This diff uncovers an ASAN leak in getOrCreateJumpTable:
```
Indirect leak of 264 byte(s) in 1 object(s) allocated from:
#1 0x4f6e48c in llvm::bolt::BinaryContext::getOrCreateJumpTable ...
```
The removal of an assertion needs to be accompanied by proper deallocation of
a `JumpTable` object for which `analyzeJumpTable` was unsuccessful.
This reverts commit 52cd00cabf.
Disassembly and branch target analysis are not decoupled, so any
analysis that depends on disassembly may not operate properly.
In specific, analyzeJumpTable uses instruction bounds check property.
A jump table was analyzed twice: (a) during disassembly, and (b) after
disassembly, so there are potentially some mismatched results.
In this update, functions that access JTs which fail the second check
will be marked as ignored.
Test Plan:
```
ninja check-bolt
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D130431
This patch adds a dedicated class to keep track of each function's
layout. It also lays the groundwork for splitting functions into
multiple fragments (as opposed to a strict hot/cold split).
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129518
We previously support split jump table, where some jump table entries
target different fragments of same function. In this fix, we provide
support for another type of intra-indirect transfer: landing pad.
When C++ exception handling is used, compiler emits .gcc_except_table
that describes the location of catch block (landing pad) for specific
range that potentially invokes a throw(). Normally landing pads reside
in the function, but with -fsplit-machine-functions, landing pads can
be moved to another fragment. The intuition is, landing pads are rarely
executed, so compiler can move them to .cold section.
This update will mark all fragments that have landing pad to another
fragment as non-simple, and later propagate non-simple to all related
fragments.
This update also includes one manual test case: split-landing-pad.s
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D128561
As we are moving towards support for multiple fragments, loops that
iterate over all basic blocks of a function, but do not depend on the
order of basic blocks in the final layout, should iterate over binary
functions directly, rather than the layout.
Eventually, all loops using the layout list should either iterate over
the function, or be aware of multiple layouts. This patch replaces
references to binary function's block layout with the binary function
itself where only little code changes are necessary.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D129585
There are two assumptions regarding jump table:
(a) It is accessed by only one fragment, say, Parent
(b) All entries target instructions in Parent
For (a), BOLT stores jump table entries as relative offset to Parent.
For (b), BOLT treats jump table entries target somewhere out of Parent
as INVALID_OFFSET, including fragment of same split function.
In this update, we extend (a) and (b) to include fragment of same split
functinon. For (a), we store jump table entries in absolute offset
instead. In addition, jump table will store all fragments that access
it. A fragment uses this information to only create label for jump table
entries that target to that fragment.
For (b), using absolute offset allows jump table entries to target
fragments of same split function, i.e., extend support for split jump
table. This can be done using relocation (fragment start/size) and
fragment detection heuristics (e.g., using symbol name pattern for
non-stripped binaries).
For jump table targets that can only be reached by one fragment, we
mark them as local label; otherwise, they would be the secondary
function entry to the target fragment.
Test Plan
```
ninja check-bolt
```
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D128474
The gold linker veneers are written between functions without symbols,
so we to handle it specially in BOLT.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D129260
Since we now have +all feature for AArch64 disassembler, we can use it
in BOLT and allow it to disassemble all ARM instructions supported by LLVM.
Reviewed by: rafauler
Differential Revision: https://reviews.llvm.org/D129139
Change how function score is calculated and provide more
detailed statistics when reporting back frame optimizer and shrink
wrapping results. In this new statistics, we provide dynamic coverage
numbers. The main metric for shrink wrapping is the number of executed
stores that were saved because of shrink wrapping (push instructions
that were either entirely moved away from the hot block or converted
to a stack adjustment instruction). There is still a number of reduced
load instructions (pop) that we are not counting at the moment. Also
update alloc combiner to report dynamic numbers, as well as frame
optimizer.
For debugging purposes, we also include a list of top 10 functions
optimized by shrink wrapping. These changes are aimed at better
understanding the impact of shrink wrapping in a given binary.
We also remove an assertion in dataflow analysis to do not choke on
empty functions (which makes no sense).
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D126111
Summary:
Introduce NeverAlign fragment type.
The intended usage of this fragment is to insert it before a pair of
macro-op fusion eligible instructions. NeverAlign fragment ensures that
the next fragment (first instruction in the pair) does not end at a
given alignment boundary by emitting a minimal size nop if necessary.
In effect, it ensures that a pair of macro-fusible instructions is not
split by a given alignment boundary, which is a precondition for
macro-op fusion in modern Intel Cores (64B = cache line size, see Intel
Architecture Optimization Reference Manual, 2.3.2.1 Legacy Decode
Pipeline: Macro-Fusion).
This patch introduces functionality used by BOLT when emitting code with
MacroFusion alignment already in place.
The use case is different from BoundaryAlign and instruction bundling:
- BoundaryAlign can be extended to perform the desired alignment for the
first instruction in the macro-op fusion pair (D101817). However, this
approach has higher overhead due to reliance on relaxation as
BoundaryAlign requires in the general case - see
https://reviews.llvm.org/D97982#2710638.
- Instruction bundling: the intent of NeverAlign fragment is to prevent
the first instruction in a pair ending at a given alignment boundary, by
inserting at most one minimum size nop. It's OK if either instruction
crosses the cache line. Padding both instructions using bundles to not
cross the alignment boundary would result in excessive padding. There's
no straightforward way to request instruction bundling to avoid a given
end alignment for the first instruction in the bundle.
LLVM: https://reviews.llvm.org/D97982
Manual rebase conflict history:
https://phabricator.intern.facebook.com/D30142613
Test Plan: sandcastle
Reviewers: #llvm-bolt
Subscribers: phabricatorlinter
Differential Revision: https://phabricator.intern.facebook.com/D31361547
Added support for mixing monolithic DWARF5 with legacy DWARF, and monolithic legacy and DWARF5 split dwarf.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D128232
Don't dump dot CFG graph for functions that should not be printed.
Reviewed By: rafauler, maksfb
Differential Revision: https://reviews.llvm.org/D128699
This reverts commit 425dda76e9.
This commit is currently causing BOLT to crash in one of our
binaries and needs a bit more checking to make sure it is safe
to land.
The gold linker veneers are written between functions without symbols,
so we to handle it specially in BOLT.
Vladislav Khmelevsky,
Advanced Software Technology Lab, Huawei
Differential Revision: https://reviews.llvm.org/D128082
Add functionality to allow splitting code with C++ exceptions in shared
libraries and PIEs. To overcome a limitation in exception ranges format,
for functions with fragments spanning multiple sections, add trampoline
landing pads in the same section as the corresponding throwing range.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D127936
Resolve a crash related to split functions
Due to split function optimization, a function can be divided to two
fragments, and both fragments can access same jump table. This
violates the assumption that a jump table can only have one parent
function, which causes a crash during instrumentation.
We want to support the case: different functions cannot access same
jump tables, but different fragments of same function can!
As all fragments are from same function, we point JT::Parent to one
specific fragment. Right now it is the first disassembled fragment, but
we can point it to the function's main fragment later.
Functions are disassembled sequentially. Previously, at the end of
processing a function, JT::OffsetEntries is cleared, so other fragment
can no longer reuse JT::OffsetEntries. To extend the support for split
function, we only clear JT::OffsetEntries after all functions are
disassembled.
Let say A.hot and A.cold access JT of three targets {X, Y, Z}, where
X and Y are in A.hot, and Z is in A.cold. Suppose that A.hot is
disassembled first, JT::OffsetEntries = {X',Y',INVALID_OFFSET}. When
A.cold is disassembled, it cannot reuse JT::OffsetEntries above due to
different fragment start. A simple solution:
A.hot = {X',Y',INVALID_OFFSET}
A.cold = {INVALID_OFFSET, INVALID_OFFSET, INVALID_OFFSET}
We update the assertion to allow different fragments of same function
to get the same JumpTable object.
Potential improvements:
A.hot = {X',Y',INVALID_OFFSET}
A.cold = {INVALID_OFFSET, INVALID_OFFSET, Z'}
The main issue is A.hot and A.cold have separate CFGs, thus jump table
targets are still constrained within fragment bounds.
Future improvements:
A.hot = {X, Y, Z}
A.cold = {X, Y, Z}
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D127924
BC::printInstruction(s) has many uses of Function ptr if it's available:
# printing CFI instructions (unconditional)
# printing debug line information (-print-debug-info)
# printing instruction relocations (-print-relocations)
Enable these uses by passing Function ptr from the primary printing entry point:
BinaryBasicBlock::dump.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D126916
Supress failed to analyze relocations warning for R_AARCH64_LD_PREL_LO19
relocation. This relocation is mostly used to get value stored in CI and
we don't process it since we are caluclating target address using the
instruction value in evaluateMemOperandTarget().
Differential Revision: https://reviews.llvm.org/D127413
Mark fragments related to split jump table as non-simple.
A function could be splitted into hot and cold fragments. A split jump table is
challenging for correctly reconstructing control flow graphs, so it was marked
as ignored. This update marks those fragments as non-simple, allowing them
to be printed and partial control flow graph construction.
Test Plan:
```
llvm-lit -a tools/bolt/test/X86/split-func-icf.s
```
This test has two functions (main, main2), each has a jump table target to the
same cold portion main2.cold.1(*2). We try to print out only this cold portion.
If it is ignored, it cannot be printed. If it is non-simple, it can be printed. We
verify that it can be printed.
Reviewed By: Amir
Differential Revision: https://reviews.llvm.org/D127464
This patch adds getFirstInstructionOffset method for BinaryFunction
which is used to properly handle cases where data is at zero offset in
a function. The main change is that we add basic block at first
instruction offset when disassembling, which prevents assertion
failures in buildCFG.
Reviewed By: yota9, rafauler
Differential Revision: https://reviews.llvm.org/D127111
The linker can convert instructions with GOTPCRELX relocations into a
form that uses an absolute addressing with an immediate. BOLT needs to
recognize such conversions and symbolize the immediates.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D126747
Use color coding to distinguish nodes:
- Entry nodes have bold border
- Scalar (non-loopy) code is milk white
- Outer loops are light yellow
- Innermost loops are light blue
`-print-loops` needs to be enabled to provide BinaryLoopInfo.
Examples:
{F23170673}
{F23170680}
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D126248
Reuse the option `-dot-tooltip-code` to put block instructions into the label.
This way, the instructions are displayed by default when used with dot viewer.
When the .dot file is used with dot2html, instructions are hidden by default,
and are shown by clicking on a node.
{F23169510}
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D126237
Summary:
While disassembling instructions, we need to replace certain immediate
operands with symbols. This symbolizing process relies on reading
relocations against instructions. However, some X86 instructions can
have multiple immediate operands and up to two relocations against
them. Thus, correctly matching a relocation to an operand is not
always possible without knowing the operand offset within the
instruction.
Luckily, LLVM provides an interface for passing the required info from
the disassembler via a virtual MCSymbolizer class. Creating a
target-specific version allows a precise matching of relocations to
operands.
This diff adds X86MCSymbolizer class that performs X86-specific
symbolizing (currently limited to non-branch instructions).
Reviewers: yota9, Amir, ayermolo, rafauler, zr33
Differential Revision: https://reviews.llvm.org/D120928
Fix BOLT's constant island mapping when a constant island marked by $d
spans multiple functions. Currently, because BOLT only marks the
constant island in the first function where $d is located, if the next
function contains data at its start, BOLT will miss the data and try
to disassemble it. This patch adds code to explicitly go through all
symbols between $d and $x markers and mark their respective offsets as
data, which stops BOLT from trying to disassemble data. It also adds
MarkerType enum and refactors related functions.
Reviewed By: yota9, rafauler
Differential Revision: https://reviews.llvm.org/D126177
Addresses the warnings emitted by Apple Clang 13.1.6 (Xcode 13.3.1).
Tip @tschuett issue #55404.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D125733
Split up the BinaryLoop header and move BinaryDominatorTree into its own header,
preparing it for a standalone use.
Reviewed By: rafauler
Differential Revision: https://reviews.llvm.org/D125664