A target intrinsic may be defined as possibly reading memory,
but the call site may have additional knowledge that it doesn't read
memory. The intrinsic lowering will expect the pessimistic
assumption of the intrinsic definition, so the chain should
still be used.
llvm-svn: 287593
Summary:
When searching for load/store instructions to pair/merge don't treat
writes to WZR/XZR as clobbers since they don't change the value read
from WZR/XZR (which is always 0).
Reviewers: mcrosier, junbuml, jmolloy, t.p.northover
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D26921
llvm-svn: 287592
Summary:
Previously, CGP would unconditionally sink addrspacecast instructions,
even going so far as to sink them into a loop.
Now we check that the cast is "cheap", as defined by TLI.
We introduce a new "is-cheap" function to TLI rather than using
isNopAddrSpaceCast because some GPU platforms want the ability to ask
for non-nop casts to be sunk.
Reviewers: arsenm, tra
Subscribers: jholewinski, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26923
llvm-svn: 287591
Allow using an instruction other than a mul or phi as the base for
root-finding. For example, the included testcase includes a loop
which requires using a getelementptr as the base for root-finding.
Differential Revision: https://reviews.llvm.org/D26529
llvm-svn: 287588
This is a first step towards canonicalization and improved folding/codegen
for integer min/max as discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/106868.html
Here, we're just matching the simplest min/max patterns and adjusting the
icmp predicate while swapping the select operands.
I've included FIXME tests in test/Transforms/InstCombine/select_meta.ll
so it's easier to see how this might be extended (corresponds to the TODO
comment in the code). That's also why I'm using matchSelectPattern()
rather than a simpler check; once the backend is patched, we can just
remove some of the restrictions to allow the obfuscated min/max patterns
in the FIXME tests to be matched.
Differential Revision: https://reviews.llvm.org/D26525
llvm-svn: 287585
Summary:
This is similar to what was done for Darwin in rL264645 /
http://reviews.llvm.org/D16737, but it uses COFF COMDATs to achive the
same result instead of relying on new custom linker features.
As on MachO, this creates one metadata global per instrumented global.
The metadata global is placed in the custom .ASAN$GL section, which the
ASan runtime will iterate over during initialization. There are no other
references to the metadata, so normal linker dead stripping would
discard it. However, the metadata is put in a COMDAT group with the
instrumented global, so that it will be discarded if and only if the
instrumented global is discarded.
I didn't update the ASan ABI version check since this doesn't affect
non-Windows platforms, and the WinASan ABI isn't really stable yet.
Implementing this for ELF will require extending LLVM IR and MC a bit so
that we can use non-COMDAT section groups.
Reviewers: pcc, kcc, mehdi_amini, kubabrecka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26770
llvm-svn: 287576
This patch adds the seq macro.
This partially resolves PR/30381.
Thanks to Sean Bruno for reporting the issue!
Reviewers: zoran.jovanovic, vkalintiris, seanbruno
Differential Revision: https://reviews.llvm.org/D24607
llvm-svn: 287573
The function extendPHIRanges checks the main range of the original live
interval, even when dealing with a subrange. This could also lead to an
assert when the subrange is not live at the extension point, but the
main range is. To avoid this, check the corresponding subrange of the
original live range, instead of always checking the main range.
Review (as a part of a bigger set of changes):
https://reviews.llvm.org/D26359
llvm-svn: 287571
The initialize function has an early return for AMDGPU targets. If taken,
the ShouldExtI32* initialization code will not be executed, resulting in
invalid values in the corresponding fields. Fix this by moving the code
to the top of the function.
llvm-svn: 287570
Enable codeview emission for windows-itanium targets. Co-opt an existing
test (which is derived from a C source file and should therefore be
identical across the Itanium and MS ABIs).
Differential Revision: https://reviews.llvm.org/D26693
llvm-svn: 287567
This patch fixes the non-determinism caused due to iterating SmallPtrSet's
which was uncovered due to the experimental "reverse iteration order " patch:
https://reviews.llvm.org/D26718
The following unit tests failed because of the undefined order of iteration.
LLVM :: Transforms/Util/MemorySSA/cyclicphi.ll
LLVM :: Transforms/Util/MemorySSA/many-dom-backedge.ll
LLVM :: Transforms/Util/MemorySSA/many-doms.ll
LLVM :: Transforms/Util/MemorySSA/phi-translation.ll
Reviewers: dberlin, mgrang
Subscribers: dberlin, llvm-commits, david2050
Differential Revision: https://reviews.llvm.org/D26704
llvm-svn: 287563
Summary: Merging an empty case block into the header block of switch could cause
ISel to add COPY instructions in the header of switch, instead of the case
block, if the case block is used as an incoming block of a PHI. This could
potentially increase dynamic instructions, especially when the switch is in a
loop. I added a test case which was reduced from the benchmark I was targetting.
Reviewers: t.p.northover, mcrosier, manmanren, wmi, davidxl
Subscribers: qcolombet, danielcdh, hfinkel, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22696
llvm-svn: 287553
Currently LLVM assumes that a pointer addrspacecasted to a different addr space is equivalent to trunc or zext bitwise, which is not true. For example, in amdgcn target, when a null pointer is addrspacecasted from addr space 4 to 0, its value is changed from i64 0 to i32 -1.
This patch teaches LLVM not to assume known bits of addrspacecast instruction to its operand.
Differential Revision: https://reviews.llvm.org/D26803
llvm-svn: 287545
At the moment we only use truncateVectorCompareWithPACKSS with direct vector comparison results (just one example of a known all/none signbits input).
This change relaxes the direct matching of a SETCC opcode by moving the logic up into SelectionDAG::ComputeNumSignBits and accepting any input with a known splatted signbit.
llvm-svn: 287535
On some architectures (s390x, ppc64, sparc64, mips), C-level int is passed
as i32 signext instead of plain i32. Likewise, unsigned int may be passed
as i32, i32 signext, or i32 zeroext depending on the platform. Mark
__llvm_profile_instrument_target properly (its last parameter is unsigned
int).
This (together with the clang change) makes compiler-rt profile testsuite pass
on s390x.
Differential Revision: http://reviews.llvm.org/D21736
llvm-svn: 287534
On some architectures (s390x, ppc64, sparc64, mips), C-level int is passed
as i32 signext instead of plain i32. Likewise, unsigned int may be passed
as i32, i32 signext, or i32 zeroext depending on the platform. Add this
information to TargetLibraryInfo, to be used whenever some LLVM pass
inserts a compiler-rt call to a function involving int parameters
or returns.
Differential Revision: http://reviews.llvm.org/D21739
llvm-svn: 287533
- teach RelocVisitor to recognize bpf relocations
- fix AsmInfo->PointerSize to make sure dwarf is emitted correctly
- add a test for the above
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287521
This patch adds a test for the assembly code emitted with XRay
instrumentation. It also fixes a bug where the operand of a jump
instruction must be not the number of bytes to jump over, but rather the
number of 4-byte instructions.
Author: rSerge
Reviewers: dberris, rengolin
Differential Revision: https://reviews.llvm.org/D26805
llvm-svn: 287516
The tail call optimization was being used without proper consideration of
ABI requirements for saving and restoring the GP. This patch restricts tail
call optimization to functions within the same translation unit.
Reviewers: vkalintiris
Differential Revision: https://reviews.llvm.org/D24763
llvm-svn: 287505
The change is part of RegCall calling convention support for LLVM.
Long double (f80) requires special treatment as the first f80 parameter is saved in FP0 (floating point stack).
This review present the change and the corresponding tests.
Differential Revision: https://reviews.llvm.org/D26151
llvm-svn: 287485
If a response file in construct `@file` was specified by relative name,
constructs `@file` nested within it were resolved incorrectly if the
flag RelativeNames in call to ExpandResponseFile was set to true.
This feature is used in configuration files, tests for it are in
respective change (see D24933).
llvm-svn: 287482
add BPF disassembler, so tools like llvm-objdump can be used:
$ llvm-objdump -d -no-show-raw-insn ./sockex1_kern.o
./sockex1_kern.o: file format ELF64-BPF
Disassembly of section socket1:
bpf_prog1:
0: r6 = r1
8: r0 = *(u8 *)skb[23]
10: *(u32 *)(r10 - 4) = r0
18: r1 = *(u32 *)(r6 + 4)
20: if r1 != 4 goto 8
28: r2 = r10
30: r2 += -4
ld_imm64 (the only 16-byte insn) and special ld_abs/ld_ind instructions
had to be treated in a special way. The decoders for the rest of the insns
are automatically generated.
Add tests to cover new functionality.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287477
The demangler had stopped using a custom allocator but had not been updated to
remove the use of the explicit allocator passing. This removes that as we do
not need to do anything special here anymore. This just makes the code more
compact. NFC.
llvm-svn: 287472
We created a local typedef for `std::basic_string<char, std::char_traits<char>>`
which is just `std::string`. Remove the local typedef and propagate the type
information through the rest of the demangler. NFC.
llvm-svn: 287470
It seems that because ThinLTO does not import the full module,
some invariant of the type mapper are broken.
In Monolithic LTO, we import every globals: when calling
IRLinker::copyFunctionProto() on @foo(), we end-up calling
TypeMapTy::get(FTy) on the type of @foo(), which will map
%0 and record the destination as opaque.
ThinLTO skips this because @foo is not imported and goes directly
to the next stage.
Next we call computeTypeMapping() that map the types for each
globals, and ends up checking for type isomorphism, and may add
type mapping. However it doesn't record if there was an opaque
destination type that was resolved.
Instead of lazily "discovering" opaque type in the destination
module on the go, we change the TypeFinder to eagerly record all
types and not only the named ones.
Differential Revision: https://reviews.llvm.org/D26840
llvm-svn: 287453
Summary:
This will also be added to the LTO API, right now this will
bring ThinLTO on par with Monolithic LTO on Darwin.
Reviewers: anemet
Subscribers: tejohnson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26886
llvm-svn: 287450
Summary:
This makes it explicit that ownership is taken. Also replace all `new`
with make_unique<> at call sites.
Reviewers: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26884
llvm-svn: 287449
Summary:
* ARM is omitted from this patch because this check appears to expose bugs in this target.
* Mips is omitted from this patch because this check either detects bugs or deliberate
emission of instructions that don't satisfy their predicates. One deliberate
use is the SYNC instruction where the version with an operand is correctly
defined as requiring MIPS32 while the version without an operand is defined
as an alias of 'SYNC 0' and requires MIPS2.
* X86 is omitted from this patch because it doesn't use the tablegen-erated
MCCodeEmitter infrastructure.
Patches for ARM and Mips will follow.
Depends on D25617
Reviewers: tstellarAMD, jmolloy
Subscribers: wdng, jmolloy, aemerson, rengolin, arsenm, jyknight, nemanjai, nhaehnle, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D25618
llvm-svn: 287439
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
llvm-svn: 287369
It is used to drive this from the clang driver via -mllvm.
Same option name is used as in opt.
Differential Revision: https://reviews.llvm.org/D26832
llvm-svn: 287356
During Module linking, it's possible for SrcM->getIdentifiedStructTypes();
to return types that are actually defined in the destination module
(DstM). Depending on how the bitcode file was read,
getIdentifiedStructTypes() might do a walk over all values, including
metadata nodes, looking for types. In my case, a debug info metadata
node was shared between the two modules, and it referred to a type
defined in the destination module (see test case).
Differential Revision: https://reviews.llvm.org/D26212
llvm-svn: 287353
Summary:
LLVM will define a symbol, either EnableABIBreakingChecks or
DisableABIBreakingChecks depending on the configuration setting for
LLVM_ABI_BREAKING_CHECKS.
The llvm-config.h header will add weak references to these symbols in
every clients that includes this header. This should ensure that
a mismatch triggers a link failure (or a load time failure for DSO).
On MSVC, the pragma "detect_mismatch" is used instead.
Reviewers: rnk, jroelofs
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26841
llvm-svn: 287352
The MIPS MSA ASE provides instructions to convert to and from half precision
floating point. This patch teaches the MIPS backend to treat f16 as a legal
type and how to promote such values to f32 for the usual set of operations.
As a result of this, the fexup[lr].w intrinsics no longer crash LLVM during
type legalization.
Reviewers: zoran.jovanvoic, vkalintiris
Differential Revision: https://reviews.llvm.org/D26398
llvm-svn: 287349
Summary:
The 32-bit instructions don't zero the high 16-bits like the 16-bit
instructions do.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D26828
llvm-svn: 287342
insertUniqueBackedgeBlock in lib/Transforms/Utils/LoopSimplify.cpp now
propagates existing llvm.loop metadata to newly the added backedge.
llvm::TryToSimplifyUncondBranchFromEmptyBlock in lib/Transforms/Utils/Local.cpp
now propagates existing llvm.loop metadata to the branch instructions in the
predecessor blocks of the empty block that is removed.
Differential Revision: https://reviews.llvm.org/D26495
llvm-svn: 287341
Summary:
The addr64-based legalization is incorrect for MUBUF instructions with idxen
set as well as for BUFFER_LOAD/STORE_FORMAT_* instructions. This affects
e.g. shaders that access buffer textures.
Since we never actually need the addr64-legalization in shaders, this patch
takes the easy route and keys off the calling convention. If this ever
affects (non-OpenGL) compute, the type of legalization needs to be chosen
based on some TSFlag.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98664
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D26747
llvm-svn: 287339
When we see a SETCC whose only users are zero extend operations, we can replace
it with a subtraction. This results in doing all calculations in GPRs and
avoids CR use.
Currently we do this only for ULT, ULE, UGT and UGE condition codes. There are
ways that this can be extended. For example for signed condition codes. In that
case we will be introducing additional sign extend instructions, so more careful
profitability analysis may be required.
Another direction to extend this is for equal, not equal conditions. Also when
users of SETCC are any_ext or sign_ext, we might be able to do something
similar.
llvm-svn: 287329
This is a straightforward extension of the existing support for 32/64-bit element types. Just needed to add the additional instrinsics to the switches.
llvm-svn: 287316
The same thing was done to 32-bit and 64-bit element sizes previously.
This will allow us to support these shuffls in InstCombineCalls along with the other variable shift intrinsics.
llvm-svn: 287312
since bpf instruction set was introduced people learned to
read and understand kernel verifier output whereas llvm asm
output stayed obscure and unknown. Convert llvm to emit
assembler text similar to kernel to avoid this discrepancy
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 287300
Summary:
This extends FCOPYSIGN support to 512-bit vectors.
I've also added tests to show what the 128-bit and 256-bit cases look like with broadcast loads.
Reviewers: delena, zvi, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26791
llvm-svn: 287298
Summary:
CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time.
Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter.
Reviewers: sanjoy
Subscribers: mzolotukhin, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D26389
llvm-svn: 287232
vXi64 multiplication is lowered into 3 calls of vpmuludq with the upper/lower 32-bit halves.
If any of these halves are zero then we can remove individual calls. Although there was isBuildVectorAllZeros code to do this I don't think it ever worked (maybe just for constant folded cases that don't seem to be tested for any longer).
This requires additional X86ISD support for computeKnownBitsForTargetNode, so far I've just added support for X86ISD::VZEXT (VPMOVZX* - helping the AVX2+ cases).
Partial fix for PR30845
Differential Revision: https://reviews.llvm.org/D26590
llvm-svn: 287223
Summary:
Variadic functions can be treated in the same way as normal functions
with respect to the number and types of parameters.
Reviewers: grosbach, olista01, t.p.northover, rengolin
Subscribers: javed.absar, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26748
llvm-svn: 287219
Register Calling Convention defines a new behavior for v64i1 types.
This type should be saved in GPR.
However for 32 bit machine we need to split the value into 2 GPRs (because each is 32 bit).
Differential Revision: https://reviews.llvm.org/D26181
llvm-svn: 287217
ImplicitNullCheck keeps track of one instruction that the memory
operation depends on that it also hoists with the memory operation.
When hoisting this dependency, it would sometimes clobber a live-in
value to the basic block we were hoisting the two things out of. Fix
this by explicitly looking for such dependencies.
I also noticed two redundant checks on `MO.isDef()` in IsMIOperandSafe.
They're redundant since register MachineOperands are either Defs or Uses
-- there is no third kind. I'll change the checks to asserts in a later
commit.
llvm-svn: 287213
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.
Reviewers: davidxl, mzolotukhin
Subscribers: sanjoy, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26527
llvm-svn: 287186
This pass splits globals into elements using inrange annotations on
getelementptr indices.
Differential Revision: https://reviews.llvm.org/D22295
llvm-svn: 287178
We save an inter-register file move this way. If there's any CPU where
the FP logic is slower, we could transform this back to int-logic in
MachineCombiner.
This helps, but doesn't solve, PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137
The 'andn' test shows that we're missing a pattern match to
recognize the xor with -1 constant as a 'not' op.
llvm-svn: 287171
This should prevent stack overflows in non-optimized builds on
.ll files with lots of consecutive commented-out lines.
Instead of recursing into LexToken(), continue into a 'while (true)'.
llvm-svn: 287170
They're not SelectionDAG- or FunctionLoweringInfo-specific. They
are, however, specific to building MMI from IR.
We could make them members, but it's nice having MMI be a "simple" data
structure and this logic kept separate.
This also lets us reuse them from GlobalISel.
llvm-svn: 287167
Summary:
A lot of the pseudo instructions are required because LLVM assumes that
all integers of the same size as the pointer size are legal. This means
that it will not currently expand 16-bit instructions to their 8-bit
variants because it thinks 16-bit types are legal for the operations.
This also adds all of the CodeGen tests that required the pass to run.
Reviewers: arsenm, kparzysz
Subscribers: wdng, mgorny, modocache, llvm-commits
Differential Revision: https://reviews.llvm.org/D26577
llvm-svn: 287162
We only ever create TargetConstantPool, TargetJumpTable, TargetExternalSymbol,
TargetGlobalAddress, TargetGlobalTLSAddress, MCSymbol and TargetBlockAddress
nodes as operands of X86ISD::Wrapper nodes, so we can remove one check and
invert the other.
Also update the documentation comment for X86ISD::Wrapper.
Differential Revision: https://reviews.llvm.org/D26731
llvm-svn: 287160
We don't track callee clobbered registers correctly, so avoid hoisting
across calls.
Note: for this bug to trigger we need a `readonly` call target, since we
already have logic to not hoist across potentially storing instructions
either.
llvm-svn: 287159
One half of the shifts obviously needed conditional selection based on whether
the shift amount is more than 32-bits, but leaving the other half as the
natural shift isn't acceptable either: it's undefined behaviour to shift a
32-bit value by more than 31.
llvm-svn: 287149
We fail to produce bit-to-bit matching stage2 and stage3 compiler in PGO
bootstrap build. The reason is because LoopBlockSet is of SmallPtrSet type
whose iterating order depends on the pointer value.
This patch fixes this issue by changing to use SmallSetVector.
Differential Revision: http://reviews.llvm.org/D26634
llvm-svn: 287148
Summary:
Extend replaceZeroVectorStore to handle more vector type stores,
floating point zero vectors and set alignment more accurately on split
stores.
This is a follow-up change to r286875.
This change fixes PR31038.
Reviewers: MatzeB
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D26682
llvm-svn: 287142
Summary:
1. Don't try to copy values to and from the same register class.
2. Replace copies with of registers with immediate values with v_mov/s_mov
instructions.
The main purpose of this change is to make MachineSink do a better job of
determining when it is beneficial to split a critical edge, since the pass
assumes that copies will become move instructions.
This prevents a regression in uniform-cfg.ll if we enable critical edge
splitting for AMDGPU.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: https://reviews.llvm.org/D23408
llvm-svn: 287131
We can replace "scalar" FP-bitwise-logic with other forms of bitwise-logic instructions.
Scalar SSE/AVX FP-logic instructions only exist in your imagination and/or the bowels of
compilers, but logically equivalent int, float, and double variants of bitwise-logic
instructions are reality in x86, and the float variant may be a shorter instruction
depending on which flavor (SSE or AVX) of vector ISA you have...so just prefer float all
the time.
This is a preliminary step towards solving PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137
Differential Revision:
https://reviews.llvm.org/D26712
llvm-svn: 287122
Both the (V)CVTDQ2PD (i32 to f64) and (V)CVTUDQ2PD (u32 to f64) conversion instructions are lossless and can be safely represented as generic SINT_TO_FP/UINT_TO_FP calls instead of x86 intrinsics without affecting final codegen.
LLVM counterpart to D26686
Differential Revision: https://reviews.llvm.org/D26736
llvm-svn: 287108
MipsFastISel uses a a class to represent addresses with a signed member
to represent the offset. MipsFastISel::emitStore, emitLoad and computeAddress
all treated the offset as being positive. In cases where the offset was
actually negative and a frame pointer was used, this would cause the constant
synthesis routine to crash as it would generate an unexpected instruction
sequence when frame indexes are replaced.
Reviewers: vkalintiris
Differential Revision: https://reviews.llvm.org/D26192
llvm-svn: 287099
This patch adds the single operand form of the not alias to microMIPS and
MIPS along with additional tests.
This partially resolves PR/30381.
Thanks to Sean Bruno for reporting the issue!
llvm-svn: 287097
Summary:
All uses have been replaced by appropriate std::chrono types, and the class is
now unused.
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26447
llvm-svn: 287094
Summary: These intrinsics have been unused for clang for a while. This patch removes them. We auto upgrade them to extractelements, a scalar operation and then an insertelement. This matches the sequence used by clangs intrinsic file.
Reviewers: zvi, delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26660
llvm-svn: 287083
Doing this before register allocation reduces register pressure as we do
not even have to allocate a register for those dead definitions.
Differential Revision: https://reviews.llvm.org/D26111
llvm-svn: 287076
In https://reviews.llvm.org/D25347, Geoff noticed that we still have
useless copy that we can eliminate after register allocation. At the
time the allocation is chosen for those copies, they are not useless
but, because of changes in the surrounding code, later on they might
become useless.
The Greedy allocator already has a mechanism to deal with such cases
with a late recoloring. However, we missed to record the some of the
missed hints.
This commit fixes that.
llvm-svn: 287070
This is required by DbiStream, but DbiStreamBuilder didn't align
these substreams, so the output of DbiSTreamBuilder couldn't be
read by DbiStream.
Test will be added to LLD.
llvm-svn: 287067
Summary:
We don't do BypassSlowDivision when the denominator is a constant, but
we do do it when the numerator is a constant.
This patch makes two related changes to BypassSlowDivision when the
numerator is a constant:
* If the numerator is too large to fit into the bypass width, don't
bypass slow division (because we'll never run the smaller-width
code).
* If we bypass slow division where the numerator is a constant, don't
OR together the numerator and denominator when determining whether
both operands fit within the bypass width. We need to check only the
denominator.
Reviewers: tra
Subscribers: llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D26699
llvm-svn: 287062
These numbers are intended to be capped at 65535, but
`std::max<uint16_t>(UINT16_MAX, N)` always returns N for any N because
the expression is the same as `std::max((uint16_t)UINT16_MAX, (uint16_t)N)`.
llvm-svn: 287060
For the default, small and medium code model, use the existing
difference from the jump table towards the label. For all other code
models, setup the picbase and use the difference between the picbase and
the block address.
Overall, this results in smaller data tables at the expensive of one or
two more arithmetic operation at the jump site. Given that we only create
jump tables with a lot more than two entries, it is a net win in size.
For larger code models the assumption remains that individual functions
are no larger than 2GB.
Differential Revision: https://reviews.llvm.org/D26336
llvm-svn: 287059
wbinvl.* are vector instruction that do not sue vector registers.
v2: check only M?BUF instructions
Differential Revision: https://reviews.llvm.org/D26633
llvm-svn: 287056
This patch adds support for instrumenting masked loads and stores under
ASan, if they have a constant mask.
isInterestingMemoryAccess now supports returning a mask to be applied to
the loads, and instrumentMop will use it to generate additional checks.
Added tests for v4i32 v8i32, and v4p0i32 (~v4i64) for both loads and
stores (as well as a test to verify we don't add checks to non-constant
masks).
Differential Revision: https://reviews.llvm.org/D26230
llvm-svn: 287047
Sometimes, llvm-symbolizer gives wrong results due to incorrect sizes of some symbols. The reason for that was an incorrectly sorted array in computeSymbolSizes. The comparison function used subtraction of unsigned types, which is incorrect. Let's change this to return explicit -1 or 1.
Differential Revision: https://reviews.llvm.org/D26537
llvm-svn: 287028
Lower a = b * C where C = (2^n + 1) * 2^m to
add w0, w0, w0, lsl n
lsl w0, w0, m
Differential Revision: https://reviews.llvm.org/D229245
llvm-svn: 287019
The wave barrier represents the discardable barrier. Its main purpose is to
carry convergent attribute, thus preventing illegal CFG optimizations. All lanes
in a wave come to convergence point simultaneously with SIMT, thus no special
instruction is needed in the ISA. The barrier is discarded during code generation.
Differential Revision: https://reviews.llvm.org/D26585
llvm-svn: 287007
In RateRegister of existing LSR, if a formula contains a Reg which is a SCEVAddRecExpr,
and this SCEVAddRecExpr's loop is an outerloop, the formula will be marked as Loser
and dropped.
Suppose we have an IR that %for.body is outerloop and %for.body2 is innerloop. LSR only
handle inner loop now so only %for.body2 will be handled.
Using the logic above, formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) will be dropped
no matter what because reg({1,+, %size}<%for.body>) is a SCEVAddRecExpr type reg related
with outerloop. Only formula like
reg(%array) + 1*reg({{1,+, %size}<%for.body>,+,1}<nuw><nsw><%for.body2>) will be kept
because the SCEVAddRecExpr related with outerloop is folded into the initial value of the
SCEVAddRecExpr related with current loop.
But in some cases, we do need to share the basic induction variable
reg{0 ,+, 1}<%for.body2> among LSR Uses to reduce the final total number of induction
variables used by LSR, so we don't want to drop the formula like
reg(%array) + reg({1,+, %size}<%for.body>) + 1*reg({0,+,1}<%for.body2>) unconditionally.
From the existing comment, it tries to avoid considering multiple level loops at the same time.
However, existing LSR only handles innermost loop, so for any SCEVAddRecExpr with a loop other
than current loop, it is an invariant and will be simple to handle, and the formula doesn't have
to be dropped.
Differential Revision: https://reviews.llvm.org/D26429
llvm-svn: 286999
Summary:
This fixes the runtime results produces by the fallback multiplication expansion introduced in r270720.
For tests I created a fuzz tester that compares the results with Boost.Multiprecision.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26628
llvm-svn: 286998
When both WidenIV::getWideRecurrence and WidenIV::getExtendedOperandRecurrence
return non-null but different WideAddRec, if getWideRecurrence is called
before getExtendedOperandRecurrence, we won't bother to call
getExtendedOperandRecurrence again. But As we know it is possible that after
SCEV folding, we cannot prove the legality using the SCEVAddRecExpr returned
by getWideRecurrence. Meanwhile if getExtendedOperandRecurrence returns non-null
WideAddRec, we know for sure that it is legal to do widening for current instruction.
So it is better to put getExtendedOperandRecurrence before getWideRecurrence, which
will increase the chance of successful widening.
Differential Revision: https://reviews.llvm.org/D26059
llvm-svn: 286987
This patch helps avoids poor legalization of boolean vector results (e.g. 8f32 -> 8i1 -> 8i16) that feed into SINT_TO_FP by inserting an early SIGN_EXTEND and so help improve the truncation logic.
This is not necessary for AVX512 targets where boolean vectors are legal - AVX512 manages to lower ( sint_to_fp vXi1 ) into some form of ( select mask, 1.0f , 0.0f ) in most cases.
Fix for PR13248
Differential Revision: https://reviews.llvm.org/D26583
llvm-svn: 286979
Move some code inside the proper 'if' block to make sure it is only run once,
when the subtarget is first created. Things can still break if we use different
ARM target machines or if we have functions with different 'target-cpu' or
'target-features', we should fix that too in the future.
llvm-svn: 286974
The register usage algorithm incorrectly treats instructions whose value is
not used within the loop (e.g. those that do not produce a value).
The algorithm first calculates the usages within the loop. It iterates over
the instructions in order, and records at which instruction index each use
ends (in fact, they're actually recorded against the next index, as this is
when we want to delete them from the open intervals).
The algorithm then iterates over the instructions again, adding each
instruction in turn to a list of open intervals. Instructions are then
removed from the list of open intervals when they occur in the list of uses
ended at the current index.
The problem is, instructions which are not used in the loop are skipped.
However, although they aren't used, the last use of a value may have been
recorded against that instruction index. In this case, the use is not deleted
from the open intervals, which may then bump up the estimated register usage.
This patch fixes the issue by simply moving the "is used" check after the loop
which erases the uses at the current index.
Differential Revision: https://reviews.llvm.org/D26554
llvm-svn: 286969
This patch implements all the overloads for vec_xl_be and vec_xst_be. On BE,
they behaves exactly the same with vec_xl and vec_xst, therefore they are
simply implemented by defining a matching macro. On LE, they are implemented
by defining new builtins and intrinsics. For int/float/long long/double, it
is just a load (lxvw4x/lxvd2x) or store(stxvw4x/stxvd2x). For char/char/short,
we also need some extra shuffling before or after call the builtins to get the
desired BE order. For int128, simply call vec_xl or vec_xst.
llvm-svn: 286967
r286407 has introduced calls to llvm::AddLandingPadInfo, which lives in the
SelectionDAG component. Add it to LLVMBuild to avoid linker failures on Linux.
llvm-svn: 286962
Summary: This is needed to be able to use this flags in InstrMappings.
Reviewers: tstellarAMD, vpykhtin
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D26666
llvm-svn: 286960
Summary:
Fix a case where the overflow value of type i1, which is legal on AVX512, was assigned to a VK1 register class.
We always want this value to be assigned to a GPR since the overflow return value is lowered to a SETO instruction.
Fixes pr30981.
Reviewers: mkuper, igorb, craig.topper, guyblank, qcolombet
Subscribers: qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D26620
llvm-svn: 286958
For 64bit ABIs it is common practice to use relative Jump Tables with
potentially different relocation bases. As the logic for the jump table
itself doesn't depend on the relocation base, make it easier for targets
to use the generic logic. Start by dropping the now redundant MIPS logic.
Differential Revision: https://reviews.llvm.org/D26578
llvm-svn: 286951
This patch adds the Sched Machine Model for Cortex-R52.
Details of the pipeline and descriptions are in comments
in file ARMScheduleR52.td included in this patch.
Reviewers: rengolin, jmolloy
Differential Revision: https://reviews.llvm.org/D26500
llvm-svn: 286949
Summary:
Add basic functionality to support call lowering for X86.
Currently only supports functions which return void and take zero arguments.
Inspired by commit 286573.
Reviewers: ab, qcolombet, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26593
llvm-svn: 286935
One day we'd like to remove some of this autoupgrade support and it will be easier if we know how long some of it has been around.
Differential Revision: https://reviews.llvm.org/D26321
llvm-svn: 286933
This patch gets a DWARF parsing speed improvement by having DWARFAbbreviationDeclaration instances know if they have a fixed byte size. If an abbreviation has a fixed byte size that can be calculated given a DWARFUnit, then parsing a DIE becomes two steps: parse ULEB128 abbrev code, and then add constant size to the offset.
This patch also adds a fixed byte size to each DWARFAbbreviationDeclaration::AttributeSpec so that attributes can quickly skip their values if needed without the need to lookup the fixed for size.
Notable improvements:
- DWARFAbbreviationDeclaration::findAttributeIndex() now returns an Optional<uint32_t> instead of a uint32_t and we no longer have to look for the magic -1U return value
- Optional<uint32_t> DWARFAbbreviationDeclaration::findAttributeIndex(dwarf::Attribute attr) const;
- DWARFAbbreviationDeclaration now has a getAttributeValue() function that extracts an attribute value given a DIE offset that takes advantage of the DWARFAbbreviationDeclaration::AttributeSpec::ByteSize
- bool DWARFAbbreviationDeclaration::getAttributeValue(const uint32_t DIEOffset, const dwarf::Attribute Attr, const DWARFUnit &U, DWARFFormValue &FormValue) const;
- A DWARFAbbreviationDeclaration instance can return a fixed byte size for itself so DWARF parsing is faster:
- Optional<size_t> DWARFAbbreviationDeclaration::getFixedAttributesByteSize(const DWARFUnit &U) const;
- Any functions that used to take a "const DWARFUnit *U" that would crash if U was NULL now take a "const DWARFUnit &U" and are only called with a valid DWARFUnit
Differential Revision: https://reviews.llvm.org/D26567
llvm-svn: 286924
This patch makes it possible to identify object files created by CL.exe
with /GL option. Such file contains Microsoft proprietary intermediate
code instead of target machine code to do LTO.
I need this to print out user-friendly error message from LLD.
Differential Revision: https://reviews.llvm.org/D26645
llvm-svn: 286919
Implement the Newton series for square root, its reciprocal and reciprocal
natively using the specialized instructions in AArch64 to perform each
series iteration.
Differential revision: https://reviews.llvm.org/D26518
llvm-svn: 286907
This was causing us to create duplicate metadata on global variables.
Debug info test case by Adrian Prantl, additional test cases by me.
Fixes PR31012.
Differential Revision: https://reviews.llvm.org/D26622
llvm-svn: 286905
This adds support for TSan C++ exception handling, where we need to add extra calls to __tsan_func_exit when a function is exitted via exception mechanisms. Otherwise the shadow stack gets corrupted (leaked). This patch moves and enhances the existing implementation of EscapeEnumerator that finds all possible function exit points, and adds extra EH cleanup blocks where needed.
Differential Revision: https://reviews.llvm.org/D26177
llvm-svn: 286893
The philosophy of the error checking in libObject for Mach-O files
is that the constructor will check the load commands so for their
tables the offsets and sizes are properly contained in the file.
But there is no checking of the entries of any of the tables.
For the contents of the tables themselves the methods accessing
the contents of the entries return errors as needed. In some
cases this however makes it difficult or cumbersome to produce
a good error message which would include the tool name, file name,
archive member, and name of the architecture of a slice of a universal file
the error occurred in.
So idea is that there will be a method to check a table which can
be called up front before using it allowing a good error message
to be produced before a table is used. And if only verification of
the Mach-O file and its tables are wanted a new possible method
checkAllTables() could be added to call all of the methods to
check all the tables at some time when such methods exist.
The checkSymbolTable() is the first of such methods to check
one of the Mach-O file tables. This method initially will used in
llvm-objdump’s DisassembleMachO() routine before it gets the
section and symbol information. As if there are problems with
the symbol table currently the error is first encountered by the
bool operator() in the SymbolSorter() struct which passed to
std::sort(). In this case there is no context as to the file name
the symbol which results a poor error message:
LLVM ERROR: truncated or malformed object (bad string index: 22 for symbol at index 1)
with the added call to the checkSymbolTable() method the
error message includes the tool name and file name:
llvm-objdump: 'macho-invalid-symbol-strx': truncated or malformed object (bad string table index: 22 past the end of string table, for symbol at index 1)
llvm-svn: 286887
For example we were producing
push {r8, r10, r11, r4, r5, r7, lr}
This is misleading (r4, r5 and r7 are actually pushed before the rest), and
other components (stack folding recently) often forget to deal with the extra
complexity coming from the different order, leading to miscompiles. Finally, we
warn about our own code in -no-integrated-as mode without this, which is really
not a good idea.
Fixed usage of std::sort so that we (hopefully) use instantiations that
actually exist in GCC 4.8.
llvm-svn: 286881
Summary:
Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.
The load store optimizer pass will merge them to store pair stores.
This should be better than a movi to create the vector zero followed by
a vector store if the zero constant is not re-used, since one
instructions and one register live range will be removed.
For example, the final generated code should be:
stp xzr, xzr, [x0]
instead of:
movi v0.2d, #0
str q0, [x0]
Reviewers: t.p.northover, mcrosier, MatzeB, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26561
llvm-svn: 286875
Summary:
We have always speculatively promoted all renamable local values
(except const non-address taken variables) for both the exporting
and importing module. We would then internalize them back based on
the ThinLink results if they weren't actually exported. This is
inefficient, and results in unnecessary renames. It also meant we
had to check the non-renamability of a value in the summary, which
was already checked during function importing analysis in the ThinLink.
Made renameModuleForThinLTO (which does the promotion/renaming) instead
use the index when exporting, to avoid unnecessary renames/promotions.
For importing modules, we can simply promoted all values as any local
we import by definition is exported and needs promotion.
This required changes to the method used by the FunctionImport pass
(only invoked from 'opt' for testing) and when invoked from llvm-link,
since neither does a ThinLink. We simply conservatively mark all locals
in the index as promoted, which preserves the current aggressive
promotion behavior.
I also needed to change an llvm-lto based test where we had previously
been aggressively promoting values that weren't importable (aliasees),
but now will not promote.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26467
llvm-svn: 286871
For example we were producing
push {r8, r10, r11, r4, r5, r7, lr}
This is misleading (r4, r5 and r7 are actually pushed before the rest), and
other components (stack folding recently) often forget to deal with the extra
complexity coming from the different order, leading to miscompiles. Finally, we
warn about our own code in -no-integrated-as mode without this, which is really
not a good idea.
llvm-svn: 286866
add an intrinsic to expose the 'VSX Scalar Convert Half-Precision to
Single-Precision' instruction.
Differential review: https://reviews.llvm.org/D26536
llvm-svn: 286862
Summary:
Extend image intrinsics to support data types of V1F32 and V2F32.
TODO: we should define a mapping table to change the opcode for data type of V2F32 but just one channel is active,
even though such case should be very rare.
Reviewers:
tstellarAMD
Differential Revision:
http://reviews.llvm.org/D26472
llvm-svn: 286860
Darwin's backtrace() function does not work with sigaltstack (which was
enabled when available with r270395) — it does a sanity check to make
sure that the current frame pointer is within the expected stack area
(which it is not when using an alternate stack) and gives up otherwise.
The alternative of _Unwind_Backtrace seems to work fine on macOS, so use
that when backtrace() fails. Note that we then use backtrace_symbols_fd()
with the addresses from _Unwind_Backtrace, but I’ve tested that and it
also seems to work fine. rdar://problem/28646552
llvm-svn: 286851
This restores the rest of r286297 (part was restored in r286475).
Specifically, it restores the part requiring adding a dependency from
the Analysis to Object library (downstream use changed to correctly
model split BitReader vs BitWriter libraries).
Original description of this part of patch follows:
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
llvm-svn: 286844
The Stack slot coloring pass removes a store that is followed by a load
that deal with the same stack slot. The function isLoadFromStackSlot
is supposed to consider the loads that have no side-effects. This
patch fixed the issue by removing the unsafe loads from this function
Eg:
%vreg0<def> = L2_loadruh_io <fi#15>, 0
S2_storeri_io <fi#15>, 0, %vreg0
In this case, we load an unsigned extended half word and store this in to
the same stack slot. The Stack slot coloring pass considers safe to remove
the store. This patch marked all the non-vector byte and half word loads as
unsafe.
llvm-svn: 286843
Summary:
The change in r285513 to prevent exporting of locals used in
inline asm added all locals in the llvm.used set to the reference
set of functions containing inline asm. Since these locals were marked
NoRename, this automatically prevented importing of the function.
Unfortunately, this caused an explosion in the summary reference lists
in some cases. In my particular example, it happened for a large protocol
buffer generated C++ file, where many of the generated functions
contained an inline asm call. It was exacerbated when doing a ThinLTO
PGO instrumentation build, where the PGO instrumentation included
thousands of private __profd_* values that were added to llvm.used.
We really only need to include a single llvm.used local (NoRename) value
in the reference list of a function containing inline asm to block it
being imported. However, it seems cleaner to add a flag to the summary
that explicitly describes this situation, which is what this patch does.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26402
llvm-svn: 286840
Add explicit v16i16/v32i8 ADD/SUB costs, matching the costs of v4i64/v8i32 - they were missing for some reason.
This has side effects on the LV max bandwidth tests (AVX1 now prefers 128-bit vectors vs AVX2 which still prefers 256-bit)
llvm-svn: 286832
When calculating the cost of a call instruction we were applying a heuristic penalty as well as the cost of the instruction itself.
However, when calculating the benefit from inlining we weren't discounting the equivalent penalty for the call instruction that would be removed! This caused skew in the calculation and meant we wouldn't inline in the following, trivial case:
int g() {
h();
}
int f() {
g();
}
llvm-svn: 286814
Summary:
Unfolding selects was previously done with the help of a vector
of pointers that was then sorted to be able to remove duplicates.
As this sorting depends on the memory addresses, it was
non-deterministic. A SetVector is used now so that duplicates are
removed without the need of sorting first.
Reviewers: mgrang, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26450
llvm-svn: 286807
Summary:
This patch adds explicit `(void)` casts to discarded `release()` calls to suppress -Wunused-result.
This patch fixes *all* warnings are generated as a result of [applying `[[nodiscard]]` within libc++](https://reviews.llvm.org/D26596).
Similar fixes were applied to Clang in r286796.
Reviewers: chandlerc, dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26598
llvm-svn: 286797
Only attempt to demangle symbols which have the itanium C++ prefix of `_Z`.
This ensures that we do not treat any symbol name as a managled named. We would
previously treat a C function `f` as a mangled name and decode that to `float`
incorrectly.
While it is easy to add tests for this, Mehdi recommended against introducing
tests for the demangler as libc++abi should cover the testing.
llvm-svn: 286795
-Don't print the 'x' suffix for the 128-bit reg/mem VEX encoded instructions in Intel syntax. This is consistent with the EVEX versions.
-Don't print the 'y' suffix for the 256-bit reg/reg VEX encoded instructions in Intel or AT&T syntax. This is consistent with the EVEX versions.
-Allow the 'x' and 'y' suffixes to be used for the reg/mem forms when we're assembling using Intel syntax.
-Allow the 'x' and 'y' suffixes on the reg/reg EVEX encoded instructions in Intel or AT&T syntax. This is consistent with what VEX was already allowing.
This should fix at least some of PR28850.
llvm-svn: 286787
nThis avoids the nasty problems caused by using
memory instructions that read the exec mask while
spilling / restoring registers used for control flow
masking, but only for VI when these were added.
This always uses the scalar stores when enabled currently,
but it may be better to still try to spill to a VGPR
and use this on the fallback memory path.
The cache also needs to be flushed before wave termination
if a scalar store is used.
llvm-svn: 286766
These will be used to replace the masked intrinsics so that InstCombineCalls can optimize the AVX-512 variable shifts the same way it does for AVX2.
llvm-svn: 286754
All existing callers were manually extracting information out of an existing
GEP instruction and passing it to getGEPExpr(). Simplify the interface by
changing it to take a GEPOperator instead.
llvm-svn: 286751
After this I'll add the unmasked intrinsics to InstCombineCalls to finish making our handling of these types of shuffles consistent between AVX-512 and the legacy intrinsics.
llvm-svn: 286725
Summary:
This is the first step towards being able to add the avx512 shift by immediate intrinsics to InstCombineCalls where we aleady support the sse2 and avx2 intrinsics. We need to the unmasked versions so we can avoid having to teach InstCombineCalls that it would need to insert selects sometimes. Instead we'll just add the selects around the new instrinsics in the frontend.
This change should also enable the shift by i32 intrinsics to take a non-constant shift value just like the avx2 and sse intrinsics. This will enable us to fix PR30691 once we update clang.
Next I'll switch clang to use the new builtins. Then we'll come back to the backend and remove/autoupgrade the old intrinsics. Then I'll work on the same series for variable shifts.
Reviewers: RKSimon, zvi, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26333
llvm-svn: 286711
Summary: VALIGND and VALIGNQ are similar to PALIGNR but instead of working on a 128-bit lane they work on the entire vector register. This change leverages the shuffle rotate detection code used for PALIGNR to detect these cases.
Reviewers: delena, RKSimon
Subscribers: Farhana, llvm-commits
Differential Revision: https://reviews.llvm.org/D26297
llvm-svn: 286709
This introduces a new type-safe general purpose formatting
library. It provides compile-time type safety, does not require
a format specifier (since the type is deduced), and provides
mechanisms for extending the format capability to user defined
types, and overriding the formatting behavior for existing types.
This patch additionally adds documentation for the API to the
LLVM programmer's manual.
Mailing List Thread:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105836.html
Differential Revision: https://reviews.llvm.org/D25587
llvm-svn: 286682
This patch defines a new function to add a SectionContribs stream
to a PDB file. Unlike SectionMap, SectionContribs contains a list
of input sections as opposed to output sections.
Note that this patch needs improving because currently we do not
set Module field in SectionContribs entries. In a follow-up patch,
I'll add Modules and then fix it after that.
Differential Revision: https://reviews.llvm.org/D26210
llvm-svn: 286677
Summary:
This pass was assuming that when a PHI instruction defined a register
used by another PHI instruction that the defining insstruction would
be legalized before the using instruction.
This assumption was causing the pass to not legalize some PHI nodes
within divergent flow-control.
This fixes a bug that was uncovered by r285762.
Reviewers: nhaehnle, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D26303
llvm-svn: 286676
This implements a function annotation that disables TSan checking for the
function at run time. The benefit over attribute((no_sanitize("thread")))
is that the accesses within the callees will also be suppressed.
The motivation for this attribute is a guarantee given by the objective C
language that the calls to the reference count decrement and object
deallocation will be synchronized. To model this properly, we would need
to intercept all ref count decrement calls (which are very common in ObjC
due to use of ARC) and also every single message send. Instead, we propose
to just ignore all accesses made from within dealloc at run time. The main
downside is that this still does not introduce any synchronization, which
means we might still report false positives if the code that relies on this
synchronization is not executed from within dealloc. However, we have not seen
this in practice so far and think these cases will be very rare.
Differential Revision: https://reviews.llvm.org/D25858
llvm-svn: 286663
This is PR28376.
Unfortunately given the current structure of optimization diagnostics we
lack the capability to tell whether the user has
passed -Rpass-analysis=loop-vectorize since this is local to the
front-end (BackendConsumer::OptimizationRemarkHandler).
So rather than printing this even if the user has already
passed -Rpass-analysis, this patch just punts and stops recommending
this option. I don't think that getting this right is worth the
complexity.
Differential Revision: https://reviews.llvm.org/D26563
llvm-svn: 286662
The DAG mutators in the scheduler cannot really remove DAG nodes as
additional anlysis information such as ScheduleDAGToplogicalSort are
already computed at this point and rely on a fixed number of DAG nodes.
Alleviate the missing removal with a new flag: Setting the new skip
flag on a node ignores it during scheduling.
llvm-svn: 286655
Push VRegUses/collectVRegUses() down the class hierarchy towards its
only user ScheduleDAGMILive.
NFCI: The initialization of the map happens at a later point but that
should not matter.
This is in preparation to allow DAG mutators to merge nodes, which
relies on this map getting computed later.
llvm-svn: 286654
This is a follow-up on the recent refactoring of the FunctionMerge pass.
It should fix a fail of the new FunctionComparator unittest whe compiling with MSVC.
llvm-svn: 286648
This patch corresponds to review:
https://reviews.llvm.org/D26480
Adds all the intrinsics used for various permute builtins that will
be added to altivec.h.
llvm-svn: 286638
When a function pointer is replaced with a jumptable pointer, special
case is needed to preserve the semantics of extern_weak functions.
Since a jumptable entry can not be extern_weak, we emulate that
behaviour by replacing all references to F (the extern_weak function)
with the following expression: F != nullptr ? JumpTablePtr : nullptr.
Extra special care is needed for global initializers, since most (or
probably all) backends can not lower an initializer that includes
this kind of constant expression. Initializers like that are replaced
with a global constructor (i.e. a runtime initializer).
llvm-svn: 286636
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
llvm-svn: 286632
The functions getBitcodeTargetTriple(), isBitcodeContainingObjCCategory(),
getBitcodeProducerString() and hasGlobalValueSummary() now return errors
via their return value rather than via the diagnostic handler.
To make this work, re-implement these functions using non-member functions
so that they can be used without the LLVMContext required by BitcodeReader.
Differential Revision: https://reviews.llvm.org/D26532
llvm-svn: 286623
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
llvm-svn: 286620
Summary:
Fix off-by-one indexing error in loop checking that inserted value was a
splat vector.
Add code to check that INSERT_VECTOR_ELT nodes constructing the splat
vector have the expected constant index values.
Reviewers: t.p.northover, jmolloy, mcrosier
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D26409
llvm-svn: 286616
The current implementation is emitting a global constant that happens
to evaluate to the same bytes + relocation as a jump instruction on
X86. This does not work for PIE executables and shared libraries
though, because we end up with a wrong relocation type. And it has no
chance of working on ARM/AArch64 which use different relocation types
for jump instructions (R_ARM_JUMP24) that is never generated for
data.
This change replaces the constant with module-level inline assembly
followed by a hidden declaration of the jump table. Works fine for
ARM/AArch64, but has some drawbacks.
* Extra symbols are added to the static symbol table, which inflate
the size of the unstripped binary a little. Stripped binaries are not
affected. This happens because jump table declarations must be
external (because their body is in the inline asm).
* Original functions that were anonymous are now named
<original name>.cfi, and it affects symbolization sometimes. This is
necessary because the only user of these functions is the (inline
asm) jump table, so they had to be added to @llvm.used, which does
not allow unnamed functions.
llvm-svn: 286611
This is a partial revert of r244615 (http://reviews.llvm.org/D11942),
which caused a major regression in debug info quality.
Turning the artificial __MergedGlobal symbols into private symbols
(l__MergedGlobal) means that the linker will not include them in the
symbol table of the final executable. Without a symbol table entry
dsymutil is not be able to process the debug info for any of the
merged globals and thus drops the debug info for all of them.
This patch is enabling the old behavior for all MachO targets while
leaving all other targets unaffected.
rdar://problem/29160481
https://reviews.llvm.org/D26531
llvm-svn: 286607
https://reviews.llvm.org/D26526
- Fixed DW_FORM_strp to be correctly sized and extracted for DWARF64
- Added some missing strp variants as well
- Fixed comment typo
llvm-svn: 286603
In preparation for a follow on patch that improves DWARF parsing speed, clean up DWARFFormValue so that we have can get the fixed byte size of a form value given a DWARFUnit or given the version, address byte size and dwarf32/64.
This patch cleans up code so that everyone is using one of the new DWARFFormValue functions:
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, const DWARFUnit *U = nullptr);
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, uint16_t Version, uint8_t AddrSize, bool Dwarf32);
This patch changes DWARFFormValue::skipValue() to rely on the output of DWARFFormValue::getFixedByteSize(...) instead of duplicating the code in each function. This will reduce the number of changes we need to make to DWARF to fewer places in DWARFFormValue when we add support for new form.
This patch also starts to support DWARF64 so that we can get correct byte sizes for forms that vary according the DWARF 32/64.
To reduce the code duplication a new FormSizeHelper pure virtual class was created that can be created as a FormSizeHelperDWARFUnit when you have a DWARFUnit, or FormSizeHelperManual where you manually specify the DWARF version, address byte size and DWARF32/DWARF64. There is now a single implementation of a function that gets the fixed byte size (instead of two where one took a DWARFUnit and one took the DWARF version, address byte size and DWARFFormat enum) and one function to skip the form values.
https://reviews.llvm.org/D26526
llvm-svn: 286597
This patch corresponds to review:
https://reviews.llvm.org/D26307
Adds all the intrinsics used for various conversion builtins that will
be added to altivec.h. These are type conversions between various types of
vectors.
llvm-svn: 286596
This adds support for the compare logical and trap (memory)
instructions that were added as part of the miscellaneous
instruction extensions feature with zEC12.
llvm-svn: 286587
This adds support for the LZRF/LZRG/LLZRGF instructions that were
added on z13, and uses them for code generation were appropriate.
SystemZDAGToDAGISel::tryRISBGZero is updated again to prefer LLZRGF
over RISBG where both would be possible.
llvm-svn: 286586
This adds support for the 31-to-64-bit zero extension instructions
LLGT and LLGTR and uses them for code generation where appropriate.
Since this operation can also be performed via RISBG, we have to
update SystemZDAGToDAGISel::tryRISBGZero so that we prefer LLGT
over RISBG in case both are possible. The patch includes some
simplification to the tryRISBGZero code; this is not intended
to cause any (further) functional change in codegen.
llvm-svn: 286585
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
addSchedBarrierDeps() is supposed to add use operands to the ExitSU
node. The current implementation adds uses for calls/barrier instruction
and the MBB live-outs in all other cases. The use
operands of conditional jump instructions were missed.
Also added code to macrofusion to set the latencies between nodes to
zero to avoid problems with the fusing nodes lingering around in the
pending list now.
Differential Revision: https://reviews.llvm.org/D25140
llvm-svn: 286544
There is no need to track dependencies for constant physregs, as they
don't change their value no matter in what order you read/write to them.
Differential Revision: https://reviews.llvm.org/D26221
llvm-svn: 286526
The NamedRegionTimer initializer without a group name puts the Timer
into the "Misc" group and is (nearly) unused. Remove it.
The only user of this constructor appears to be the HexagonGenInsert pass,
which creates a counter without group to count the complete execution
time of that pass, however since every pass gets a counter by the
PassManager anyway this should be unnecessary. Also removed the
pointless TimerGroup there.
Differential Revision: https://reviews.llvm.org/D25582
llvm-svn: 286524
The generic infrastructure to compute the Newton series for reciprocal and
reciprocal square root was conceived to allow a target to compute the series
itself. However, the original code did not properly consider this condition
if returned by a target. This patch addresses the issues to allow a target
to compute the series on its own.
Differential revision: https://reviews.llvm.org/D22975
llvm-svn: 286523
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.
This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html
Differential Revision: https://reviews.llvm.org/D22793
llvm-svn: 286514
When copying to/from a constant register interferences can be ignored.
Also update the documentation for isConstantPhysReg() to make it more
obvious that this transformation is valid.
Differential Revision: https://reviews.llvm.org/D26106
llvm-svn: 286503
Currently runtime metadata is emitted as an ELF section with name .AMDGPU.runtime_metadata.
However there is a standard way to convey vendor specific information about how to run an ELF binary, which is called vendor-specific note element (http://www.netbsd.org/docs/kernel/elf-notes.html).
This patch lets AMDGPU backend emits runtime metadata as a note element in .note section.
Differential Revision: https://reviews.llvm.org/D25781
llvm-svn: 286502
This makes it possible to indent a binary blob by a certain
number of bytes, and also makes some things more idiomatic.
Finally, it integrates this binary blob formatter into ScopedPrinter
which used to have its own implementation of this algorithm.
Differential Revision: https://reviews.llvm.org/D26477
llvm-svn: 286495
The r283656 did this in the remark arguments. We also need to do this
in the main function attribute as that is written to YAML as well.
llvm-svn: 286482
This restores the part of r286297 that didn't require adding a
dependency from the Analysis to Object library. There are two parts
to the original fix, and this will address the handling for the case
where locals are used in module level asm.
The part that requires functionality in libObject handles local defs
in module level asm, and was reverted because our downstream build
of clang builds lib/Bitcode into a single library, and this new
dependency introduced a cycle there. I am trying to get that fixed
(see D26502), so for now that change isn't being restored
llvm-svn: 286475
We were failing to extract a constant splat shift value if the shifted value was being masked.
The (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) combine was unnecessarily preventing this.
llvm-svn: 286454
The version of this instruction with the .w suffix already correctly accepts
this, but the alias without the .w did not.
Differential Revision: https://reviews.llvm.org/D26499
llvm-svn: 286446
Removing the limitation in visitInsertElementInst() causes several regressions
because we're not prepared to fold sequences of shuffles or inserts and extracts
separated by shuffles. Fixing that appears to be a difficult mission because we
are purposely trying to avoid creating shuffles with arbitrary shuffle masks
because some targets may choke on those.
https://llvm.org/bugs/show_bug.cgi?id=30923
llvm-svn: 286423
No testcase included because I can't figure out how to reduce it.
(It's easy to write a testcase where rotation clones an assume,
but that doesn't actually seem to trigger the crash in opt on
its own; maybe an issue with the laziness?)
Differential Revision: https://reviews.llvm.org/D26434
llvm-svn: 286410
Summary:
Unrolled Loop Size calculations moved to a function.
Constant representing number of optimized instructions
when "back edge" becomes "fall through" replaced with
variable.
Some comments added.
Reviewers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D21719
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 286389
Suspected to be the cause of a sanitizer-windows bot failure:
Assertion failed: isImm() && "Wrong MachineOperand accessor", file C:\b\slave\sanitizer-windows\llvm\include\llvm/CodeGen/MachineOperand.h, line 420
llvm-svn: 286385
A relocatable immediate is either an immediate operand or an operand that
can be relocated by the linker to an immediate, such as a regular symbol
in non-PIC code.
Start using relocImm for 32-bit and 64-bit MOV instructions, and for operands
of type "imm32_su". Remove a number of now-redundant patterns.
Differential Revision: https://reviews.llvm.org/D25812
llvm-svn: 286384
For pairs of 32-bit registers: isub_lo, isub_hi.
For pairs of vector registers: vsub_lo, vsub_hi.
Add generic subreg indices: ps_sub_lo, ps_sub_hi, and a function
HexagonRegisterInfo::getHexagonSubRegIndex(RegClass, GenericSubreg)
that returns the appropriate subreg index for RegClass.
llvm-svn: 286377
The name/comment of the third argument to the ScheduleDAGMI constructor
is RemoveKillFlags and not IsPostRA. Only the comments are changed.
Review: A Trick
llvm-svn: 286350
Scalar Evolution asserts when not all the operands of an Add Recurrence
Expression are loop invariants. Loop Strength Reduction should only
create affine Add Recurrences, so that both the start and the step of
the expression are loop invariants.
Differential Revision: https://reviews.llvm.org/D26185
llvm-svn: 286347
This patch adds support for fptoui to 2i32 from both 2f64 and 2f32, building on Simon's change for the signed version in r284459 and using AVX-512 instructions.
If we don't have VLX support we need to use a 512-bit operation for v2f64->v2i32 and extract the result.
It also recognises that cvttpd2udq zeroes the upper 64-bits of the xmm result.
Differential Revision: https://reviews.llvm.org/D26331
llvm-svn: 286345
Summary: This allows the SSE intrinsic to use the EVEX instruction when available. It also fixes EVEX to not use a weird (v4i32 (fp_to_sint v2f64)) node and it merges some isel patterns. This also fixes some cases that weren't combining vzmovl with cvttpd2dq to remove extra moves.
Reviewers: delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26330
llvm-svn: 286344
Summary:
This is needed to make the v64i8 and v32i16 types legal for the 512-bit VBMI instructions. Fixes PR30912.
Reviewers: delena, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26322
llvm-svn: 286339
The BitcodeReader no longer produces BitcodeDiagnosticInfo diagnostics.
The only remaining reference was in the gold plugin; the code there has been
dead since we stopped producing InvalidBitcodeSignature error codes in r225562.
While at it remove the InvalidBitcodeSignature error code.
llvm-svn: 286326
Summary: For functions with profile data, we are confident that loop sink will be optimal in sinking code.
Reviewers: davidxl, hfinkel
Subscribers: mehdi_amini, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26155
llvm-svn: 286325
The smallest tests that expose this are codegen tests (because SelectionDAGBuilder::visitSelect() uses matchSelectPattern
to create UMAX/UMIN nodes), but it's also possible to see the effects in IR alone with folds of min/max pairs.
If these were written as unsigned compares in IR, InstCombine canonicalizes the unsigned compares to signed compares.
Ie, running the optimizer pessimizes the codegen for this case without this patch:
define <4 x i32> @umax_vec(<4 x i32> %x) {
%cmp = icmp ugt <4 x i32> %x, <i32 2147483647, i32 2147483647, i32 2147483647, i32 2147483647>
%sel = select <4 x i1> %cmp, <4 x i32> %x, <4 x i32> <i32 2147483647, i32 2147483647, i32 2147483647, i32 2147483647>
ret <4 x i32> %sel
}
$ ./opt umax.ll -S | ./llc -o - -mattr=avx
vpmaxud LCPI0_0(%rip), %xmm0, %xmm0
$ ./opt -instcombine umax.ll -S | ./llc -o - -mattr=avx
vpxor %xmm1, %xmm1, %xmm1
vpcmpgtd %xmm0, %xmm1, %xmm1
vmovaps LCPI0_0(%rip), %xmm2 ## xmm2 = [2147483647,2147483647,2147483647,2147483647]
vblendvps %xmm1, %xmm0, %xmm2, %xmm0
Differential Revision: https://reviews.llvm.org/D26096
llvm-svn: 286318
As the test change shows, we can increase the critical path by adding
a 'not' instruction, so make sure that we're actually removing an
instruction if we do this transform.
This transform could also cause us to miss folds of min/max pairs.
llvm-svn: 286315
Previously support had been added for using CodeViewRecordIO
to read (deserialize) CodeView type records. This patch adds
support for writing those same records. With this patch,
reading and writing of CodeView type records finally uses a single
codepath.
Differential Revision: https://reviews.llvm.org/D26253
llvm-svn: 286304
if it is more specific than the one in its DW_AT_specification.
If a static member is an array, the translation unit containing the
member definition may have a more specific type (including its length)
than TUs only seeing the class declaration. This patch adds a
DW_AT_type to the member's DW_TAG_variable in addition to the
DW_AT_specification in these cases. The member type in the
DW_AT_specification still shows the more generic type (without the
length) to avoid defeating type uniquing.
The DWARF standard discourages “duplicating” a DW_AT_type in a member
variable definition but doesn’t explicitly forbid it. Having the more
specific type (with the array length) available is what allows the
debugger to print the contents of a static array member variable.
https://reviews.llvm.org/D26368
rdar://problem/28706946
llvm-svn: 286302
Summary:
There are two variables here that break. This change constrains both of them to
debug builds (via DEBUG() or #ifndef NDEBUG).
Reviewers: bkramer, t.p.northover
Subscribers: mehdi_amini, vkalintiris
Differential Revision: https://reviews.llvm.org/D26421
llvm-svn: 286300
Summary:
This patch uses the same approach added for inline asm in r285513 to
similarly prevent promotion/renaming of locals used or defined in module
level asm.
All static global values defined in normal IR and used in module level asm
should be included on either the llvm.used or llvm.compiler.used global.
The former were already being flagged as NoRename in the summary, and
I've simply added llvm.compiler.used values to this handling.
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: johanengelen, krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26146
llvm-svn: 286297
This addresses PR30746, <https://llvm.org/bugs/show_bug.cgi?id=30746>. The ASan pass iterates over entry-block instructions and checks each alloca whether it's in NonInstrumentedStaticAllocaVec, which is apparently slow. This patch gathers the instructions to move during visitAllocaInst.
Differential Revision: https://reviews.llvm.org/D26380
llvm-svn: 286296
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
llvm-svn: 286291
After instruction selection we perform some checks on each VReg just before
discarding the type information. These checks were assertions before, but that
breaks the fallback path so this patch moves the logic into the main flow and
reports a better error on failure.
llvm-svn: 286289
This completes assembler / disassembler support for all BFP
instructions provided by the floating-point extensions facility.
The instructions added here are not currently used for codegen.
llvm-svn: 286285
Add several instructions that operate on the program mask
or the addressing mode. These are not really needed for
code generation under Linux, but are provided for completeness
for the assembler/disassembler.
llvm-svn: 286284
Add the 16 access registers as LLVM registers. This allows removing
a lot of special cases in the assembler and disassembler where we
were handling access registers; this can all just use the generic
register code now.
Also add a bunch of instructions to operate on access registers,
for assembler/disassembler use only. No change in code generation
intended.
llvm-svn: 286283
Since IMPLIFIT_DEF instructions are omitted in the output, when the output
of an IMPLICIT_DEF instruction is stackified, the resulting register lacks
an explicit push, leading to a push/pop mismatch. Fix this by converting
such IMPLICIT_DEFs into CONST_I32 0 instructions so that they have explicit
pushes.
llvm-svn: 286274
Erasing reverse_iterators is problematic; iterate manually.
While there, keep track of the range of inserted instructions.
It can miss instructions inserted elsewhere, but those are harder
to track.
Differential Revision: http://reviews.llvm.org/D22924
llvm-svn: 286272
For example, it invalidates the domtree, causing assertions
in later passes which need dominator infos. Make it preserve
GlobalsAA, as suggested by Eli.
Differential Revision: https://reviews.llvm.org/D26381
llvm-svn: 286271
Define a couple of additional semantic classes and use them
throughout the .td files to make them more consistent and
more easily readable.
No functional change.
llvm-svn: 286268
This changes the InstRR (and related) patterns to no longer
automatically add an "r" at the end of the mnemonic. This
makes the .td files more obviously understandable, and also
allows using the patterns for those few instructions that
do not follow the *r scheme.
Also add some more sub-formats of the RRF format class, to
match operand names and sequence from the PoP better.
No functional change.
llvm-svn: 286267
Now that we've added instruction format subclasses like
InstRIb, it makes sense to rename the old InstRI to InstRIa.
Similar for InstRX, InstRXY, InstRS, InstRSY, and InstSS.
No functional change.
llvm-svn: 286266
Rework patterns for branches, call & return instructions,
compare-and-branch, compare-and-trap, and conditional move
instructions.
In particular, simplify creation of patterns for the extended
opcodes of instructions that take a CC mask.
Also, use semantical instruction classes for all the instructions
instead of open-coding them in SystemZInstrInfo.td.
Adds a couple of the basic branch instructions (that are unused
for codegen) for the assembler/disassembler.
llvm-svn: 286263
About when we should move a vreg from CurrentNewVRegs to NewVRegs,
if the vreg in CurrentNewVRegs was added into RecoloringCandidate and was
evicted, it shouldn't be added to NewVRegs because its physical register
will be restored at the end of tryLastChanceRecoloring after the recoloring
failed. If the vreg in CurrentNewVRegs was not in RecoloringCandidate, i.e.
it was evicted in selectOrSplitImpl inside tryRecoloringCandidates, its
physical register will not be restored even if the recoloring failed. In
that case, we need to add the vreg to NewVRegs.
Same as r281783, the problem was seen on out-of-tree target and we didn't
have a test case that reproduce the problem with in-tree targets.
llvm-svn: 286259
Summary: In addition, the branch instructions will have proper BB destinations, not offsets, like before.
Reviewers: asl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23718
llvm-svn: 286252
From experiments, discriminator is rarely greater than 127. Here we enforce it to be no greater than 127 so that it will always fit in 1 byte.
llvm-svn: 286245
Fixed an issue with vector usage of TargetLowering::isConstTrueVal / TargetLowering::isConstFalseVal boolean result matching.
The comment said we shouldn't handle constant splat vectors with undef elements. But the the actual code was returning false if the build vector contained no undef elements....
This patch now ignores the number of undefs (getConstantSplatNode will return null if the build vector is all undefs).
The change has also unearthed a couple of missed opportunities in AVX512 comparison code that will need to be addressed.
Differential Revision: https://reviews.llvm.org/D26031
llvm-svn: 286238
Summary:
These are good candidates for jump threading. This enables later opts
(such as InstCombine) to combine instructions from the selects with
instructions out of the selects. SimplifyCFG will fold the select
again if unfolding wasn't worth it.
Patch by James Molloy and Pablo Barrio.
Reviewers: rengolin, haicheng, sebpop
Subscribers: jojo, jmolloy, llvm-commits
Differential Revision: https://reviews.llvm.org/D26391
llvm-svn: 286236
This patch avoids scalarization of CTLZ by instead expanding to use CTPOP (ref: "Hacker's Delight") when the necessary operations are available.
This also adds the necessary cost models for X86 SSE2 targets (the main beneficiary) to ensure vectorization only happens when its useful.
Differential Revision: https://reviews.llvm.org/D25910
llvm-svn: 286233
Under -enable-unsafe-fp-math, SELECT_CC lowering in AArch64
transforms floating point comparisons of the form "a == 0.0 ? 0.0 : x" to
"a == 0.0 ? a : x". But it incorrectly assumes that 'x' and 'a' have
the same type which can lead to a wrong CSEL node that crashes later
due to nonsensical copies.
Differential Revision: https://reviews.llvm.org/D26394
llvm-svn: 286231
This additional information can be used to improve the locations when generating remarks for loops.
Patch by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D25763
llvm-svn: 286227
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106630.html
Move block info block state to a new class, BitstreamBlockInfo.
Clients may set the block info for a particular cursor with the
BitstreamCursor::setBlockInfo() method.
At this point BitstreamReader is not much more than a container for an
ArrayRef<uint8_t>, so remove it and replace all uses with direct uses
of memory buffers.
Differential Revision: https://reviews.llvm.org/D26259
llvm-svn: 286207
Self-referencing PHI nodes need their destination operands to be constrained
because nothing else is likely to do so. For now we just pick a register class
naively.
Patch mostly by Ahmed again.
llvm-svn: 286183
Codegen prepare sinks comparisons close to a user is we have only one register
for conditions. For AMDGPU we have many SGPRs capable to hold vector conditions.
Changed BE to report we have many condition registers. That way IR LICM pass
would hoist an invariant comparison out of a loop and codegen prepare will not
sink it.
With that done a condition is calculated in one block and used in another.
Current behavior is to store workitem's condition in a VGPR using v_cndmask
and then restore it with yet another v_cmp instruction from that v_cndmask's
result. To mitigate the issue a forward propagation of a v_cmp 64 bit result
to an user is implemented. Additional side effect of this is that we may
consume less VGPRs in a cost of more SGPRs in case if holding of multiple
conditions is needed, and that is a clear win in most cases.
llvm-svn: 286171
With this we get a new field in the YAML record if the value being
streamed out has a debug location. For examples, please see the changes
to the tests.
This is then used in opt-viewer to display a link for the callee
function in the inlining remarks.
Differential Revision: https://reviews.llvm.org/D26366
llvm-svn: 286169
Summary:
Some vector loads and stores generated from AArch64 intrinsics alias each other
unnecessarily, preventing better scheduling. We just need to transfer memory
operands during lowering.
Reviewers: mcrosier, t.p.northover, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26313
llvm-svn: 286168
Because we shift the stack pointer by an unknown amount, we need an
additional pointer. In the case where we have variable-size objects
as well, we can't reuse the frame pointer, thus three pointers.
Patch by Jacob Gravelle
Differential Revision: https://reviews.llvm.org/D26263
llvm-svn: 286160
Summary:
In some specific scenarios with well understood operand bundle types
(like `"deopt"`) it may be possible to go ahead and convert recursion to
iteration, but TailRecursionElimination does not have that logic today
so avoid doing the right thing for now.
I need some input on whether `"funclet"` operand bundles should also
block tail recursion elimination. If not, I'll allow TRE across calls
with `"funclet"` operand bundles and add a test case.
Reviewers: rnk, majnemer, nlewycky, ahatanak
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26270
llvm-svn: 286147
Although rare, atomic accesses to floating-point types seem to be valid, i.e. `%a = load atomic float ...`. The TSan instrumentation pass however tries to emit inttoptr, which is incorrect, we should use a bitcast here. Anyway, IRBuilder already has a convenient helper function for this.
Differential Revision: https://reviews.llvm.org/D26266
llvm-svn: 286135
If the branch was on a read-undef of vcc, passes that used
analyzeBranch to invert the branch condition wouldn't preserve
the undef flag resulting in a verifier error.
Fixes verifier failures in a future commit.
Also fix verifier error when inserting copy for vccz
corruption bug.
llvm-svn: 286133
Argument evaluation order is one of the edge cases where Clang differs
from GCC, yielding different IR depending on which compiler LLVM was
built with. Make the order deterministic and tune the test to actually
verify the order instead of trying to hide it.
llvm-svn: 286126