1
%t = lshr i32 %m, C2
=>
%t = and i32 %x, C1 - 2
Name: i14
%m = mul nuw i14 %x, 129
%t = lshr i14 %m, 7
=>
%t = and i14 %x, 127
https://rise4fun.com/Alive/e52
This patch is NFC and changes occurrences of `unsigned MaxVectorSize`
to work on type ElementCount.
This patch is a preparatory patch with the ultimate goal of making
`computeMaxVF()` return both a max fixed VF and a max scalable VF,
so that `selectVectorizationFactor()` can pick the most cost-effective
vectorization factor.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D96018
VP blocks keep track of a condition, which is a VPValue. This patch
updates VPBlockBase to manage the value using VPUser, so
replaceAllUsesWith properly updates the condition bit as well.
This is required to enable VP2VP transformations and it helps with
simplifying some of the code required to manage condition bits.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95382
This was reported as PR49104. The reproducer uses varargs but the issue
is the same, we know an argument is dead but can't change the signature
for some reason. The PR49104 situation was: We are in an CG-SCC
traversal and we remove all the uses of an argument and proof it thereby
dead. However, if we do not remove the argument, via signature rewrite,
we need to ensure that the `undef` we introduce at the call site doesn't
clash with a `noundef` attribute.
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
This reverts commit 502a67dd7f.
This expose a failure in test-suite build on PowerPC,
revert to unblock buildbot first,
Dave will re-commit in https://reviews.llvm.org/D96287.
Thanks Dave.
This patch improves the index management during constraint building.
Previously, the code rejected constraints which used values that were not
part of Value2Index, but after combining the coefficients of the new
indices were 0 (if ShouldAdd was 0).
In those cases, no new indices need to be added. Instead of adding to
Value2Index directly, add new indices to the NewIndices map. The caller
can then check if it needs to add any new indices.
This enables checking constraints like `a + x <= a + n` to `x <= n`,
even if there is no constraint for `a` directly.
This patch updates some places where VectorLoopValueMap is accessed
directly to instead go through VPTransformState.
As we move towards managing created values exclusively in VPTransformState,
this ensures the use always can fetch the correct value.
This is in preparation for D92285, which switches to managing scalarized
values through VPValues.
In the future, the various fix* functions should be moved directly into
the VPlan codegen stage.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95757
As discussed in:
https://llvm.org/PR49055
We invert instcombine's add->or transform here
because it makes it easier to identify factorization
transforms like the mul in the motivating test.
This extends the logic added with:
https://reviews.llvm.org/rG70472f3https://reviews.llvm.org/rG93f3d7f
(I intentionally kept the formatting fix in this patch
to provide more context about the calling logic.)
PR49043 exposed a problem when it comes to RAUW llvm.assumes. While
D96106 would fix it for GVNSink, it seems a more general concern. To
avoid future problems this patch moves away from the vector of weak
reference model used in the assumption cache. Instead, we track the
llvm.assume calls with a callback handle which will remove itself from
the cache if the call is deleted.
Fixes PR49043.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96168
Type tests used only by assumes were original for devirtualization, but
are meant to be kept through the first invocation of LTT so that they
can be used for additional optimization. In the regular LTO case where
the IR is analyzed we may find a resolution for the type test and end up
rewriting the associated vtable global, which can have implications on
section splitting. Simply ignore these type tests.
Fixes PR48245.
Differential Revision: https://reviews.llvm.org/D96083
Summary:
This resolves an issue posted on Bugzilla. https://bugs.llvm.org/show_bug.cgi?id=48764
In this issue, the loop had multiple exit blocks, which resulted in the
function getExitBlock to return a nullptr, which resulted in hitting the assert.
This patch ensures that loops which only have one exit block as allowed to be
unrolled and jammed.
Reviewed By: Whitney, Meinersbur, dmgreen
Differential Revision: https://reviews.llvm.org/D95806
emitting retainRV or claimRV calls in the IR
This reapplies 3fe3946d9a without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.
Original commit message:
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Dynamic allocas that still exist have been verified to be only used
'locally' not accross a suspend point.
rdar://73903220
Differential Revision: https://reviews.llvm.org/D96071
emitting retainRV or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.
Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.
Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.
Differential Revision: https://reviews.llvm.org/D95291
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCI-ish prep work, but the changes are a bit too involved for me to feel comfortable tagging the change that way.
Differential Revision: https://reviews.llvm.org/D94892
These attributes were all incorrect or inappropriate for LLVM to infer:
- inaccessiblememonly is generally wrong; user replacement operator new
can access memory that's visible to the caller, as can a new_handler
function.
- willreturn is generally wrong; a custom new_handler is not guaranteed
to terminate.
- noalias is inappropriate: Clang has a flag to determine whether this
attribute should be present and adds it itself when appropriate.
- noundef and nonnull on the return value should be specified by the
frontend on all 'operator new' functions if we want them, not here.
In any case, inferring attributes on functions declared 'nobuiltin' (as
these are when Clang emits them) seems questionable.
Several of the new attributes here were incorrect, and even the ones
that are generally correct were being added even to nobuiltin calls.
This reverts commit bb3f169b59.
This patch extends the condition collection logic to allow adding
conditions from pre-headers to loop headers, by allowing cases where the
target block dominates some of its predecessors.
This patch detaches SampleProfileLoader from class
SampleCoverageTracker. We plan to move SampleProfileLoader
to a template class. This would remain SampleCoverageTracker
as a class.
Also make callsiteIsHot() as a file static function.
Differential Revision: https://reviews.llvm.org/D95823
This patch updates the induction value creation to use VPValues of
recipes to map the created values. This should bring is one step closer
to being able to optimize induction recipes directly in VPlan.
Currently widenIntOrFpInduction also generates vector values for a cast
of the induction, if it exists. Make this explicit by adding the cast
instruction to the values defined by the recipe.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D92284
This patch adds constructors to VPIteration as a cleaner way of
initialising the struct and replaces existing constructions of
the form:
{Part, Lane}
with
VPIteration(Part, Lane)
I have also added a default constructor, which is used by VPlan.cpp
when deciding whether to replicate a block or not.
This refactoring will be required in a later patch that adds more
members and functions to VPIteration.
Differential Revision: https://reviews.llvm.org/D95676
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
Sample re-annotation is required in LTO time to achieve a reasonable post-inline profile quality. However, we have seen that such LTO-time re-annotation degrades profile quality. This is mainly caused by preLTO code duplication that is done by passes such as loop unrolling, jump threading, indirect call promotion etc, where samples corresponding to a source location are aggregated multiple times due to the duplicates. In this change we are introducing a concept of distribution factor for pseudo probes so that samples can be distributed for duplicated probes scaled by a factor. We hope that optimizations duplicating code well-maintain the branch frequency information (BFI) based on which probe distribution factors are calculated. Distribution factors are updated at the end of preLTO pipeline to reflect an estimated portion of the real execution count.
This change also introduces a pseudo probe verifier that can be run after each IR passes to detect duplicated pseudo probes.
A saturated distribution factor stands for 1.0. A pesudo probe will carry a factor with the value ranged from 0.0 to 1.0. A 64-bit integral distribution factor field that represents [0.0, 1.0] is associated to each block probe. Unfortunately this cannot be done for callsite probes due to the size limitation of a 32-bit Dwarf discriminator. A 7-bit distribution factor is used instead.
Changes are also needed to the sample profile inliner to deal with prorated callsite counts. Call sites duplicated by PreLTO passes, when later on inlined in LTO time, should have the callees’s probe prorated based on the Prelink-computed distribution factors. The distribution factors should also be taken into account when computing hotness for inline candidates. Also, Indirect call promotion results in multiple callisites. The original samples should be distributed across them. This is fixed by adjusting the callisites' distribution factors.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D93264
Inlining sometimes maps different instructions to be inlined onto the same instruction.
We must ensure to only remap the noalias scopes once. Otherwise the scope might disappear (at best).
This patch ensures that we only replace scopes for which the mapping is known.
This approach is preferred over tracking which instructions we already handled in a SmallPtrSet,
as that one will need more memory.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95862
Refactoring SampleProfileLoader::inlineHotFunctions to use helpers from CSSPGO inlining and reduce similar code in the inlining loop, plus minor cleanup for AFDO path.
This is resubmit of D95024, with build break and overtighten assertion fixed.
Test Plan:
This is a yet another hint that we will eventually need InstCombineInverter,
which would consistently sink inversions, but but for that we'll need
to consistently hoist inversions where possible, so let's do that here.
Example of a proof: https://alive2.llvm.org/ce/z/78SbDq
See https://bugs.llvm.org/show_bug.cgi?id=48995
This patch updates IRBuilder::CreateMaskedGather/Scatter to work
with ScalableVectorType and adds isLegalMaskedGather/Scatter functions
to AArch64TargetTransformInfo. In addition I've fixed up
isLegalMaskedLoad/Store to return true for supported scalar types,
since this is what the vectorizer asks for.
In LoopVectorize.cpp I've changed
LoopVectorizationCostModel::getInterleaveGroupCost to return an invalid
cost for scalable vectors, since currently this relies upon using shuffle
vector for reversing vectors. In addition, in
LoopVectorizationCostModel::setCostBasedWideningDecision I have assumed
that the cost of scalarising memory ops is infinitely expensive.
I have added some simple masked load/store and gather/scatter tests,
including cases where we use gathers and scatters for conditional invariant
loads and stores.
Differential Revision: https://reviews.llvm.org/D95350
Refactoring SampleProfileLoader::inlineHotFunctions to use helpers from CSSPGO inlining and reduce similar code in the inlining loop, plus minor cleanup for AFDO path.
Test Plan:
Differential Revision: https://reviews.llvm.org/D95024
This change implemented call site prioritized BFS profile guided inlining for sample profile loader. The new inlining strategy maximize the benefit of context-sensitive profile as mentioned in the follow up discussion of CSSPGO RFC. The change will not affect today's AutoFDO as it's opt-in. CSSPGO now defaults to the new FDO inliner, but can fall back to today's replay inliner using a switch (`-sample-profile-prioritized-inline=0`).
Motivation
With baseline AutoFDO, the inliner in sample profile loader only replays previous inlining, and the use of profile is only for pruning previous inlining that turned out to be cold. Due to the nature of replay, the FDO inliner is simple with hotness being the only decision factor. It has the following limitations that we're improving now for CSSPGO.
- It doesn't take inline candidate size into account. Since it's doing replay, the size growth is bounded by previous CGSCC inlining. With context-sensitive profile, FDO inliner is no longer limited by previous inlining, so we need to take size into account to avoid significant size bloat.
- The way it looks at hotness is not accurate. It uses total samples in an inlinee as proxy for hotness, while what really matters for an inline decision is the call site count. This is an unfortunate fall back because call site count and callee entry count are not reliable due to dwarf based correlation, especially for inlinees. Now paired with pseudo-probe, we have accurate call site count and callee's entry count, so we can use that to gauge hotness more accurately.
- It treats all call sites from a block as hot as long as there's one call site considered hot. This is normally true, but since total samples is used as hotness proxy, this transitiveness within block magnifies the inacurate hotness heuristic. With pseduo-probe and the change above, this is no longer an issue for CSSPGO.
New FDO Inliner
Putting all the requirement for CSSPGO together, we need a top-down call site prioritized BFS inliner. Here're reasons why each component is needed.
- Top-down: We need a top-down inliner to better leverage context-sensitive profile, so inlining is driven by accurate context profile, and post-inline is also accurate. This is already implemented in https://reviews.llvm.org/D70655.
- Size Cap: For top-down inliner, taking function size into account for inline decision alone isn't sufficient to control size growth. We also need to explicitly cap size growth because with top-down inlining, we can grow inliner size significantly with large number of smaller inlinees even if each individually passes the cost/size check.
- Prioritize call sites: With size cap, inlining order also becomes important, because if we stop inlining due to size budget limit, we'd want to use budget towards the most beneficial call sites.
- BFS inline: Same as call site prioritization, if we stop inlining due to size budget limit, we want a balanced inline tree, rather than going deep on one call path.
Note that the new inliner avoids repeatedly evaluating same set of call site, so it should help with compile time too. For this reason, we could transition today's FDO inliner to use a queue with equal priority to avoid wasted reevaluation of same call site (TODO).
Speculative indirect call promotion and inlining is also supported now with CSSPGO just like baseline AutoFDO.
Tunings and knobs
I created tuning knobs for size growth/cap control, and for hot threshold separate from CGSCC inliner. The default values are selected based on initial tuning with CSSPGO.
Results
Evaluated with an internal LLVM fork couple months ago, plus another change to adjust hot-threshold cutoff for context profile (will send up after this one), the new inliner show ~1% geomean perf win on spec2006 with CSSPGO, while reducing code size too. The measurement was done using train-train setup, MonoLTO w/ new pass manager and pseudo-probe. Note that this is just a starting point - we hope that the new inliner will open up more opportunity with CSSPGO, but it will certainly take more time and effort to make it fully calibrated and ready for bigger workloads (we're working on it).
Differential Revision: https://reviews.llvm.org/D94001
Extend applyLoopGuards() to take into account conditions/assumes proving some
value %v to be divisible by D by rewriting %v to (%v / D) * D. This lets the
loop unroller and the loop vectorizer identify more loops as not requiring
remainder loops.
Differential Revision: https://reviews.llvm.org/D95521
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
Fixing up a couple places where `getCallSiteIdentifier` is needed to support pseudo-probe-based callsites.
Also fixing an issue in the extbinary profile reader where the metadata section is not fully scanned based on the number of profiles loaded only for the current module.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D95791
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.
There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.
Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.
Differential Revision: https://reviews.llvm.org/D95690
A == B map to A >= B && A <= B
(https://alive2.llvm.org/ce/z/_dwxKn).
This extends the constraint construction to return a list of
constraints, which can be used to properly de-compose nested AND & OR.
If the incoming block to a phi node is an EH pad, then we will
materialize into an EH pad, which is not supposed to happen. To fix
this, I added a check to see if incoming block of a phi node is an EH
pad before using it as the insertion point.
Differential Revision: https://reviews.llvm.org/D95019
The constant trunc/ext may not be the optimal pre-condition,
but I think that handles the common cases.
Example of Alive2 proof:
https://alive2.llvm.org/ce/z/sREeLC
This is another step towards canonicalizing to the intrinsics.
Narrowing was identified as source of potential regression for
abs(), so we need to handle this for min/max - see:
https://llvm.org/PR48816
If this is not enough, we could process intrinsics in
the trunc-driven matching in canEvaluateTruncated().
Instead of using ConstraintSystem::negate when adding new constraints,
flip the condition in IR.
The main advantage is that EQ predicates can be represented by 2
constraints, which makes negating based on the constraint tricky. The IR
condition can easily negated.
D90687 introduced a crash:
llvm::LoopVectorizationCostModel::computeMaxVF(llvm::ElementCount, unsigned int):
Assertion `WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
"No decisions should have been taken at this point"' failed.
when compiling the following C code:
typedef struct {
char a;
} b;
b *c;
int d, e;
int f() {
int g = 0;
for (; d; d++) {
e = 0;
for (; e < c[d].a; e++)
g++;
}
return g;
}
with:
clang -Os -target hexagon -mhvx -fvectorize -mv67 testcase.c -S -o -
This occurred since prior to D90687 computeFeasibleMaxVF would only be
called in computeMaxVF when a scalar epilogue was allowed, but now it's
always called. This causes the assert above since computeFeasibleMaxVF
collects all viable VFs larger than the default MaxVF, and for each VF
calculates the register usage which results in analysis being done the
assert above guards against. This can occur in computeFeasibleMaxVF if
TTI.shouldMaximizeVectorBandwidth and this target hook is implemented in
the hexagon backend to always return true.
Reported by @iajbar.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94869
If we determine that the invariant path through the loop has no effects,
we can directly branch to the exit block, instead to unswitching first.
Besides avoiding some extra work (unswitching first, then deleting the
loop again) this allows to be more aggressive than regular unswitching
with respect to cost-modeling. This approach should always be be
desirable.
This is similar in spirit to D93734, just that it uses the previously
added checks for loop-unswitching.
I tried to add the required no-op checks from scratch, as we only check
a subset of the loop. There is potential to unify the checks with
LoopDeletion, at the cost of adding a predicate whether a block should
be considered.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D95468
The reduction of a sanitizer build failure when enabling the dominance check (D95335) showed that loop peeling also needs to take care of scope duplication, just like loop unrolling (D92887).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95544
This patch fixes updating MemorySSA if the header contains memory
defs that do not clobber a duplicated instruction. We need to find the
first defining access outside the loop body and use that as defining
access of the duplicated instruction.
This fixes a crash caused by bee486851c.
This patch emits "instr_prof_hash_mismatch" function annotation metadata if
there is a hash mismatch while applying instrumented profiles.
During the PGO optimized build using instrumented profiles, if the CFG of
the function has changed since generating the profile, a hash mismatch is
encountered. This patch emits this information as annotation metadata. We
plan to use this with Propeller which is done at the machine IR level.
Propeller is usually applied on top of PGO and a hash mismatch during
PGO could be used to detect source drift.
Differential Revision: https://reviews.llvm.org/D95495
splitCodeGen does not need to take ownership of the module, as it
currently clones the original module for each split operation.
There is an ~4 year old fixme to change that, but until this is
addressed, the function can just take a reference to the module.
This makes the transition of LTOCodeGenerator to use LTOBackend a bit
easier, because under some circumstances, LTOCodeGenerator needs to
write the original module back after codegen.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95222
GCC warning:
```
/llvm-project/llvm/lib/Transforms/Scalar/ScalarizeMaskedMemIntrin.cpp: In function ‘void scalarizeMaskedStore(llvm::CallInst*, llvm::DomTreeUpdater*, bool&)’:
/llvm-project/llvm/lib/Transforms/Scalar/ScalarizeMaskedMemIntrin.cpp:295:15: warning: variable ‘IfBlock’ set but not used [-Wunused-but-set-variable]
295 | BasicBlock *IfBlock = CI->getParent();
| ^~~~~~~
/llvm-project/llvm/lib/Transforms/Scalar/ScalarizeMaskedMemIntrin.cpp: In function ‘void scalarizeMaskedScatter(llvm::CallInst*, llvm::DomTreeUpdater*, bool&)’:
/llvm-project/llvm/lib/Transforms/Scalar/ScalarizeMaskedMemIntrin.cpp:555:15: warning: variable ‘IfBlock’ set but not used [-Wunused-but-set-variable]
555 | BasicBlock *IfBlock = CI->getParent();
| ^~~~~~~
```
This de-pessimizes the arguably more usual case of no masked mem intrinsics,
and gets rid of one more Dominator Tree recalculation.
As per llvm/test/CodeGen/X86/opt-pipeline.ll,
there's one more Dominator Tree recalculation left, we could get rid of.
and fix a few edge cases that show up in the Swift compiler but
weren't caught by the existing tests. Most notably the old code wasn't
salvaging load operations correctly. The patch also gets rid of the
LoadFromFramePtr argument and replaces it with a more generalized
mechanism.
SimplifyCFG is an utility pass, and the fact that it does not
preserve DomTree's, forces it's users to somehow workaround that,
likely by not preserving DomTrees's themselves.
Indeed, simplifycfg pass didn't know how to preserve dominator tree,
it took me just under a month (starting with e113317958)
do rectify that, now it fully knows how to,
there's likely some problems with that still,
but i've dealt with everything i can spot so far.
I think we now can flip the switch.
Note that this is functionally an NFC change,
since this doesn't change the users to pass in the DomTree,
that is a separate question.
Reviewed By: kuhar, nikic
Differential Revision: https://reviews.llvm.org/D94827
This change brings up support of context-sensitive profiles in the format of extended binary. Existing sample profile reader/writer/merger code is being tweaked to reflect the fact of bracketed input contexts, like (`[...]`). The paired brackets are also needed in extbinary profiles because we don't yet have an otherwise good way to tell calling contexts apart from regular function names since the context delimiter `@` can somehow serve as a part of the C++ mangled names.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D95547
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
I am trying to untangle the fast-math-flags propagation logic
in the vectorizers (see a6f022127 for SLP).
The loop vectorizer has a mix of checking FP function attributes,
IR-level FMF, and just wrong assumptions.
I am trying to avoid regressions while fixing this, and I think
the IR-level logic is good enough for that, but it's hard to say
for sure. This would be the 1st step in the clean-up.
The existing test that I changed to include 'fast' actually shows
a miscompile: the function only had the equivalent of nnan, but we
created new instructions that had fast (all FMF set). This is
similar to the example in https://llvm.org/PR35538
Differential Revision: https://reviews.llvm.org/D95452
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
This gives the user control over which expander to use, which in turn
allows the user to decide what to do with the expanded instructions.
Used in D75980.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D94295
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This patch improves the availability for variables stored in the
coroutine frame by emitting an alloca to hold the pointer to the frame
object and rewriting dbg.declare intrinsics to point inside the frame
object using salvaged DIExpressions. Finally, a new alloca is created
in the funclet to hold the FramePtr pointer to ensure that it is
available throughout the entire function at -O0.
This path also effectively reverts D90772. The testcase updates
highlight nicely how every removed CHECK for a dbg.value is preceded
by a new CHECK for a dbg.declare.
Thanks to JunMa, Yifeng, and Bruno for their thoughtful reviews!
Differential Revision: https://reviews.llvm.org/D93497
rdar://71866936
As it looks like NewPM generally is using SimpleLoopUnswitch
instead of LoopUnswitch, this patch also use SimpleLoopUnswitch
in the ExtraVectorizerPasses sequence (compared with LegacyPM
which use the LoopUnswitch pass).
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D95457
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
The switch must set the predicate correctly; anything else
should lead to unreachable/assert.
I'm trying to fix FMF propagation here and the callers,
so this is a preliminary cleanup.
This patch adds additional checks to avoid partial unswitching
in cases where it won't be profitable, e.g. because the path directly
exits the loop anyways.
Loop peeling removes conditions from loop bodies that become invariant
after a small number of iterations. When triggered, this leads to fewer
compares and possibly PHIs in loop bodies, enabling further
optimizations. The current cost-model of loop peeling should be quite
conservative/safe, i.e. only peel if a condition in the loop becomes
known after peeling.
For example, see PR47671, where loop peeling enables vectorization by
removing a PHI the vectorizer does not understand. Granted, the
loop-vectorizer could also be taught about constant PHIs, but loop
peeling is likely to enable other optimizations as well.
This has an impact on quite a few benchmarks from
MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto, for example
Same hash: 186 (filtered out)
Remaining: 51
Metric: loop-vectorize.LoopsVectorized
Program base patch diff
test-suite...ve-susan/automotive-susan.test 8.00 9.00 12.5%
test-suite...nal/skidmarks10/skidmarks.test 35.00 31.00 -11.4%
test-suite...lications/sqlite3/sqlite3.test 41.00 43.00 4.9%
test-suite...s/ASC_Sequoia/AMGmk/AMGmk.test 25.00 26.00 4.0%
test-suite...006/450.soplex/450.soplex.test 88.00 89.00 1.1%
test-suite...TimberWolfMC/timberwolfmc.test 120.00 119.00 -0.8%
test-suite.../CINT2006/403.gcc/403.gcc.test 215.00 216.00 0.5%
test-suite...006/447.dealII/447.dealII.test 957.00 958.00 0.1%
test-suite...ternal/HMMER/hmmcalibrate.test 75.00 75.00 0.0%
Same hash: 186 (filtered out)
Remaining: 51
Metric: loop-vectorize.LoopsAnalyzed
Program base patch diff
test-suite...ks/Prolangs-C/agrep/agrep.test 440.00 434.00 -1.4%
test-suite...nal/skidmarks10/skidmarks.test 312.00 308.00 -1.3%
test-suite...marks/7zip/7zip-benchmark.test 6399.00 6323.00 -1.2%
test-suite...lications/minisat/minisat.test 134.00 135.00 0.7%
test-suite...rks/FreeBench/pifft/pifft.test 295.00 297.00 0.7%
test-suite...TimberWolfMC/timberwolfmc.test 1879.00 1869.00 -0.5%
test-suite...pplications/treecc/treecc.test 689.00 691.00 0.3%
test-suite...T2000/300.twolf/300.twolf.test 1593.00 1597.00 0.3%
test-suite.../Benchmarks/Bullet/bullet.test 1394.00 1392.00 -0.1%
test-suite...ications/JM/ldecod/ldecod.test 1431.00 1429.00 -0.1%
test-suite...6/464.h264ref/464.h264ref.test 2229.00 2230.00 0.0%
test-suite...lications/sqlite3/sqlite3.test 2590.00 2589.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 2732.00 2733.00 0.0%
test-suite...006/453.povray/453.povray.test 3395.00 3394.00 -0.0%
Note the -11% regression in number of loops vectorized for skidmarks. I
suspect this corresponds to the fact that those loops are gone now (see
the reduction in number of loops analyzed by LV).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D88471
This patch fixes llvm-link crash when materializing global variable
with appending linkage and initializer that depends on another
global with appending linkage.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D95329
This change leverages the work done in D83743 to replay in the SampleProfile inliner to also be used in the CGSCC inliner. NOTE: currently restricted to non-ML advisors only.
The added switch `-cgscc-inline-replay=<remarks file>` will replay the inlining decisions in that file where the remarks file is generated via `-Rpass=inline`. The aim here is to make it easier to analyze changes that would modify inlining heuristics to be separated from this behavior. Doing so allows easier examination of assembly and runtime behavior compared to the baseline rather than trying to dig through the large churn caused by inlining.
In LTO compilation, since inlining is done twice you can separately specify replay by passing the flag to the FE (`-cgscc-inline-replay=`) and to the linker (`-Wl,cgscc-inline-replay=`) with the remarks generated from their respective places.
Testing on mysqld by comparing the inline decisions between base (generates remarks.txt) and diff (replay using identical input/tools with remarks.txt) and examining the inlining sites with `diff` shows 14,000 mismatches out of 247,341 for a ~94% replay accuracy. I believe this gap can be narrowed further though for the general case we may never achieve full accuracy. For my personal use, this is close enough to be representative: I set the baseline as the one generated by the replay on identical input/toolset and compare that to my modified input/toolset using the same replay.
Testing:
ninja check-llvm
newly added test correctly replays CGSCC inlining decisions
Reviewed By: mtrofin, wenlei
Differential Revision: https://reviews.llvm.org/D94334
When LSR converts a branch on the pre-inc IV into a branch on the
post-inc IV, the nowrap flags on the addition may no longer be valid.
Previously, a poison result of the addition might have been ignored,
in which case the program was well defined. After branching on the
post-inc IV, we might be branching on poison, which is undefined behavior.
Fix this by discarding nowrap flags which are not present on the SCEV
expression. Nowrap flags on the SCEV expression are proven by SCEV
to always hold, independently of how the expression will be used.
This is essentially the same fix we applied to IndVars LFTR, which
also performs this kind of pre-inc to post-inc conversion.
I believe a similar problem can also exist for getelementptr inbounds,
but I was not able to come up with a problematic test case. The
inbounds case would have to be addressed in a differently anyway
(as SCEV does not track this property).
Fixes https://bugs.llvm.org/show_bug.cgi?id=46943.
Differential Revision: https://reviews.llvm.org/D95286
or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end annotates calls with attribute "clang.arc.rv"="retain"
or "clang.arc.rv"="claim", which indicates the call is implicitly
followed by a marker instruction and a retainRV/claimRV call that
consumes the call result. This is currently done only when the target
is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the
annotated calls in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the annotated
calls. It doesn't remove the attribute on the call since the backend
needs it to emit the marker instruction. The retainRV/claimRV calls
are emitted late in the pipeline to prevent optimization passes from
transforming the IR in a way that makes it harder for the ARC
middle-end passes to figure out the def-use relationship between the
call and the retainRV/claimRV calls (which is the cause of PR31925).
- The function inliner removes the autoreleaseRV call in the callee that
returns the result if nothing in the callee prevents it from being
paired up with the calls annotated with "clang.arc.rv"="retain/claim"
in the caller. If the call is annotated with "claim", a release call
is inserted since autoreleaseRV+claimRV is equivalent to a release. If
it cannot find an autoreleaseRV call, it tries to transfer the
attributes to a function call in the callee. This is important since
ARC optimizer can remove the autoreleaseRV call returning the callee
result, which makes it impossible to pair it up with the retainRV or
claimRV call in the caller. If that fails, it simply emits a retain
call in the IR if the call is annotated with "retain" and does nothing
if it's annotated with "claim".
- This patch teaches dead argument elimination pass not to change the
return type of a function if any of the calls to the function are
annotated with attribute "clang.arc.rv". This is necessary since the
pass can incorrectly determine nothing in the IR uses the function
return, which can happen since the front-end no longer explicitly
emits retainRV/claimRV calls in the IR, and change its return type to
'void'.
Future work:
- Use the attribute on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the attributes.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Now that VPRecipeBase inherits from VPDef, we can always use the new
VPValue for replacement, if the recipe defines one. Given the recipes
that are supported at the moment, all new recipes must have either 0 or
1 defined values.
Fixes an infinite loop encountered in GVN.
GVN will delay PRE if it encounters critical edges, attempt to split
them later via calls to SplitCriticalEdge(), then restart.
The caller of GVN::splitCriticalEdges() assumed a return value of true
meant that critical edges were split, that the IR had changed, and that
PRE should be re-attempted, upon which we loop infinitely.
This was exposed after D88438, by compiling the Linux kernel for s390,
but the test case is reproducible on x86.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1261
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D94996
turning off SampleFDO silently.
Currently sample loader pass turns off SampleFDO optimization silently when
it sees error in reading the profile. This behavior will defeat the tests
which could have caught those bad/incompatible profile problems. This patch
change the behavior to report error.
Differential Revision: https://reviews.llvm.org/D95269
We can sink extends after min/max if they match and would
not change the sign-interpreted compare. The only combo
that doesn't work is zext+smin/smax because the zexts
could change a negative number into positive:
https://alive2.llvm.org/ce/z/D6sz6J
Sext+umax/umin works:
define i32 @src(i8 %x, i8 %y) {
%0:
%sx = sext i8 %x to i32
%sy = sext i8 %y to i32
%m = umax i32 %sx, %sy
ret i32 %m
}
=>
define i32 @tgt(i8 %x, i8 %y) {
%0:
%m = umax i8 %x, %y
%r = sext i8 %m to i32
ret i32 %r
}
Transformation seems to be correct!
In the cloning infrastructure, only track an MDNode mapping,
without explicitly storing the Metadata mapping, same as is done
during inlining. This makes things slightly simpler.
a6f0221276 enabled intersection of FMF on reduction instructions,
so it is safe to ease the check here.
There is still some room to improve here - it looks like we
have nearly duplicate flags propagation logic inside of the
LoopUtils helper but it is limited targets that do not form
reduction intrinsics (they form the shuffle expansion).
A @llvm.experimental.noalias.scope.decl is only useful if there is !alias.scope and !noalias metadata that uses the declared scope.
When that is not the case for at least one of the two, the intrinsic call can as well be removed.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95141
Similar to D92887, LoopRotation also needs duplicate the noalias scopes when rotating a `@llvm.experimental.noalias.scope.decl` across a block boundary.
This is based on the version from the Full Restrict paches (D68511).
The problem it fixes also showed up in Transforms/Coroutines/ex5.ll after D93040 (when enabling strict checking with -verify-noalias-scope-decl-dom).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94306
This is a fix for https://bugs.llvm.org/show_bug.cgi?id=39282. Compared to D90104, this version is based on part of the full restrict patched (D68484) and uses the `@llvm.experimental.noalias.scope.decl` intrinsic to track the location where !noalias and !alias.scope scopes have been introduced. This allows us to only duplicate the scopes that are really needed.
Notes:
- it also includes changes and tests from D90104
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D92887
Add an intrinsic type class to represent the
llvm.experimental.noalias.scope.decl intrinsic, to make code
working with it a bit nicer by hiding the metadata extraction
from view.
Some utilities used by InstCombine, like SimplifyLibCalls, may add new
instructions and replace the uses of a call, but return nullptr because
the inserted call produces multiple results.
Previously, the replaced library calls would get removed by
InstCombine's deleter, but after
292077072e this may not happen, if the
willreturn attribute is missing.
As a work-around, update replaceInstUsesWith to set MadeIRChange, if it
replaces any uses. This catches the cases where it is used as replacer
by utilities used by InstCombine and seems useful in general; updating
uses will modify the IR.
This fixes an expensive-check failure when replacing
@__sinpif/@__cospifi with @__sincospif_sret.
As shown in the test diffs, we could miscompile by
propagating flags that did not exist in the original
code.
The flags required for fmin/fmax reductions will be
fixed in a follow-up patch.
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
If i change it to AssertingVH instead, a number of existing tests fail,
which means we don't consistently remove from the set when deleting blocks,
which means newly-created blocks may happen to appear in that set
if they happen to occupy the same memory chunk as did some block
that was in the set originally.
There are many places where we delete blocks,
and while we could probably consistently delete from LoopHeaders
when deleting a block in transforms located in SimplifyCFG.cpp itself,
transforms located elsewhere (Local.cpp/BasicBlockUtils.cpp) also may
delete blocks, and it doesn't seem good to teach them to deal with it.
Since we at most only ever delete from LoopHeaders,
let's just delegate to WeakVH to do that automatically.
But to be honest, personally, i'm not sure that the idea
behind LoopHeaders is sound.
Insert a llvm.experimental.noalias.scope.decl intrinsic that identifies where a noalias argument was inlined.
This patch includes some refactorings from D90104.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93040
This builds on the restricted after initial revert form of D93906, and adds back support for breaking backedges of inner loops. It turns out the original invalidation logic wasn't quite right, specifically around the handling of LCSSA.
When breaking the backedge of an inner loop, we can cause blocks which were in the outer loop only because they were also included in a sub-loop to be removed from both loops. This results in the exit block set for our original parent loop changing, and thus a need for new LCSSA phi nodes.
This case happens when the inner loop has an exit block which is also an exit block of the parent, and there's a block in the child which reaches an exit to said block without also reaching an exit to the parent loop.
(I'm describing this in terms of the immediate parent, but the problem is general for any transitive parent in the nest.)
The approach implemented here involves a potentially expensive LCSSA rebuild. Perf testing during review didn't show anything concerning, but we may end up needing to revert this if anyone encounters a practical compile time issue.
Differential Revision: https://reviews.llvm.org/D94378
Similar to binary operators like fadd/fmul/fsub, propagate shape info
through unary operators (fneg is the only one?).
Differential Revision: https://reviews.llvm.org/D95252
I have previously tried doing that in
b33fbbaa34 / d38205144f,
but eventually it was pointed out that the approach taken there
was just broken wrt how the uses of bonus instructions are updated
to account for the fact that they should now use either bonus instruction
or the cloned bonus instruction. In particluar, all that manual handling
of PHI nodes in successors was just wrong.
But, the fix is actually much much simpler than my initial approach:
just tell SSAUpdate about both instances of bonus instruction,
and let it deal with all the PHI handling.
Alive2 confirms that the reproducers from the original bugs (@pr48450*)
are now handled correctly.
This effectively reverts commit 59560e8589,
effectively relanding b33fbbaa34.
NewBonusInst just took name from BonusInst, so BonusInst has no name,
so BonusInst.getName() makes no sense.
So we need to ask NewBonusInst for the name.
This is to support the memory routines vec_malloc, vec_calloc, vec_realloc, and vec_free. These routines manage memory that is 16-byte aligned. And they are only available on AIX.
Differential Revision: https://reviews.llvm.org/D94710
If the call result is unused, we should let it get DCEd rather
than replacing it. Also, don't try to replace an existing sincos
with another one (unless it's as part of combining sin and cos).
This avoids an infinite combine loop if the calls are not DCEd
as expected, which can happen with D94106 and lack of willreturn
annotation in hand-crafted IR.
In the motivating cases from https://llvm.org/PR48816 ,
we have a trailing trunc. But that is not required to
reduce the abs width:
https://alive2.llvm.org/ce/z/ECaz-p
...as long as we clear the int-min-is-poison bit (nsw).
We have some existing tests that are affected, and I'm
not sure what the overall implications are, but in general
we favor narrowing operations over preserving nsw/nuw.
If that causes problems, we could restrict this transform
based on type (shouldChangeType() and/or vector vs. scalar).
Differential Revision: https://reviews.llvm.org/D95235
The existing code did not deal with atomic loads correctly. Such loads
are represented as MemoryDefs. Bail out on any MemoryAccess that is not
a MemoryUse.
Because we were not looking for the llvm.coro.id.async intrinsic in the
early coro pass which triggers follow-up passes we relied on the
llvm.coro.end intrinsic being present. This might not be the case in
functions that end in unreachable code.
Differential Revision: https://reviews.llvm.org/D95144
Iff we know we can get rid of the inversions in the new pattern,
we can thus get rid of the inversion in the old pattern,
this decreasing instruction count.
Note that we could position this transformation as just hoisting
of the `not` (still, iff y is freely negatible), but the test changes
show a number of regressions, so let's not do that.
Iff we know we can get rid of the inversions in the new pattern,
we can thus get rid of the inversion in the old pattern,
this decreasing instruction count.
I'm intentionally structuring it this way, so that the actual fold only
does the fold, and no legality/correctness checks, all of which must be
done by the caller. This allows for the fold code to be more compact
and more easily grokable.
Hoist the successor updating out of the code that deals with branch
weight updating, and hoist the 'has weights' check from the latter,
making code more consistent and easier to follow.
While we already ignore uncond branches, we could still potentially
end up with a conditional branches with identical destinations
due to the visitation order, or because we were called as an utility.
But if we have such a disguised uncond branch,
we still probably shouldn't deal with it here.