This is a quick work around, because in some cases, e.g. caller's stack
size > callee's stack size, we are still able to apply sibling call
optimization even callee has any byval arg.
This patch fix: https://llvm.org/bugs/show_bug.cgi?id=28328
Reviewers: hfinkel kbarton nemanjai amehsan
Subscribers: hans, tjablin
https://reviews.llvm.org/D23441
llvm-svn: 278900
Following the discussion on D22038, this refactors a PowerPC specific setcc -> srl(ctlz) transformation so it can be used by other targets.
Differential Revision: https://reviews.llvm.org/D23445
llvm-svn: 278799
Summary: It triggers exponential behavior when the DAG has many branches.
Reviewers: hfinkel, kbarton
Subscribers: iteratee, nemanjai, echristo
Differential Revision: https://reviews.llvm.org/D23428
llvm-svn: 278548
There were two locations where fast-isel would generate a LFD instruction
with a target register class VSFRC instead of F8RC when VSX was enabled.
This can ccause invalid registers to be used in certain cases, like:
lfd 36, ...
instead of using a VSX load instruction. The wrong register number gets
silently truncated, causing invalid code to be generated.
The first place is PPCFastISel::PPCEmitLoad, which had multiple problems:
1.) The IsVSSRC and IsVSFRC flags are not initialized correctly, since they
are computed from resultReg, which is still zero at this point in many cases.
Fixed by changing the helper routines to operate on a register class instead
of a register and passing in UseRC.
2.) Even with this fixed, Is64VSXLoad is still wrong due to a typo:
bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD;
The second line needs to use isVSFRC (like PPCEmitStore does).
3.) Once both the above are fixed, we're now generating a VSX instruction --
but an incorrect one, since generation of an indexed instruction with null
index is wrong. Fixed by copying the code handling the same issue in
PPCEmitStore.
The second place is PPCFastISel::PPCMaterializeFP, where we would emit an
LFD to load a constant from the literal pool, and use the wrong result
register class. Fixed by hardcoding a F8RC class even on systems
supporting VSX.
Fixes: https://llvm.org/bugs/show_bug.cgi?id=28630
Differential Revision: https://reviews.llvm.org/D22632
llvm-svn: 277823
This patch fixes passing long double type arguments to function in
soft float mode. If there is less than 4 argument registers free
(long double type is mapped in 4 gpr registers in soft float mode)
long double type argument must be passed through stack.
Differential Revision: https://reviews.llvm.org/D20114.
llvm-svn: 277804
This patch fixes pr25548.
Current implementation of PPCBoolRetToInt doesn't handle CallInst correctly, so it failed to do the intended optimization when there is a CallInst with parameters. This patch fixed that.
llvm-svn: 277655
This adds a target hook getInstSizeInBytes to TargetInstrInfo that a lot of
subclasses already implement.
Differential Revision: https://reviews.llvm.org/D22885
llvm-svn: 277126
Avoid implicit conversions from MachineInstrBundleIterator to
MachineInstr* in the PowerPC backend, mainly by preferring MachineInstr&
over MachineInstr* when a pointer isn't nullable and using range-based
for loops.
There was one piece of questionable code in PPCInstrInfo::AnalyzeBranch,
where a condition checked a pointer converted from an iterator for
nullptr. Since this case is impossible (moreover, the code above
guarantees that the iterator is valid), I removed the check when I
changed the pointer to a reference.
Despite that case, there should be no functionality change here.
llvm-svn: 276864
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
This patch corresponds to review:
https://reviews.llvm.org/D21354
We use direct moves for extracting integer elements from vectors. We also use
direct moves when converting integers to FP. When these operations are chained,
we get a direct move out of a VSR followed by a direct move back into a VSR.
These are redundant - all we need to do is line up the element and convert.
llvm-svn: 275796
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
This patch corresponds to review:
http://reviews.llvm.org/D20239
It adds exploitation of XXINSERTW and XXEXTRACTUW instructions that
are useful in some cases for inserting and extracting vector elements of
v4[if]32 vectors.
llvm-svn: 275215
This patch corresponds to review:
http://reviews.llvm.org/D21358
Vector shifts that have the same semantics as a vector swap are cannonicalized
as such to provide additional opportunities for swap removal optimization to
remove unnecessary swaps.
llvm-svn: 275168
There is a problem in VSXSwapRemoval where it is incorrectly removing permute instructions.
In this case, the permute is feeding both a vector store and also a non-store instruction. In this case, the permute cannot be removed.
The fix is to simply look at all the uses of the vector register defined by the permute and ensure that all the uses are vector store instructions.
This problem was reported in PR 27735 (https://llvm.org/bugs/show_bug.cgi?id=27735).
Test case based on the original problem reported.
Phabricator Review: http://reviews.llvm.org/D21802
llvm-svn: 274645
This patch corresponds to review:
http://reviews.llvm.org/D20443
It changes the legalization strategy for illegal vector types from integer
promotion to widening. This only applies for vectors with elements of width
that is a multiple of a byte since we have hardware support for vectors with
1, 2, 3, 8 and 16 byte elements.
Integer promotion for vectors is quite expensive on PPC due to the sequence
of breaking apart the vector, extending the elements and reconstituting the
vector. Two of these operations are expensive.
This patch causes between minor and major improvements in performance on most
benchmarks. There are very few benchmarks whose performance regresses. These
regressions can be handled in a subsequent patch with a DAG combine (similar
to how this patch handles int -> fp conversions of illegal vector types).
llvm-svn: 274535
TargetSubtargetInfo::overrideSchedPolicy takes two MachineInstr*
arguments (begin and end) that invite implicit conversions from
MachineInstrBundleIterator. One option would be to change their type to
an iterator, but since they don't seem to have been used since the API
was added in 2010, I'm deleting the dead code.
llvm-svn: 274304
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
I think this converts all the simple cases that really just care about
the generated code being position independent or not. The remaining
uses are a bit more complicated and are checking things like "is this
a library or executable" or "can this symbol be preempted".
llvm-svn: 274055
The setCallee function will set the number of fixed arguments based
on the size of the argument list. The FixedArgs parameter was often
explicitly set to 0, leading to a lack of consistent value for non-
vararg functions.
Differential Revision: http://reviews.llvm.org/D20376
llvm-svn: 273403
We convert `Default` to `NotPIC` so that target independent code
can reason about this correctly.
Differential Revision: http://reviews.llvm.org/D21394
llvm-svn: 273024
Recommiting after fixing non-atomic insert to front of SmallVector in
MCAsmLexer.h
Add explicit Comment Token in Assembly Lexing for future support for
outputting explicit comments from inline assembly. As part of this,
CPPHash Directives are now explicitly distinguished from Hash line
comments in Lexer.
Line comments are recorded as EndOfStatement tokens, not Comment tokens
to simplify compatibility with current TargetParsers. This slightly
complicates comment output.
This remove all lexing tasks out of the parser, does minor cleanup
to remove extraneous newlines Asm Output, and some improvements white
space handling.
Reviewers: rtrieu, dwmw2, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20009
llvm-svn: 273007
Add explicit Comment Token in Assembly Lexing for future support for
outputting explicit comments from inline assembly. As part of this,
CPPHash Directives are now explicitly distinguished from Hash line
comments in Lexer.
Line comments are recorded as EndOfStatement tokens, not Comment tokens
to simplify compatibility with current TargetParsers. This slightly
complicates comment output.
This remove all lexing tasks out of the parser, does minor cleanup
to remove extraneous newlines Asm Output, and some improvements white
space handling.
Reviewers: rtrieu, dwmw2, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20009
llvm-svn: 272953
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Using an LLVM IR aggregate return value type containing three
or more integer values causes an abort in the fast isel pass.
This patch adds two more registers to RetCC_PPC64_ELF_FIS to
allow returning up to four integers with fast isel, just the
same as is currently supported with regular isel (RetCC_PPC).
This is needed for Swift and (possibly) other non-clang frontends.
Fixes PR26190.
llvm-svn: 272005
subclasses. These are not passes proper. We don't support registering
them, they can't be constructed with default arguments, and the ID is
actually in a base class.
Only these two targets even had any boiler plate to try to do this, and
it had to be munged out of the INITIALIZE_PASS macros to work. What's
worse, the boiler plate has rotted and the "name" of the pass is
actually the description string now!!! =/ All of this is completely
unnecessary. No other target bothers, and nothing breaks if you don't
initialize them because CodeGen has an entirely separate initialization
path that is somewhat more durable than relying on the implicit
initialization the way the 'opt' tool does for registered passes.
llvm-svn: 271650
Fix PR27943 "Bad machine code: Using an undefined physical register".
SUBFC8 implicitly defines the CR0 register, but this was omitted in
the instruction definition.
Patch by Jameson Nash <jameson@juliacomputing.com>
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D20802
llvm-svn: 271425
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 270283
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
While promoting nodes in PPCTargetLowering::DAGCombineExtBoolTrunc, it is
possible for one of the nodes to be replaced by another. To make sure we do not
visit the deleted nodes, and to make sure we visit the replacement nodes, use a
list of HandleSDNodes to track the to-be-promoted nodes during the promotion
process.
The same fix has been applied to the analogous code in
PPCTargetLowering::DAGCombineTruncBoolExt.
Fixes PR26985.
llvm-svn: 269272
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
This patch corresponds to review:
http://reviews.llvm.org/D19683
Simply adds the bits for being able to specify -mcpu=pwr9 to the back end.
llvm-svn: 268950
This patch fixes register alignment for long double type in
soft float mode. Before this patch alignment was 8 and this
patch changes it to 4.
Differential Revision: http://reviews.llvm.org/D18034
llvm-svn: 268909
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
This patch corresponds to review:
http://reviews.llvm.org/D18592
It allows the PPC back end to generate the xxspltw instruction where we
previously only emitted vspltw.
llvm-svn: 268516
If, in between the splat and the load (which does an implicit splat), there is
a read of the splat register, then that register must have another earlier
definition. In that case, we can't replace the load's destination register with
the splat's destination register.
Unfortunately, I don't have a small or non-fragile test case.
llvm-svn: 268152
This requirement was a huge hack to keep LiveVariables alive because it
was optionally used by TwoAddressInstructionPass and PHIElimination.
However we have AnalysisUsage::addUsedIfAvailable() which we can use in
those passes.
This re-applies r260806 with LiveVariables manually added to PowerPC to
hopefully not break the stage 2 bots this time.
llvm-svn: 267954
This instruction is just a control flow marker - it should not
actually exist in the object file. Unfortunately, nothing catches
it before it gets to AsmPrinter. If integrated assembler is used,
it's considered to be a normal 4-byte instruction, and emitted as
an all-0 word, crashing the program. With external assembler,
a comment is emitted.
Fixed by setting Size to 0 and handling it in MCCodeEmitter - this
means the comment will still be emitted if integrated assembler
is not used.
This broke an ASan test, which has been disabled for a long time
as a result (see the discussion on D19657). We can reenable it
once this lands.
llvm-svn: 267943
Revert "[Power9] Implement add-pc, multiply-add, modulo, extend-sign-shift, random number, set bool, and dfp test significance".
This patch has caused a functional regression in SPEC2k6 namd, and a performance regression in mesa-pipe.
llvm-svn: 267927
print-stack-trace.cc test failure of compiler-rt has been fixed by
r266869 (http://reviews.llvm.org/D19148), so reenable sibling call
optimization on ppc64
Reviewers: nemanjai kbarton
llvm-svn: 267527
Summary:
We don't use MinLatency any more since r184032.
Reviewers: atrick, hfinkel, mcrosier
Differential Revision: http://reviews.llvm.org/D19474
llvm-svn: 267502
ADD8TLS, a variant of add instruction used for initial-exec TLS,
currently accepts r0 as a source register. While add itself supports
r0 just fine, linker can relax it to a local-exec sequence, converting
it to addi - which doesn't support r0.
Differential Revision: http://reviews.llvm.org/D19193
llvm-svn: 267388
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
[PPC] Previously when casting generic loads to LXV2DX/ST instructions we
would leave the original load return type in place allowing for an
assertion failure when we merge two equivalent LXV2DX nodes with
different types.
This fixes PR27350.
Reviewers: nemanjai
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19133
llvm-svn: 266438
This patch corresponds to review:
http://reviews.llvm.org/D17850
This patch implements the following instructions:
cmprb, cmpeqb, cnttzw, cnttzw., cnttzd, cnttzd.
llvm-svn: 266228
Resolve Bug 27046 (https://llvm.org/bugs/show_bug.cgi?id=27046).
The PPCInstrInfo::optimizeCompareInstr function could create a new use of
CR0, even if CR0 were previously dead. This patch marks CR0 live if a use of
CR0 is created.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel kbarton cycheng
http://reviews.llvm.org/D18884
llvm-svn: 266040
In the ELFv2 ABI, we are not required to save all CR fields. If only one
nonvolatile CR field is clobbered, use mfocrf instead of mfcr to
selectively save the field, because mfocrf has short latency compares to
mfcr.
Thanks Nemanja's invaluable hint!
Reviewers: nemanjai tjablin hfinkel kbarton
http://reviews.llvm.org/D17749
llvm-svn: 266038
This is the same change on PPC64 as r255821 on AArch64. I have even borrowed
his commit message.
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given machine function and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel kbarton cycheng
http://reviews.llvm.org/D17533
llvm-svn: 265781
http://reviews.llvm.org/D18562
A large number of testcases has been modified so they pass after this test.
One testcase is deleted, because I realized even after undoing the original
change that was committed with this testcase, the testcase still passes. So
I removed it. The change to one other testcase (test/CodeGen/PowerPC/pr25802.ll)
is an arbitrary change to keep it passing. Given the original intention of the
testcase, and the fact that fixing it will require some time to change the testcase,
we concluded that this quick change will be enough.
llvm-svn: 265683
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
http://reviews.llvm.org/D18405
When the integer value loaded is never used directly as integer we should use VSX
or Floating Point Facility integer loads and avoid extra direct move
llvm-svn: 265593
This patch enable sibling call optimization on ppc64 ELFv1/ELFv2 abi, and
add a couple of test cases. This patch also passed llvm/clang bootstrap
test, and spec2006 build/run/result validation.
Original issue: https://llvm.org/bugs/show_bug.cgi?id=25617
Great thanks to Tom's (tjablin) help, he contributed a lot to this patch.
Thanks Hal and Kit's invaluable opinions!
Reviewers: hfinkel kbarton
http://reviews.llvm.org/D16315
llvm-svn: 265506
This patch implements the following BookII and Book III instructions:
- copy copy_first cp_abort paste paste. paste_last
- msgsync
- slbieg slbsync
- stop
Total 10 instructions
Reviewers: nemanjai hfinkel tjablin amehsan kbarton
llvm-svn: 265504
Summary:
This adds the same checks that were added in r264593 to all
target-specific passes that run after register allocation.
Reviewers: qcolombet
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18525
llvm-svn: 265313
Chapter 3 of the QPX manual states that, "Scalar floating-point load
instructions, defined in the Power ISA, cause a replication of the source data
across all elements of the target register." Thus, if we have a load followed
by a QPX splat (from the first lane), the splat is redundant. This adds a late
MI-level pass to remove the redundant splats in some of these cases
(specifically when both occur in the same basic block).
This optimization is scheduled just prior to post-RA scheduling. It can't happen
before anything that might replace the load with some already-computed quantity
(i.e. store-to-load forwarding).
llvm-svn: 265047
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
PPCSimplifyAddress contains this code:
IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
: Type::getInt64Ty(*Context));
to determine the type to be used for an index register, if one needs
to be created. However, the "VT" here is the type of the data being
loaded or stored, *not* the type of an address. This means that if
a data element of type i32 is accessed using an index that does not
not fit into 32 bits, a wrong address is computed here.
Note that PPCFastISel is only ever used on 64-bit currently, so the type
of an address is actually *always* MVT::i64. Other parts of the code,
even in this same PPCSimplifyAddress routine, already rely on that fact.
Thus, this patch changes the code to simply unconditionally use
Type::getInt64Ty(*Context) as OffsetTy.
llvm-svn: 265023
This patch corresponds to review:
http://reviews.llvm.org/D18032
This patch provides asm implementation for the following instructions:
lwat, ldat, stwat, stdat, ldmx, mcrxrx
llvm-svn: 265022
The fast isel pass currently emits a COPY_TO_REGCLASS node to convert
from a F4RC to a F8RC register class during conversion of a
floating-point number to integer. There is actually no support in the
common code instruction printers to emit COPY_TO_REGCLASS nodes, so the
PowerPC back-end has special code there to simply ignore
COPY_TO_REGCLASS.
This is correct *if and only if* the source and destination registers of
COPY_TO_REGCLASS are the same (except for the different register class).
But nothing guarantees this to be the case, and if the register
allocator does end up allocating source and destination to different
registers after all, the back-end simply generates incorrect code. I've
included a test case that shows such incorrect code generation.
However, it seems that COPY_TO_REGCLASS is actually not intended to be
used at the MI layer at all. It is used during SelectionDAG, but always
lowered to a plain COPY before emitting MI. Other back-end's fast isel
passes never emit COPY_TO_REGCLASS at all. I suspect it is simply wrong
for the PowerPC back-end to emit it here.
This patch changes the PowerPC back-end to directly emit COPY instead of
COPY_TO_REGCLASS and removes the special handling in the instruction
printers.
Differential Revision: http://reviews.llvm.org/D18605
llvm-svn: 265020
When dealing with complex<float>, and similar structures with two
single-precision floating-point numbers, especially when such things are being
passed around by value, we'll sometimes end up loading both float values by
extracting them from one 64-bit integer load. It looks like this:
t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
t16: i64 = srl t13, Constant:i32<32>
t17: i32 = truncate t16
t18: f32 = bitcast t17
t19: i32 = truncate t13
t20: f32 = bitcast t19
The problem, especially before the P8 where those bitcasts aren't legal (and
get expanded via the stack), is that it would have been better to use two
floating-point loads directly. Here we add a target-specific DAGCombine to do
just that. In short, we turn:
ld 3, 0(5)
stw 3, -8(1)
rldicl 3, 3, 32, 32
stw 3, -4(1)
lfs 3, -4(1)
lfs 0, -8(1)
into:
lfs 3, 4(5)
lfs 0, 0(5)
llvm-svn: 264988
These checks are redundant and can be removed
Reviewers: hans
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D18564
llvm-svn: 264872
Instead of using two feature bits, one to indicate the availability of the
popcnt[dw] instructions, and another to indicate whether or not they're fast,
use a single enum. This allows more consistent control via target attribute
strings, and via Clang's command line.
llvm-svn: 264690
The A2 cores support the popcntw/popcntd instructions, but they're microcoded,
and slower than our default software emulation. Specifically, popcnt[dw] take
approximately 74 cycles, whereas our software emulation takes only 24-28
cycles.
I've added a new target feature to indicate a slow popcnt[dw], instead of just
removing the existing target feature from the a2/a2q processor models, because:
1. This allows us to return more accurate information via the TTI interface
(I recognize that this currently makes no practical difference)
2. Is hopefully easier to understand (it allows the core's features to match
its manual while still having the desired effect).
llvm-svn: 264600
Intrinsic::maxnum and Intrinsic::minnum, along with the associated libc
function calls (fmax[f], etc.) generally map to function calls after lowering.
For some vector types with QPX at least, however, we can legally lower these,
and we don't need to prohibit CTR-based loops on their account.
It turned out, however, that the logic that checked the opcodes associated with
intrinsics was broken (it would set the Opcode variable, but that variable was
later checked only if set for some otherwise-external function call.
This fixes the latter problem and adds the FMAX/MINNUM mappings.
llvm-svn: 264532
This patch corresponds to review:
http://reviews.llvm.org/D17711
It disables direct moves on these operations in 32-bit mode since the patterns
assume 64-bit registers. The final patch is slightly different from the
Phabricator review as the bitcast operations needed to be disabled in 32-bit
mode as well. This fixes PR26617.
llvm-svn: 264282
For fcmp, major concern about the following 6 cases is NaN result. The
comparison result consists of 4 bits, indicating lt, eq, gt and un (unordered),
only one of which will be set. The result is generated by fcmpu
instruction. However, bc instruction only inspects one of the first 3
bits, so when un is set, bc instruction may jump to to an undesired
place.
More specifically, if we expect an unordered comparison and un is set, we
expect to always go to true branch; in such case UEQ, UGT and ULT still
give false, which are undesired; but UNE, UGE, ULE happen to give true,
since they are tested by inspecting !eq, !lt, !gt, respectively.
Similarly, for ordered comparison, when un is set, we always expect the
result to be false. In such case OGT, OLT and OEQ is good, since they are
actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
and ONE are tested through !lt, !gt and !eq, and these are true.
llvm-svn: 263753
This patch prevents CTR loops optimization when using soft float operations
inside loop body. Soft float operations use function calls, but function
calls are not allowed inside CTR optimized loops.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D17600
llvm-svn: 263727
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
This patch corresponds to review:
http://reviews.llvm.org/D17712
We were not clearing the TOC vector in PPCAsmPrinter when initializing it. This
caused duplicate definition asserts when the pass is reused on the module
(i.e. with -compile-twice or in JIT contexts).
llvm-svn: 263338