Commit Graph

144 Commits

Author SHA1 Message Date
Philip Reames 723144665b [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 4)
Resubmit after the following changes:

* Fix a latent bug related to unrolling with required epilogue (see e49d65f). I believe this is the cause of the prior PPC buildbot failure.
* Disable non-latch exits for epilogue vectorization to be safe (9ffa90d)
* Split out assert movement (600624a) to reduce churn if this gets reverted again.

Previous commit message (try 3)

Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll

Previous commit message...

This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac).  The original commit caused a PPC build bot failure we never really got to the bottom of.  I can't reproduce the issue, and the bot owner was non-responsive.  In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025.  My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.

Original commit message follows...

If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-07-07 07:44:35 -07:00
Florian Hahn 23c2f2e6b2
[LV] Mark increment of main vector loop induction variable as NUW.
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.

If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.

This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.

At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.

Note that this could probably be further improved by using information
from the original IV.

Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g

Part of a set of fixes required for PR50412.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D103255
2021-06-07 10:47:52 +01:00
serge-sans-paille 4ab3041acb Revert "[NFC] remove explicit default value for strboolattr attribute in tests"
This reverts commit bda6e5bee0.

See https://lab.llvm.org/buildbot/#/builders/109/builds/15424 for instance
2021-05-24 19:43:40 +02:00
serge-sans-paille bda6e5bee0 [NFC] remove explicit default value for strboolattr attribute in tests
Since d6de1e1a71, no attributes is quivalent to
setting attribute to false.

This is a preliminary commit for https://reviews.llvm.org/D99080
2021-05-24 19:31:04 +02:00
Philip Reames ed9d70781b Revert "[LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 3)"
This reverts commit 6d3e3ae8a9.

Still seeing PPC build bot failures, and one arm self host bot failing.  I'm officially stumped, and need help from a bot owner to reduce.
2021-05-17 20:53:28 -07:00
Philip Reames 6d3e3ae8a9 [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 3)
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll

Previous commit message...

This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac).  The original commit caused a PPC build bot failure we never really got to the bottom of.  I can't reproduce the issue, and the bot owner was non-responsive.  In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025.  My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.

Original commit message follows...

If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-05-17 16:59:25 -07:00
David Green 4979c90458 [LV] Account for tripcount when calculation vectorization profitability
The loop vectorizer will currently assume a large trip count when
calculating which of several vectorization factors are more profitable.
That is often not a terrible assumption to make as small trip count
loops will usually have been fully unrolled. There are cases however
where we will try to vectorize them, and especially when folding the
tail by masking can incorrectly choose to vectorize loops that are not
beneficial, due to the folded tail rounding the iteration count up for
the vectorized loop.

The motivating example here has a trip count of 5, so either performs 5
scalar iterations or 2 vector iterations (with VF=4). At a high enough
trip count the vectorization becomes profitable, but the rounding up to
2 vector iterations vs only 5 scalar makes it unprofitable.

This adds an alternative cost calculation when we know the max trip
count and are folding tail by masking, rounding the iteration count up
to the correct number for the vector width. We still do not account for
anything like setup cost or the mixture of vector and scalar loops, but
this is at least an improvement in a few cases that we have had
reported.

Differential Revision: https://reviews.llvm.org/D101726
2021-05-06 12:36:46 +01:00
David Green 8675ef100f [LV] Logical and/or select costs
D99674 stopped the folding of certain select operations into and/or, due
to incorrect folding in the presence of poison. D97360 added some costs
to attempt to account for the change, but only worked at the getUserCost
level, not the getCmpSelInstrCost that the vectorizer will use directly.
This adds similar logic into the vectorizer to handle these logical
and/or selects, treating them like and/or directly.

This fixes 60% performance regressions from code like the attached test
case.

Differential Revision: https://reviews.llvm.org/D99884
2021-04-08 10:39:47 +01:00
David Green 1a4d3d0bca [LV] Add a logical and/or select cost test. NFC 2021-04-08 10:27:06 +01:00
David Green a2e0312cda [ARM] Tone down the MVE scalarization overhead
The scalarization overhead was set deliberately high for MVE, whilst the
codegen was new. It helps protect us against the negative ramifications
of mixing scalar and vector instructions. This decreases that,
especially for floating point where the cost of extracting/inserting
lane elements can be low. For integer the cost is still fairly high due
to the cross-register-bank copy, but is no longer n^2 in the length of
the vector.

In general, this will decrease the cost of scalarizing floats and long
integer vectors. i64 increase in cost, having a high cost before and
after this patch. For floats this allows up to start doing things like
vectorizing fdiv instructions, even if they are scalarized.

Differential Revision: https://reviews.llvm.org/D98245
2021-03-19 18:30:11 +00:00
David Green fa450e98c5 [ARM] Test for predicated scalar memops. NFC
This test shows a case where we can potentially scalarize the store in a
predicated loop, creating a lot of instructions that would be much
slower than scalar.
2021-03-09 21:57:18 +00:00
David Green a1c34a9d6a [ARM] Correct vector predicate type in MVE getCmpSelInstrCost 2021-02-19 14:43:51 +00:00
David Green 1a6744e3dc [ARM] Add larger than legal ICmp costs
A v8i32 compare will produce a v8i1 predicate, but during codegen the
v8i32 will be split into two v4i32, potentially requiring two v4i1
predicates to be merged into a single v8i1. Because this merging of two
v4i1's into a v8i1 is very expensive, we need to make the cost of the
compare equally high.

This patch adds the cost of that to ARMTTIImpl::getCmpSelInstrCost.
Because we don't know whether the user of the predicate can be split,
and the cost model is mostly pre-instruction, we may be pessimistic but
that should only be for larger and legal types. This also adds min/max
detection to the costmodel where it can be detected, to keep those in
line with the cost of simple min/max instructions. Otherwise for the
most part, costs that were already expensive have become more expensive.

Differential Revision: https://reviews.llvm.org/D96692
2021-02-18 11:42:17 +00:00
David Green 1fbb3287fc [ARM] MVE ICmp costing tests. NFC 2021-02-18 10:50:34 +00:00
Sanjay Patel 79b1b4a581 [Vectorizers][TTI] remove option to bypass creation of vector reduction intrinsics
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247

So I think it is safe to now remove this complication from IR.

Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.

I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.

If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.

Differential Revision: https://reviews.llvm.org/D96552
2021-02-12 08:13:50 -05:00
Simon Pilgrim 22302b2be0 [LoopVectorize][ARM] Regenerate mve-gather-scatter-tailpred.ll test
Fix codegen after rG7fe41ac3dff2d44c3d2c31b28554fbe4a86eaa6c
2021-02-05 12:32:45 +00:00
Philip Reames 4cb7d03481 Add missing test update from 3e5ce49
Sorry for the build break, apparently forgot to build ARM target.
2021-02-04 18:04:24 -08:00
David Green 4cc94b7313 [CostModel] Tests for showing the cost of intrinsics from the vectorizer. NFC 2021-01-24 14:47:15 +00:00
David Green 39db5753f9 [LV][ARM] Inloop reduction cost modelling
This adds cost modelling for the inloop vectorization added in
745bf6cf44. Up until now they have been modelled as the original
underlying instruction, usually an add. This happens to works OK for MVE
with instructions that are reducing into the same type as they are
working on. But MVE's instructions can perform the equivalent of an
extended MLA as a single instruction:

  %sa = sext <16 x i8> A to <16 x i32>
  %sb = sext <16 x i8> B to <16 x i32>
  %m = mul <16 x i32> %sa, %sb
  %r = vecreduce.add(%m)
  ->
  R = VMLADAV A, B

There are other instructions for performing add reductions of
v4i32/v8i16/v16i8 into i32 (VADDV), for doing the same with v4i32->i64
(VADDLV) and for performing a v4i32/v8i16 MLA into an i64 (VMLALDAV).
The i64 are particularly interesting as there are no native i64 add/mul
instructions, leading to the i64 add and mul naturally getting very
high costs.

Also worth mentioning, under NEON there is the concept of a sdot/udot
instruction which performs a partial reduction from a v16i8 to a v4i32.
They extend and mul/sum the first four elements from the inputs into the
first element of the output, repeating for each of the four output
lanes. They could possibly be represented in the same way as above in
llvm, so long as a vecreduce.add could perform a partial reduction. The
vectorizer would then produce a combination of in and outer loop
reductions to efficiently use the sdot and udot instructions. Although
this patch does not do that yet, it does suggest that separating the
input reduction type from the produced result type is a useful concept
to model. It also shows that a MLA reduction as a single instruction is
fairly common.

This patch attempt to improve the costmodelling of in-loop reductions
by:
 - Adding some pattern matching in the loop vectorizer cost model to
   match extended reduction patterns that are optionally extended and/or
   MLA patterns. This marks the cost of the reduction instruction correctly
   and the sext/zext/mul leading up to it as free, which is otherwise
   difficult to tell and may get a very high cost. (In the long run this
   can hopefully be replaced by vplan producing a single node and costing
   it correctly, but that is not yet something that vplan can do).
 - getExtendedAddReductionCost is added to query the cost of these
   extended reduction patterns.
 - Expanded the ARM costs to account for these expanded sizes, which is a
   fairly simple change in itself.
 - Some minor alterations to allow inloop reduction larger than the highest
   vector width and i64 MVE reductions.
 - An extra InLoopReductionImmediateChains map was added to the vectorizer
   for it to efficiently detect which instructions are reductions in the
   cost model.
 - The tests have some updates to show what I believe is optimal
   vectorization and where we are now.

Put together this can greatly improve performance for reduction loop
under MVE.

Differential Revision: https://reviews.llvm.org/D93476
2021-01-21 21:03:41 +00:00
David Green dfac521da1 [ARM] Fix vector saddsat costs.
It turns out the vectorizer calls the getIntrinsicInstrCost functions
with a scalar return type and vector VF. This updates the costmodel to
handle that, still producing the correct vector costs.

A vectorizer test is added to show it vectorizing at the correct factor
again.
2021-01-21 15:30:39 +00:00
David Green a36a2864c0 [ARM][LV] Additional loop invariant reduction test. NFC 2021-01-08 15:15:08 +00:00
Juneyoung Lee 4a8e6ed2f7 [SLP,LV] Use poison constant vector for shufflevector/initial insertelement
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94061
2021-01-06 11:22:50 +09:00
Florian Hahn 8a47e6252a
[VPlan] Re-add interleave group members to plan.
Creating in-loop reductions relies on IR references to map
IR values to VPValues after interleave group creation.

Make sure we re-add the updated member to the plan, so the look-ups
still work as expected

This fixes a crash reported after D90562.
2021-01-05 15:06:47 +00:00
Juneyoung Lee 9b29610228 Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.

Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)

The order is swapped, but in terms of correctness it is still fine.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D93923
2020-12-30 22:36:08 +09:00
Juneyoung Lee 278aa65cc4 [IR] Let IRBuilder's CreateVectorSplat/CreateShuffleVector use poison as placeholder
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93793
2020-12-30 04:21:04 +09:00
Florian Hahn a74941da71
Revert "[BasicAA] Handle two unknown sizes for GEPs"
Temporarily revert commit 8b1c4e310c.

After 8b1c4e310c the compile-time for `MultiSource/Benchmarks/MiBench/consumer-lame`
dramatically increases with -O3 & LTO, causing issues for builders with
that configuration.

I filed PR48553 with a smallish reproducer that shows a 10-100x compile
time increase.
2020-12-18 17:59:12 +00:00
Roman Lebedev 5cce4aff18
[SimplifyCFG] TryToSimplifyUncondBranchFromEmptyBlock() already knows how to preserve DomTree
... so just ensure that we pass DomTreeUpdater it into it.

Fixes DomTree preservation for a large number of tests,
all of which are marked as such so that they do not regress.
2020-12-17 01:03:49 +03:00
David Green ab97c9bdb7 [LV] Fix scalar cost for tail predicated loops
When it comes to the scalar cost of any predicated block, the loop
vectorizer by default regards this predication as a sign that it is
looking at an if-conversion and divides the scalar cost of the block by
2, assuming it would only be executed half the time. This however makes
no sense if the predication has been introduced to tail predicate the
loop.

Original patch by Anna Welker

Differential Revision: https://reviews.llvm.org/D86452
2020-12-12 14:21:40 +00:00
David Green f6e885ad2a [ARM] Test for showing scalar vector costs. NFC 2020-12-12 11:43:14 +00:00
Nikita Popov 8b1c4e310c [BasicAA] Handle two unknown sizes for GEPs
If we have two unknown sizes and one GEP operand and one non-GEP
operand, then we currently simply return MayAlias. The comment says
we can't do anything useful ... but we can! We can still check that
the underlying objects are different (and do so for the GEP-GEP case).

To reduce the compile-time impact, this a) checks this early, before
doing the relatively expensive GEP decomposition that will not be
used and b) doesn't do the check if the other operand is a phi or
select. In that case, the phi/select will already recurse, so this
would just do two slightly different recursive walks that arrive at
the same roots.

Compile-time is still a bit of a mixed bag: https://llvm-compile-time-tracker.com/compare.php?from=624af932a808b363a888139beca49f57313d9a3b&to=845356e14adbe651a553ed11318ddb5e79a24bcd&stat=instructions
On average this is a small improvement, but sqlite with ThinLTO has
a 0.5% regression (lencod has a 1% improvement).

The BasicAA test case checks this by using two memsets with unknown
size. However, the more interesting case where this is useful is
the LoopVectorize test case, as analysis of accesses in loops tends
to always us unknown sizes.

Differential Revision: https://reviews.llvm.org/D92401
2020-12-11 18:45:53 +01:00
David Green d939ba4c68 [ARM] MVE qabs vectorization test. NFC 2020-11-27 12:21:11 +00:00
Simon Pilgrim 28fc173819 [LoopVectorize] Remove unused check-prefixes 2020-11-09 12:18:20 +00:00
Nikita Popov 20b386aae0 [LoopUtils] Fix neutral value for vector.reduce.fadd
Use -0.0 instead of 0.0 as the start value. The previous use of 0.0
was fine for all existing uses of this function though, as it is
always generated with fast flags right now, and thus nsz.
2020-10-29 21:45:13 +01:00
David Green be6e8e50f4 [LV] Tail folded inloop reductions.
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:

  x = select(mask, vecop, zero)
  v = vecreduce.add(x)
  c = add chain, v

Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.

Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.

Differential Revision: https://reviews.llvm.org/D84451
2020-10-11 16:58:34 +01:00
David Green 498f89d188 [LV] Collect dead induction truncates
We currently collect the ICmp and Add from an induction variable,
marking them as dead so that vplan values are not created for them. This
extends that to include any single use trunk from the ICmp, which allows
the Add to more readily be removed too.

This can help with costing vplan nodes, as the ICmp and Add are more
reliably removed and are not double-counted.

Differential Revision: https://reviews.llvm.org/D88873
2020-10-08 08:28:58 +01:00
Amara Emerson 322d0afd87 [llvm][mlir] Promote the experimental reduction intrinsics to be first class intrinsics.
This change renames the intrinsics to not have "experimental" in the name.

The autoupgrader will handle legacy intrinsics.

Relevant ML thread: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

Differential Revision: https://reviews.llvm.org/D88787
2020-10-07 10:36:44 -07:00
Sjoerd Meijer 1696dd27fb [ARM][MVE] Enable tail-predication by default
We have been running tests/benchmarks downstream with tail-predication enabled
for some time now and this behaves as expected: we are not aware of any
correctness issues, and this performs better across the board than with
tail-predication disabled. Time to flip the switch!

Differential Revision: https://reviews.llvm.org/D88093
2020-09-28 14:01:23 +01:00
Sam Parker 97a476eb56 [NFC][ARM] Tail fold test changes
Run update script on one test and add another.
2020-09-17 13:09:10 +01:00
David Green 08baa97923 [ARM] Enable tail predication for reduction tests. NFC 2020-09-14 14:26:10 +01:00
David Green 74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
Anna Welker 064981f0ce [ARM][MVE] Enable MVE gathers and scatters by default
Enable MVE gather/scatters by default, which requires some
minor adaptations in some tests.

Differential revision: https://reviews.llvm.org/D86776
2020-08-28 19:05:29 +01:00
Sjoerd Meijer bda8fbe2d2 [LV] Fallback strategies if tail-folding fails
This implements 2 different vectorisation fallback strategies if tail-folding
fails: 1) don't vectorise at all, or 2) vectorise using a scalar epilogue. This
can be controlled with option -prefer-predicate-over-epilogue, that has been
changed to take a numeric value corresponding to the tail-folding preference
and preferred fallback.

Patch by: Pierre van Houtryve, Sjoerd Meijer.

Differential Revision: https://reviews.llvm.org/D79783
2020-08-26 16:55:25 +01:00
David Green 677c1590c0 [ARM] Increase MVE gather/scatter cost by MVECostFactor.
MVE Gather scatter codegeneration is looking a lot better than it used
to, but still has some issues. The instructions we currently model as 1
cycle per element, which is a bit low for some cases. Increasing the
cost by the MVECostFactor brings them in-line with our other instruction
costs. This will have the effect of only generating then when the extra
benefit is more likely to overcome some of the issues. Notably in
running out of registers and vectorizing loops that could otherwise be
SLP vectorized.

In the short-term whilst we look at other ways of dealing with those
more directly, we can increase the costs of gathers to make them more
likely to be beneficial when created.

Differential Revision: https://reviews.llvm.org/D86444
2020-08-26 13:03:46 +01:00
Sjoerd Meijer ae366479e8 [LV] get.active.lane.mask consuming tripcount instead of backedge-taken count
This adapts LV to the new semantics of get.active.lane.mask as discussed in
D86147, which means that the LV now emits intrinsic get.active.lane.mask with
the loop tripcount instead of the backedge-taken count as its second argument.
The motivation for this is described in D86147.

Differential Revision: https://reviews.llvm.org/D86304
2020-08-25 13:49:19 +01:00
Anna Welker 8048068c3e [ARM][MVE] Allow tail predication for strides !=1 with gather/scatters
If gather/scatters are enabled, ARMTargetTransformInfo now allows
tail predication for loops with a much wider range of strides, up
to anything that is loop invariant.

Differential Revision: https://reviews.llvm.org/D85410
2020-08-24 13:54:47 +01:00
David Green 2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green b8088ada05 [LV] Predicated reduction tests. NFC 2020-08-18 16:02:21 +01:00
David Green 9ddb28964c [ARM] Tune getCastInstrCost for extending masked loads and truncating masked stores
This patch uses the feature added in D79162 to fix the cost of a
sext/zext of a masked load, or a trunc for a masked store.
Previously, those were considered cheap or even free, but it's
not the case as we cannot split the load in the same way we would for
normal loads.

This updates the costs to better reflect reality, and adds a test for it
in test/Analysis/CostModel/ARM/cast.ll.

It also adds a vectorizer test that showcases the improvement: in some
cases, the vectorizer will now choose a smaller VF when
tail-predication is enabled, which results in better codegen. (Because
if it were to use a higher VF in those cases, the code we see above
would be generated, and the vmovs would block tail-predication later in
the process, resulting in very poor codegen overall)

Original Patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79163
2020-07-29 13:41:34 +01:00
David Green 2f4c3e8097 [LV] Add additional InLoop redution tests. NFC 2020-07-18 12:14:23 +01:00
Sjoerd Meijer 7ebc6bed84 [ARM][MVE] Reorg of the LV tail-folding tests
It was getting difficult to see which test was in which file, so this
reorganises the test files so that now all filenames start with tail-folding-*
followed by a more descriptive name what that group of tests check.
2020-07-17 15:54:15 +01:00