Check if a build_vector node includes a repeated constant pattern and replace it with a broadcast of that pattern.
For example:
"build_vector <0, 1, 2, 3, 0, 1, 2, 3>" would be replaced by "broadcast <0, 1, 2, 3>"
Differential Revision: https://reviews.llvm.org/D26802
llvm-svn: 288804
getTargetConstantBitsFromNode currently only extracts constant pool vector data, but it will need to be generalized to support broadcast and scalar constant pool data as well.
Converted Constant bit extraction and Bitset splitting to helper lambda functions.
llvm-svn: 288496
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288293
Initial support for target shuffle constant folding in cases where all shuffle inputs are constant. We may be able to relax this and merge shuffles with only some constant inputs in the future.
I've added the helper function getTargetConstantBitsFromNode (based off a similar function in X86ShuffleDecodeConstantPool.cpp) that could be reused for other cases requiring constant vector extraction.
Differential Revision: https://reviews.llvm.org/D27220
llvm-svn: 288250
Bit-shifts by a whole number of bytes can be represented as a shuffle mask suitable for combining.
Added a 'getFauxShuffleMask' function to allow us to create shuffle masks from other suitable operations.
llvm-svn: 288040
Summary:
Shuffle lowering may have widened the element size of a i32 shuffle to i64 before selecting X86ISD::SHUF128. If this shuffle was used by a vselect this can prevent us from selecting masked operations.
This patch detects this and changes the element size to match the vselect.
I don't handle changing integer to floating point or vice versa as its not clear if its better to push such a bitcast to the inputs of the shuffle or to the user of the vselect. So I'm ignoring that case for now.
Reviewers: delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27087
llvm-svn: 287939
Vectorize UINT_TO_FP v2i32 -> v2f64 instead of scalarization (albeit still on the SIMD unit).
The codegen matches that generated by legalization (and is in fact used by AVX for UINT_TO_FP v4i32 -> v4f64), but has to be done in the x86 backend to account for legalization via 4i32.
Differential Revision: https://reviews.llvm.org/D26938
llvm-svn: 287886
The bug arises during register allocation on i686 for
CMPXCHG8B instruction when base pointer is needed. CMPXCHG8B
needs 4 implicit registers (EAX, EBX, ECX, EDX) and a memory address,
plus ESI is reserved as the base pointer. With such constraints the only
way register allocator would do its job successfully is when the addressing
mode of the instruction requires only one register. If that is not the case
- we are emitting additional LEA instruction to compute the address.
It fixes PR28755.
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D25088
llvm-svn: 287875
Move the definitions of three variables out of the switch.
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D25192
llvm-svn: 287874
Replace the CVTTPD2DQ/CVTTPD2UDQ and CVTDQ2PD/CVTUDQ2PD opcodes with general versions.
This is an initial step towards similar FP_TO_SINT/FP_TO_UINT and SINT_TO_FP/UINT_TO_FP lowering to AVX512 CVTTPS2QQ/CVTTPS2UQQ and CVTQQ2PS/CVTUQQ2PS with illegal types.
Differential Revision: https://reviews.llvm.org/D27072
llvm-svn: 287870
Summary: This function is only called with integer VT arguments, so remove code that handles FP vectors.
Reviewers: RKSimon, craig.topper, delena, andreadb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26985
llvm-svn: 287743
This occurs during UINT_TO_FP v2f64 lowering.
We can easily generalize this to other horizontal ops (FHSUB, PACKSS, PACKUS) as required - we are doing something similar with PACKUS in lowerV2I64VectorShuffle
llvm-svn: 287676
Summary: Splat vectors are canonicalized to BUILD_VECTOR's so the code can be simplified. NFC-ish.
Reviewers: craig.topper, delena, RKSimon, andreadb
Subscribers: RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D26678
llvm-svn: 287643
Summary:
Shuffle lowering widens the element size of a shuffle if elements are contiguous. This is sometimes help because wider element types have more shuffle options. If the shuffle is one of the arguments to a vselect this shuffle widening can introduce a bitcast between the vselect and the shuffle. This will prevent isel from selecting a masked operation. If the shuffle can be written equally efficiently with a different element size to match the vselect type we should change the shuffle type to allow masking.
This patch does this conversion for all VALIGND/VALIGNQ sizes. It also supports turning 128-bit PALIGNR into VALIGND/VALIGNQ. This fixes the case shown in PR31018.
I plan to add support for more operations in future patches.
Reviewers: RKSimon, zvi, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26902
llvm-svn: 287612
At the moment we only use truncateVectorCompareWithPACKSS with direct vector comparison results (just one example of a known all/none signbits input).
This change relaxes the direct matching of a SETCC opcode by moving the logic up into SelectionDAG::ComputeNumSignBits and accepting any input with a known splatted signbit.
llvm-svn: 287535
The change is part of RegCall calling convention support for LLVM.
Long double (f80) requires special treatment as the first f80 parameter is saved in FP0 (floating point stack).
This review present the change and the corresponding tests.
Differential Revision: https://reviews.llvm.org/D26151
llvm-svn: 287485