Commit Graph

36 Commits

Author SHA1 Message Date
Florian Hahn faebc6bf10
[VPlan] Register recipe for instr if the simplified value is recipe.
If the simplified VPValue is a recipe, we need to register it for Instr,
in case it needs to be recorded. The way this is handled in general may
change soon, following some post-commit comments.

This fixes PR50298.
2021-05-11 14:32:34 +01:00
Sanjay Patel 79b1b4a581 [Vectorizers][TTI] remove option to bypass creation of vector reduction intrinsics
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247

So I think it is safe to now remove this complication from IR.

Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.

I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.

If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.

Differential Revision: https://reviews.llvm.org/D96552
2021-02-12 08:13:50 -05:00
Juneyoung Lee 9b29610228 Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.

Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)

The order is swapped, but in terms of correctness it is still fine.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D93923
2020-12-30 22:36:08 +09:00
Roman Lebedev c23aefd7c3
[NFC][InstCombine] visitPHINode(): cleanup PHI CSE instruction replacement
As @nikic is pointing out in https://reviews.llvm.org/rGbf21ce7b908e#inline-4647
this must be sufficient otherwise `EliminateDuplicatePHINodes()`
would have hit issues with it already.
2020-08-31 22:29:39 +03:00
Roman Lebedev bf21ce7b90
[InstCombine] Take 3: Perform trivial PHI CSE
The original take 1 was 6102310d81,
which taught InstSimplify to do that, which seemed better at time,
since we got EarlyCSE support for free.

However, it was proven that we can not do that there,
the simplified-to PHI would not be reachable from the original PHI,
and that is not something InstSimplify is allowed to do,
as noted in the commit ed90f15efb
that reverted it:
> It appears to cause compilation non-determinism and caused stage3 mismatches.

Then there was take 2 3e69871ab5,
which was InstCombine-specific, but it again showed stage2-stage3 differences,
and reverted in bdaa3f86a0.
This is quite alarming.

Here, let's try to change how we find existing PHI candidate:
due to the worklist order, and the way PHI nodes are inserted
(it may be inserted as the first one, or maybe not), let's look at *all*
PHI nodes in the block.

Effects on vanilla llvm test-suite + RawSpeed:
```
| statistic name                                     | baseline  | proposed  |      Δ |        % |    \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| asm-printer.EmittedInsts                           | 7942329   | 7942457   |    128 |    0.00% |    0.00% |
| assembler.ObjectBytes                              | 254295632 | 254312480 |  16848 |    0.01% |    0.01% |
| correlated-value-propagation.NumPhis               | 18412     | 18347     |    -65 |   -0.35% |    0.35% |
| early-cse.NumCSE                                   | 2183283   | 2183267   |    -16 |    0.00% |    0.00% |
| early-cse.NumSimplify                              | 550105    | 541842    |  -8263 |   -1.50% |    1.50% |
| instcombine.NumAggregateReconstructionsSimplified  | 73        | 4506      |   4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined                            | 3640311   | 3644419   |   4108 |    0.11% |    0.11% |
| instcombine.NumDeadInst                            | 1778204   | 1783205   |   5001 |    0.28% |    0.28% |
| instcombine.NumPHICSEs                             | 0         | 22490     |  22490 |    0.00% |    0.00% |
| instcombine.NumWorklistIterations                  | 2023272   | 2024400   |   1128 |    0.06% |    0.06% |
| instcount.NumCallInst                              | 1758395   | 1758802   |    407 |    0.02% |    0.02% |
| instcount.NumInvokeInst                            | 59478     | 59502     |     24 |    0.04% |    0.04% |
| instcount.NumPHIInst                               | 330557    | 330545    |    -12 |    0.00% |    0.00% |
| instcount.TotalBlocks                              | 1077138   | 1077220   |     82 |    0.01% |    0.01% |
| instcount.TotalFuncs                               | 101442    | 101441    |     -1 |    0.00% |    0.00% |
| instcount.TotalInsts                               | 8831946   | 8832606   |    660 |    0.01% |    0.01% |
| simplifycfg.NumHoistCommonCode                     | 24186     | 24187     |      1 |    0.00% |    0.00% |
| simplifycfg.NumInvokes                             | 4300      | 4410      |    110 |    2.56% |    2.56% |
| simplifycfg.NumSimpl                               | 1019813   | 999767    | -20046 |   -1.97% |    1.97% |
```
So it fires 22490 times, which is less than ~24k the take 1 did,
but more than what take 2 did (22228 times)
.
It allows foldAggregateConstructionIntoAggregateReuse() to actually work
after PHI-of-extractvalue folds did their thing. Previously SimplifyCFG
would have done this PHI CSE, of all places. Additionally, allows some
more `invoke`->`call` folds to happen (+110, +2.56%).

All in all, expectedly, this catches less things overall,
but all the motivational cases are still caught, so all good.
2020-08-29 18:21:24 +03:00
Roman Lebedev bdaa3f86a0
Revert "[InstCombine] Take 2: Perform trivial PHI CSE"
While the original variant with doing this in InstSimplify (rightfully)
caused questions and ultimately was detected to be a culprit
of stage2-stage3 mismatch, it was expected that
InstCombine-based implementation would be fine.

But apparently it's not, as
http://lab.llvm.org:8011/builders/clang-with-thin-lto-ubuntu/builds/24095/steps/compare-compilers/logs/stdio
suggests.

Which suggests that somewhere in InstCombine there is a loop
over nondeterministically sorted container, which causes
different worklist ordering.

This reverts commit 3e69871ab5.
2020-08-29 16:05:02 +03:00
Roman Lebedev 3e69871ab5
[InstCombine] Take 2: Perform trivial PHI CSE
The original take was 6102310d81,
which taught InstSimplify to do that, which seemed better at time,
since we got EarlyCSE support for free.

However, it was proven that we can not do that there,
the simplified-to PHI would not be reachable from the original PHI,
and that is not something InstSimplify is allowed to do,
as noted in the commit ed90f15efb
that reverted it :
> It appears to cause compilation non-determinism and caused stage3 mismatches.

However InstCombine already does many different optimizations,
so it should be a safe place to do it here.

Note that we still can't just compare incoming values ranges,
because there is no guarantee that these PHI's we'd simplify to
were already re-visited and sorted.
However coming up with a test is problematic.

Effects on vanilla llvm test-suite + RawSpeed:
```
| statistic name                                     | baseline  | proposed  |      Δ |        % |      |%| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instcombine.NumPHICSEs                             | 0         | 22228     |  22228 |    0.00% |    0.00% |
| asm-printer.EmittedInsts                           | 7942329   | 7942456   |    127 |    0.00% |    0.00% |
| assembler.ObjectBytes                              | 254295632 | 254313792 |  18160 |    0.01% |    0.01% |
| early-cse.NumCSE                                   | 2183283   | 2183272   |    -11 |    0.00% |    0.00% |
| early-cse.NumSimplify                              | 550105    | 541842    |  -8263 |   -1.50% |    1.50% |
| instcombine.NumAggregateReconstructionsSimplified  | 73        | 4506      |   4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined                            | 3640311   | 3666911   |  26600 |    0.73% |    0.73% |
| instcombine.NumDeadInst                            | 1778204   | 1783318   |   5114 |    0.29% |    0.29% |
| instcount.NumCallInst                              | 1758395   | 1758804   |    409 |    0.02% |    0.02% |
| instcount.NumInvokeInst                            | 59478     | 59502     |     24 |    0.04% |    0.04% |
| instcount.NumPHIInst                               | 330557    | 330549    |     -8 |    0.00% |    0.00% |
| instcount.TotalBlocks                              | 1077138   | 1077221   |     83 |    0.01% |    0.01% |
| instcount.TotalFuncs                               | 101442    | 101441    |     -1 |    0.00% |    0.00% |
| instcount.TotalInsts                               | 8831946   | 8832611   |    665 |    0.01% |    0.01% |
| simplifycfg.NumInvokes                             | 4300      | 4410      |    110 |    2.56% |    2.56% |
| simplifycfg.NumSimpl                               | 1019813   | 999740    | -20073 |   -1.97% |    1.97% |
```
So it fires ~22k times, which is less than ~24k the take 1 did.
It allows foldAggregateConstructionIntoAggregateReuse() to actually work
after PHI-of-extractvalue folds did their thing. Previously SimplifyCFG
would have done this PHI CSE, of all places. Additionally, allows some
more `invoke`->`call` folds to happen (+110, +2.56%).

All in all, expectedly, this catches less things overall,
but all the motivational cases are still caught, so all good.
2020-08-29 13:13:06 +03:00
Owen Anderson ed90f15efb Revert "[InstSimplify][EarlyCSE] Try to CSE PHI nodes in the same basic block"
This reverts commit 6102310d81.  It
appears to cause compilation non-determinism and caused stage3
mismatches.
2020-08-28 23:43:42 +00:00
Roman Lebedev 6102310d81
[InstSimplify][EarlyCSE] Try to CSE PHI nodes in the same basic block
Apparently, we don't do this, neither in EarlyCSE, nor in InstSimplify,
nor in (old) GVN, but do in NewGVN and SimplifyCFG of all places..

While i could teach EarlyCSE how to hash PHI nodes,
we can't really do much (anything?) even if we find two identical
PHI nodes in different basic blocks, same-BB case is the interesting one,
and if we teach InstSimplify about it (which is what i wanted originally,
https://reviews.llvm.org/D86530), we get EarlyCSE support for free.

So i would think this is pretty uncontroversial.

On vanilla llvm test-suite + RawSpeed, this has the following effects:
```
| statistic name                                     | baseline  | proposed  |      Δ |        % |    \|%\| |
|----------------------------------------------------|-----------|-----------|-------:|---------:|---------:|
| instsimplify.NumPHICSE                             | 0         | 23779     |  23779 |    0.00% |    0.00% |
| asm-printer.EmittedInsts                           | 7942328   | 7942392   |     64 |    0.00% |    0.00% |
| assembler.ObjectBytes                              | 273069192 | 273084704 |  15512 |    0.01% |    0.01% |
| correlated-value-propagation.NumPhis               | 18412     | 18539     |    127 |    0.69% |    0.69% |
| early-cse.NumCSE                                   | 2183283   | 2183227   |    -56 |    0.00% |    0.00% |
| early-cse.NumSimplify                              | 550105    | 542090    |  -8015 |   -1.46% |    1.46% |
| instcombine.NumAggregateReconstructionsSimplified  | 73        | 4506      |   4433 | 6072.60% | 6072.60% |
| instcombine.NumCombined                            | 3640264   | 3664769   |  24505 |    0.67% |    0.67% |
| instcombine.NumDeadInst                            | 1778193   | 1783183   |   4990 |    0.28% |    0.28% |
| instcount.NumCallInst                              | 1758401   | 1758799   |    398 |    0.02% |    0.02% |
| instcount.NumInvokeInst                            | 59478     | 59502     |     24 |    0.04% |    0.04% |
| instcount.NumPHIInst                               | 330557    | 330533    |    -24 |   -0.01% |    0.01% |
| instcount.TotalInsts                               | 8831952   | 8832286   |    334 |    0.00% |    0.00% |
| simplifycfg.NumInvokes                             | 4300      | 4410      |    110 |    2.56% |    2.56% |
| simplifycfg.NumSimpl                               | 1019808   | 999607    | -20201 |   -1.98% |    1.98% |
```
I.e. it fires ~24k times, causes +110 (+2.56%) more `invoke` -> `call`
transforms, and counter-intuitively results in *more* instructions total.

That being said, the PHI count doesn't decrease that much,
and looking at some examples, it seems at least some of them
were previously getting PHI CSE'd in SimplifyCFG of all places..

I'm adjusting `Instruction::isIdenticalToWhenDefined()` at the same time.
As a comment in `InstCombinerImpl::visitPHINode()` already stated,
there are no guarantees on the ordering of the operands of a PHI node,
so if we just naively compare them, we may false-negatively say that
the nodes are not equal when the only difference is operand order,
which is especially important since the fold is in InstSimplify,
so we can't rely on InstCombine sorting them beforehand.

Fixing this for the general case is costly (geomean +0.02%),
and does not appear to catch anything in test-suite, but for
the same-BB case, it's trivial, so let's fix at least that.

As per http://llvm-compile-time-tracker.com/compare.php?from=04879086b44348cad600a0a1ccbe1f7776cc3cf9&to=82bdedb888b945df1e9f130dd3ac4dd3c96e2925&stat=instructions
this appears to cause geomean +0.03% compile time increase (regression),
but geomean -0.01%..-0.04% code size decrease (improvement).
2020-08-27 18:47:04 +03:00
Ayal Zaks e498be5738 [LV] Strip wrap flags from vectorized reductions
A sequence of additions or multiplications that is known not to wrap, may wrap
if it's order is changed (i.e., reassociated). Therefore when vectorizing
integer sum or product reductions, their no-wrap flags need to be removed.

Fixes PR43828

Patch by Denis Antrushin

Differential Revision: https://reviews.llvm.org/D69563
2019-12-20 14:48:53 +02:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Michael Berg ed89d069f4 add a missed case for binary op FMF propagation under select folds
llvm-svn: 339938
2018-08-16 20:59:45 +00:00
Anna Thomas cce7c24af1 NFC: Add a test to LV showing that reduction is not possible when reduction var is reset in the loop
Added a test case to reduction showing where it's illegal to identify
vectorize a loop.
Resetting the reduction var during loop iterations disallows us from
widening the dependency cycle to VF, thereby making it illegal to
vectorize the loop.

llvm-svn: 339605
2018-08-13 19:55:25 +00:00
Michael Kuperstein 7cefb409b0 [LV] Allow reductions that have several uses outside the loop
We currently check whether a reduction has a single outside user. We don't
really need to require that - we just need to make sure a single value is
used externally. The number of external users of that value shouldn't actually
matter.

Differential Revision: https://reviews.llvm.org/D28830

llvm-svn: 292424
2017-01-18 19:02:52 +00:00
Michael Kuperstein 5185b7dde3 [LV] Remove triples from target-independent vectorizer tests. NFC.
Vectorizer tests in the target-independent directory should not have a target
triple. If a test really needs to query a specific backend, it belongs in the
right target subdirectory (which "REQUIRES" the right backend). Otherwise, it
should not specify a triple.

llvm-svn: 283512
2016-10-06 23:57:25 +00:00
James Molloy 1e583704f5 [LV] Don't bail to MiddleBlock if a runtime check fails, bail to ScalarPH instead
We were bailing to two places if our runtime checks failed. If the initial overflow check failed, we'd go to ScalarPH. If any other check failed, we'd go to MiddleBlock. This caused us to have to have an extra PHI per induction and reduction as the vector loop's exit block was not dominated by its latch.

There's no need to have this behavior - if we just always go to ScalarPH we can get rid of a bunch of complexity.

llvm-svn: 246637
2015-09-02 10:15:39 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Sanjay Patel b653de1ada Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option names controlling this variable.
"Unroll" is not the appropriate name for this variable. Clang already uses 
the term "interleave" in pragmas and metadata for this.

Differential Revision: http://reviews.llvm.org/D5066

llvm-svn: 217528
2014-09-10 17:58:16 +00:00
Arnold Schwaighofer 0caddfc731 LoopVectorize: External uses must use the last value in a reduction cycle
Otherwise, we don't perform operations that would have been performed on
the scalar version.

Fixes PR17498.

llvm-svn: 192133
2013-10-07 21:05:43 +00:00
Stephen Lin c1c7a1309c Update Transforms tests to use CHECK-LABEL for easier debugging. No functionality change.
This update was done with the following bash script:

  find test/Transforms -name "*.ll" | \
  while read NAME; do
    echo "$NAME"
    if ! grep -q "^; *RUN: *llc" $NAME; then
      TEMP=`mktemp -t temp`
      cp $NAME $TEMP
      sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
      while read FUNC; do
        sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
      done
      mv $TEMP $NAME
    fi
  done

llvm-svn: 186268
2013-07-14 01:42:54 +00:00
Arnold Schwaighofer a92eeebde8 LoopVectorizer: Disallow reductions whose header phi is used outside the loop
If an outside loop user of the reduction value uses the header phi node we
cannot just reduce the vectorized phi value in the vector code epilog because
we would loose VF-1 reductions.

lp:
  p = phi (0, lv)
  lv = lv + 1
  ...
  brcond , lp, outside

outside:
  usr = add 0, p

(Say the loop iterates two times, the value of p coming out of the loop is one).

We cannot just transform this to:

vlp:
  p = phi (<0,0>, lv)
  lv = lv + <1,1>
  ..
  brcond , lp, outside

outside:
  p_reduced = p[0] + [1];
  usr = add 0, p_reduced

(Because the original loop iterated two times the vectorized loop would iterate
one time, but p_reduced ends up being zero instead of one).

We would have to execute VF-1 iterations in the scalar remainder loop in such
cases. For now, just disable vectorization.

PR16522

llvm-svn: 186256
2013-07-13 19:09:29 +00:00
Arnold Schwaighofer 3610139ac5 LoopVectorizer: Improve reduction variable identification
The two nested loops were confusing and also conservative in identifying
reduction variables. This patch replaces them by a worklist based approach.

llvm-svn: 181369
2013-05-07 21:55:37 +00:00
Nadav Rotem 30a65bc39e Remove the -licm pass from the loop vectorizer test because the loop vectorizer does it now.
llvm-svn: 171930
2013-01-09 01:20:59 +00:00
Nadav Rotem f19d515316 Fix a typo. Remove the duplicated test.
llvm-svn: 171584
2013-01-05 01:17:46 +00:00
Nadav Rotem e9f5bfd5e9 iLoopVectorize: Non commutative operators can be used as reduction variables as long as the reduction chain is used in the LHS.
PR14803.

llvm-svn: 171583
2013-01-05 01:15:47 +00:00
Nadav Rotem 6d9dafe3ff Force a fixed unroll count on the target independent tests.
This should fix clang-native-arm-cortex-a9. Thanks Renato.

llvm-svn: 171582
2013-01-05 00:58:48 +00:00
Paul Redmond 874f01e956 Do not vectorize loops with subtraction reductions
Since subtraction does not commute the loop vectorizer incorrectly vectorizes
reductions such as x = A[i] - x.

Disabling for now.

llvm-svn: 171537
2013-01-04 22:10:16 +00:00
Benjamin Kramer f0e5d2f032 LoopVectorize: Emit reductions as log2(vectorsize) shuffles + vector ops instead of scalar operations.
For example on x86 with SSE4.2 a <8 x i8> add reduction becomes
	movdqa	%xmm0, %xmm1
	movhlps	%xmm1, %xmm1            ## xmm1 = xmm1[1,1]
	paddw	%xmm0, %xmm1
	pshufd	$1, %xmm1, %xmm0        ## xmm0 = xmm1[1,0,0,0]
	paddw	%xmm1, %xmm0
	phaddw	%xmm0, %xmm0
	pextrb	$0, %xmm0, %edx

instead of
	pextrb	$2, %xmm0, %esi
	pextrb	$0, %xmm0, %edx
	addb	%sil, %dl
	pextrb	$4, %xmm0, %esi
	addb	%dl, %sil
	pextrb	$6, %xmm0, %edx
	addb	%sil, %dl
	pextrb	$8, %xmm0, %esi
	addb	%dl, %sil
	pextrb	$10, %xmm0, %edi
	pextrb	$14, %xmm0, %edx
	addb	%sil, %dil
	pextrb	$12, %xmm0, %esi
	addb	%dil, %sil
	addb	%sil, %dl

llvm-svn: 170439
2012-12-18 18:40:20 +00:00
Nadav Rotem 4cb8cdab5e LoopVectorize: Preserve NSW, NUW and IsExact flags.
llvm-svn: 167174
2012-10-31 21:40:39 +00:00
Nadav Rotem b3e8e688da LoopVectorize: Fix a bug in the initialization of reduction variables. AND needs to start at all-one
while XOR, and OR need to start at zero.

llvm-svn: 167032
2012-10-30 18:12:36 +00:00
Nadav Rotem 5ffb049a55 Add support for additional reduction variables: AND, OR, XOR.
Patch by Paul Redmond <paul.redmond@intel.com>.

llvm-svn: 166649
2012-10-25 00:08:41 +00:00
Nadav Rotem a721b21c64 LoopVectorizer: Add a basic cost model which uses the VTTI interface.
llvm-svn: 166620
2012-10-24 20:36:32 +00:00
Nadav Rotem c1679a95b6 Add support for reduction variables that do not start at zero.
This is important for nested-loop reductions such as :

In the innermost loop, the induction variable does not start with zero:

for (i = 0 .. n)
 for (j = 0 .. m)
  sum += ...

llvm-svn: 166387
2012-10-21 05:52:51 +00:00
Nadav Rotem 4f7f72702b Vectorizer: Add support for loop reductions.
For example:

  for (i=0; i<n; i++)
   sum += A[i] +  B[i] + i;

llvm-svn: 166351
2012-10-19 23:05:40 +00:00