Summary:
I had for the second time today a bug where llvm::format("%s", Str)
was called with Str being a StringRef. The Linux and MacOS bots were
fine, but windows having different calling convention, it printed
garbage.
Instead we can catch this at compile-time: it is never expected to
call a C vararg printf-like function with non scalar type I believe.
Reviewers: bogner, Bigcheese, dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25266
llvm-svn: 283509
The motivation for the change is that we can't have pseudo-global settings for
codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level via
FMF, metadata, or something else. But making them function attributes is at least
an improvement over the current state.
The ingredients of this patch are:
Remove the reciprocal estimate command-line debug option.
Add TargetRecip to TargetLowering.
Remove TargetRecip from TargetOptions.
Clean up the TargetRecip implementation to work with this new scheme.
Set the default reciprocal settings in TargetLoweringBase (everything is off).
Update the PowerPC defaults, users, and tests.
Update the x86 defaults, users, and tests.
Note that if this patch needs to be reverted, the related clang patch checked in
at r283251 should be reverted too.
Differential Revision: https://reviews.llvm.org/D24816
llvm-svn: 283252
This patch corresponds to review:
The newly added VSX D-Form (register + offset) memory ops target the upper half
of the VSX register set. The existing ones target the lower half. In order to
unify these and have the ability to target all the VSX registers using D-Form
operations, this patch defines Pseudo-ops for the loads/stores which are
expanded post-RA. The expansion then choses the correct opcode based on the
register that was allocated for the operation.
llvm-svn: 283212
This patch corresponds to review:
https://reviews.llvm.org/D23155
This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:
Int to Fp conversions of 1 or 2-byte values loaded from memory
Building vectors of 1 or 2-byte integers with values loaded from memory
Storing individual 1 or 2-byte elements from integer vectors
This patch implements all of those uses.
llvm-svn: 283190
The PPC branch-selection pass, which performs branch relaxation, needs to
account for the padding that might be introduced to satisfy block alignment
requirements. We were assuming that the first block was at offset zero (i.e.
had the alignment of the function itself), but under the ELFv2 ABI, a global
entry function prologue is added to the first block, and it is a
two-instruction sequence (i.e. eight-bytes long). If the function has 16-byte
alignment, the fact that the first block is eight bytes offset from the start
of the function is relevant to calculating where padding will be added in
between later blocks.
Unfortunately, I don't have a small test case.
llvm-svn: 283086
This change enables soft-float for PowerPC64, and also makes soft-float disable
all vector instruction sets for both 32-bit and 64-bit modes. This latter part
is necessary because the PPC backend canonicalizes many Altivec vector types to
floating-point types, and so soft-float breaks scalarization support for many
operations. Both for embedded targets and for operating-system kernels desiring
soft-float support, it seems reasonable that disabling hardware floating-point
also disables vector instructions (embedded targets without hardware floating
point support are unlikely to have Altivec, etc. and operating system kernels
desiring not to use floating-point registers to lower syscall cost are unlikely
to want to use vector registers either). If someone needs this to work, we'll
need to change the fact that we promote many Altivec operations to act on
v4f32. To make it possible to disable Altivec when soft-float is enabled,
hardware floating-point support needs to be expressed as a positive feature,
like the others, and not a negative feature, because target features cannot
have dependencies on the disabling of some other feature. So +soft-float has
now become -hard-float.
Fixes PR26970.
llvm-svn: 283060
This patch corresponds to review:
https://reviews.llvm.org/D24396
This patch adds support for the "vector count trailing zeroes",
"vector compare not equal" and "vector compare not equal or zero instructions"
as well as "scalar count trailing zeroes" instructions. It also changes the
vector negation to use XXLNOR (when VSX is enabled) so as not to increase
register pressure (previously this was done with a splat immediate of all
ones followed by an XXLXOR). This was done because the altivec.h
builtins (patch to follow) use vector negation and the use of an additional
register for the splat immediate is not optimal.
llvm-svn: 282478
This patch corresponds to review:
https://reviews.llvm.org/D21135
This patch exploits the following instructions:
mtvsrws
lxvwsx
mtvsrdd
mfvsrld
In order to improve some build_vector and extractelement patterns.
llvm-svn: 282246
Atomic comparison instructions use the sub-word load instruction on
Power8 and up but the value is not sign extended prior to the signed word
compare instruction. This patch adds that sign extension.
llvm-svn: 282182
This patch corresponds to:
https://reviews.llvm.org/D21409
The LXVD2X, LXVW4X, STXVD2X and STXVW4X instructions permute the two doublewords
in the vector register when in little-endian mode. Custom code ensures that the
necessary swaps are inserted for these. This patch simply removes the possibilty
that a load/store node will match one of these instructions in the SDAG as that
would not insert the necessary swaps.
llvm-svn: 282144
This patch corresponds to review:
https://reviews.llvm.org/D19825
The new lxvx/stxvx instructions do not require the swaps to line the elements
up correctly. In order to select them over the lxvd2x/lxvw4x instructions which
require swaps, the patterns for the old instruction have a predicate that
ensures they won't be selected on Power9 and newer CPUs.
llvm-svn: 282143
When a phi node is finally lowered to a machine instruction it is
important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Renamed the existing SkipPHIsAndLabels to SkipPHIsLabelsAndDebug to
more fully describe that it also skips debug entries. Then used the
"new" function SkipPHIsAndLabels when the debug information should not
be skipped when placing the lowered "load" instructions so that it is
placed before the debug entries.
Differential Revision: https://reviews.llvm.org/D23760
llvm-svn: 281727
This patch corresponds to review:
https://reviews.llvm.org/D24021
In the initial implementation of this instruction, I forgot to account for
variable indices. This patch fixes PR30189 and should probably be merged into
3.9.1 (I'll open a bug according to the new instructions).
llvm-svn: 281479
There is currently no codegen for Power9 that depends on the directive
so this is NFC for now but will be important in the future. This was
missed in r268950 so I'm adding it now.
llvm-svn: 281473
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
When folding an addi into a memory access that can take an immediate offset, we
were implicitly assuming that the existing offset was zero. This was incorrect.
If we're dealing with an addi with a plain constant, we can add it to the
existing offset (assuming that doesn't overflow the immediate, etc.), but if we
have anything else (i.e. something that will become a relocation expression),
we'll go back to requiring the existing immediate offset to be zero (because we
don't know what the requirements on that relocation expression might be - e.g.
maybe it is paired with some addis in some relevant way).
On the other hand, when dealing with a plain addi with a regular constant
immediate, the alignment restrictions (from the TOC base pointer, etc.) are
irrelevant.
I've added the test case from PR30280, which demonstrated the bug, but also
demonstrates a missed optimization opportunity (i.e. we don't need the memory
accesses at all).
Fixes PR30280.
llvm-svn: 280789
Unlike PPC64, PPC32/SVRV4 does not have red zone. In the absence of it
there is no guarantee that this part of the stack will not be modified
by any interrupt. To avoid this, make sure to claim the stack frame first
before storing into it.
This fixes https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24093
llvm-svn: 280705
We used to compute the padding contributions to the block sizes during branch
relaxation only at the start of the transformation. As we perform branch
relaxation, we change the sizes of the blocks, and so the amount of inter-block
padding might change. Accordingly, we need to recompute the (alignment-based)
padding in between every iteration on our way toward the fixed point.
Unfortunately, I don't have a test case (and none was provided in the bug
report), and while this obviously seems needed, algorithmically, I don't have
any way of generating a small and/or non-fragile regression test.
llvm-svn: 280626
As it turns out, whether we zero-extend or sign-extend i8/i16 constants, which
are illegal types promoted to i32 on PowerPC, is a choice constrained by
assumptions within the infrastructure. Specifically, the logic in
FunctionLoweringInfo::ComputePHILiveOutRegInfo assumes that constant PHI
operands will be zero extended, and so, at least when materializing constants
that are PHI operands, we must do the same.
The rest of our fast-isel implementation does not appear to depend on the fact
that we were sign-extending i8/i16 constants, and all other targets also appear
to zero-extend small-bitwidth constants in fast-isel; we'll now do the same (we
had been doing this only for i1 constants, and sign-extending the others).
Fixes PR27721.
llvm-svn: 280614
PowerPC assembly code in the wild, so it seems, has things like this:
bc+ 12, 28, .L9
This is a bit odd because the '+' here becomes part of the BO field, and the BO
field is otherwise the first operand. Nevertheless, the ISA specification does
clearly say that the +- hint syntax applies to all conditional-branch mnemonics
(that test either CTR or a condition register, although not the forms which
check both), both basic and extended, so this is supposed to be valid.
This introduces some asm-parser-only definitions which take only the upper
three bits from the specified BO value, and the lower two bits are implied by
the +- suffix (via some associated aliases).
Fixes PR23646.
llvm-svn: 280571
dcbf has an optional hint-like field, add support for the extended form and the
associated mnemonics (dcbfl and dcbflp).
Partially fixes PR24796.
llvm-svn: 280559
When we have an offset into a global, etc. that is accessed relative to the TOC
base pointer, and the offset is larger than the minimum alignment of the global
itself and the TOC base pointer (which is 8-byte aligned), we can still fold
the @toc@ha into the memory access, but we must update the addis instruction's
symbol reference with the offset as the symbol addend. When there is only one
use of the addi to be folded and only one use of the addis that would need its
symbol's offset adjusted, then we can make the adjustment and fold the @toc@l
into the memory access.
llvm-svn: 280545
As Sanjay suggested when he added the hook, PPC should return true from
hasAndNotCompare. We have an efficient negated 'and' on PPC (which can feed a
compare).
Fixes PR27203.
llvm-svn: 280457
Following a suggestion by Sanjay, we should lower:
%shl = shl i32 1, %y
%and = and i32 %x, %shl
%cmp = icmp eq i32 %and, %shl
ret i1 %cmp
into:
subfic r4, r4, 32
rlwnm r3, r3, r4, 31, 31
Add this pattern and some associated patterns for the 64-bit case and the
not-equal case. Fixes PR27356.
llvm-svn: 280454
When applying our address-formation PPC64 peephole, we are reusing the @ha TOC
addis value with the low parts associated with different offsets (i.e.
different effective symbol addends). We were assuming this was okay so long as
the offsets were less than the alignment of the global variable being accessed.
This ignored the fact, however, that the TOC base pointer itself need only be
8-byte aligned. As a result, what we were doing is legal only for offsets less
than 8 regardless of the alignment of the object being accessed.
Fixes PR28727.
llvm-svn: 280441
The logic in this function assumes that the P8 supports fusion of addis/addi,
but it does not. As a result, there is no advantage to restricting our peephole
application, merging addi instructions into dependent memory accesses, even
when the addi has multiple users, regardless of whether or not we're optimizing
for size.
We might need something like this again for the P9; I suspect we'll revisit
this code when we work on P9 tuning.
llvm-svn: 280440
LLVM has an @llvm.eh.dwarf.cfa intrinsic, used to lower the GCC-compatible
__builtin_dwarf_cfa() builtin. As pointed out in PR26761, this is currently
broken on PowerPC (and likely on ARM as well). Currently, @llvm.eh.dwarf.cfa is
lowered using:
ADD(FRAMEADDR, FRAME_TO_ARGS_OFFSET)
where FRAME_TO_ARGS_OFFSET defaults to the constant zero. On x86,
FRAME_TO_ARGS_OFFSET is lowered to 2*SlotSize. This setup, however, does not
work for PowerPC. Because of the way that the stack layout works, the canonical
frame address is not exactly (FRAMEADDR + FRAME_TO_ARGS_OFFSET) on PowerPC
(there is a lower save-area offset as well), so it is not just a matter of
implementing FRAME_TO_ARGS_OFFSET for PowerPC (unless we redefine its
semantics -- We can do that, since it is currently used only for
@llvm.eh.dwarf.cfa lowering, but the better to directly lower the CFA construct
itself (since it can be easily represented as a fixed-offset FrameIndex)). Mips
currently does this, but by using a custom lowering for ADD that specifically
recognizes the (FRAMEADDR, FRAME_TO_ARGS_OFFSET) pattern.
This change introduces a ISD::EH_DWARF_CFA node, which by default expands using
the existing logic, but can be directly lowered by the target. Mips is updated
to use this method (which simplifies its implementation, and I suspect makes it
more robust), and updates PowerPC to do the same.
Fixes PR26761.
Differential Revision: https://reviews.llvm.org/D24038
llvm-svn: 280350
When a function contains something, such as inline asm, which explicitly
clobbers the register used as the frame pointer, don't spill it twice. If we
need a frame pointer, it will be saved/restored in the prologue/epilogue code.
Explicitly spilling it again will reuse the same spill slot used by the
prologue/epilogue code, thus clobbering the saved value. The same applies
to the base-pointer or PIC-base register.
Partially fixes PR26856. Thanks to Ulrich for his analysis and the small
inline-asm reproducer.
llvm-svn: 280188
Implement Bill's suggested fix for 32-bit targets for PR22711 (for the
alignment of each entry). As pointed out in the bug report, we could just force
the section alignment, since we only add pointer-sized things currently, but
this fix is somewhat more future-proof.
llvm-svn: 280049
The "long call" option forces the use of the indirect calling sequence for all
calls (even those that don't really need it). GCC provides this option; This is
helpful, under certain circumstances, for building very-large binaries, and
some other specialized use cases.
Fixes PR19098.
llvm-svn: 280040
For little-Endian PowerPC, we generally target only P8 and later by default.
However, generic (older) 64-bit configurations are still an option, and in that
case, partword atomics are not available (e.g. stbcx.). To lower i8/i16 atomics
without true i8/i16 atomic operations, we emulate using i32 atomics in
combination with a bunch of shifting and masking, etc. The amount by which to
shift in little-Endian mode is different from the amount in big-Endian mode (it
is inverted -- meaning we can leave off the xor when computing the amount).
Fixes PR22923.
llvm-svn: 280022
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
This is a quick work around, because in some cases, e.g. caller's stack
size > callee's stack size, we are still able to apply sibling call
optimization even callee has any byval arg.
This patch fix: https://llvm.org/bugs/show_bug.cgi?id=28328
Reviewers: hfinkel kbarton nemanjai amehsan
Subscribers: hans, tjablin
https://reviews.llvm.org/D23441
llvm-svn: 278900
Following the discussion on D22038, this refactors a PowerPC specific setcc -> srl(ctlz) transformation so it can be used by other targets.
Differential Revision: https://reviews.llvm.org/D23445
llvm-svn: 278799
Summary: It triggers exponential behavior when the DAG has many branches.
Reviewers: hfinkel, kbarton
Subscribers: iteratee, nemanjai, echristo
Differential Revision: https://reviews.llvm.org/D23428
llvm-svn: 278548
There were two locations where fast-isel would generate a LFD instruction
with a target register class VSFRC instead of F8RC when VSX was enabled.
This can ccause invalid registers to be used in certain cases, like:
lfd 36, ...
instead of using a VSX load instruction. The wrong register number gets
silently truncated, causing invalid code to be generated.
The first place is PPCFastISel::PPCEmitLoad, which had multiple problems:
1.) The IsVSSRC and IsVSFRC flags are not initialized correctly, since they
are computed from resultReg, which is still zero at this point in many cases.
Fixed by changing the helper routines to operate on a register class instead
of a register and passing in UseRC.
2.) Even with this fixed, Is64VSXLoad is still wrong due to a typo:
bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD;
The second line needs to use isVSFRC (like PPCEmitStore does).
3.) Once both the above are fixed, we're now generating a VSX instruction --
but an incorrect one, since generation of an indexed instruction with null
index is wrong. Fixed by copying the code handling the same issue in
PPCEmitStore.
The second place is PPCFastISel::PPCMaterializeFP, where we would emit an
LFD to load a constant from the literal pool, and use the wrong result
register class. Fixed by hardcoding a F8RC class even on systems
supporting VSX.
Fixes: https://llvm.org/bugs/show_bug.cgi?id=28630
Differential Revision: https://reviews.llvm.org/D22632
llvm-svn: 277823
This patch fixes passing long double type arguments to function in
soft float mode. If there is less than 4 argument registers free
(long double type is mapped in 4 gpr registers in soft float mode)
long double type argument must be passed through stack.
Differential Revision: https://reviews.llvm.org/D20114.
llvm-svn: 277804
This patch fixes pr25548.
Current implementation of PPCBoolRetToInt doesn't handle CallInst correctly, so it failed to do the intended optimization when there is a CallInst with parameters. This patch fixed that.
llvm-svn: 277655
This adds a target hook getInstSizeInBytes to TargetInstrInfo that a lot of
subclasses already implement.
Differential Revision: https://reviews.llvm.org/D22885
llvm-svn: 277126
Avoid implicit conversions from MachineInstrBundleIterator to
MachineInstr* in the PowerPC backend, mainly by preferring MachineInstr&
over MachineInstr* when a pointer isn't nullable and using range-based
for loops.
There was one piece of questionable code in PPCInstrInfo::AnalyzeBranch,
where a condition checked a pointer converted from an iterator for
nullptr. Since this case is impossible (moreover, the code above
guarantees that the iterator is valid), I removed the check when I
changed the pointer to a reference.
Despite that case, there should be no functionality change here.
llvm-svn: 276864
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
This patch corresponds to review:
https://reviews.llvm.org/D21354
We use direct moves for extracting integer elements from vectors. We also use
direct moves when converting integers to FP. When these operations are chained,
we get a direct move out of a VSR followed by a direct move back into a VSR.
These are redundant - all we need to do is line up the element and convert.
llvm-svn: 275796
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
This patch corresponds to review:
http://reviews.llvm.org/D20239
It adds exploitation of XXINSERTW and XXEXTRACTUW instructions that
are useful in some cases for inserting and extracting vector elements of
v4[if]32 vectors.
llvm-svn: 275215
This patch corresponds to review:
http://reviews.llvm.org/D21358
Vector shifts that have the same semantics as a vector swap are cannonicalized
as such to provide additional opportunities for swap removal optimization to
remove unnecessary swaps.
llvm-svn: 275168
There is a problem in VSXSwapRemoval where it is incorrectly removing permute instructions.
In this case, the permute is feeding both a vector store and also a non-store instruction. In this case, the permute cannot be removed.
The fix is to simply look at all the uses of the vector register defined by the permute and ensure that all the uses are vector store instructions.
This problem was reported in PR 27735 (https://llvm.org/bugs/show_bug.cgi?id=27735).
Test case based on the original problem reported.
Phabricator Review: http://reviews.llvm.org/D21802
llvm-svn: 274645
This patch corresponds to review:
http://reviews.llvm.org/D20443
It changes the legalization strategy for illegal vector types from integer
promotion to widening. This only applies for vectors with elements of width
that is a multiple of a byte since we have hardware support for vectors with
1, 2, 3, 8 and 16 byte elements.
Integer promotion for vectors is quite expensive on PPC due to the sequence
of breaking apart the vector, extending the elements and reconstituting the
vector. Two of these operations are expensive.
This patch causes between minor and major improvements in performance on most
benchmarks. There are very few benchmarks whose performance regresses. These
regressions can be handled in a subsequent patch with a DAG combine (similar
to how this patch handles int -> fp conversions of illegal vector types).
llvm-svn: 274535
TargetSubtargetInfo::overrideSchedPolicy takes two MachineInstr*
arguments (begin and end) that invite implicit conversions from
MachineInstrBundleIterator. One option would be to change their type to
an iterator, but since they don't seem to have been used since the API
was added in 2010, I'm deleting the dead code.
llvm-svn: 274304
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
I think this converts all the simple cases that really just care about
the generated code being position independent or not. The remaining
uses are a bit more complicated and are checking things like "is this
a library or executable" or "can this symbol be preempted".
llvm-svn: 274055