Commit Graph

3 Commits

Author SHA1 Message Date
Maksim Panchenko d648aa1b8e [BOLT][TEST] Use double dash flags in tests
Replace a single dash with a double dash for options that have more
than a single letter.

llvm-bolt-wrapper.py has special treatment for output options such as
"-o" and "-w" causing issues when a single dash is used, e.g. for
"-write-dwp". The wrapper can be fixed as well, but using a double dash
has other advantages as well.

Reviewed By: rafauler

Differential Revision: https://reviews.llvm.org/D127538
2022-06-10 16:27:33 -07:00
Maksim Panchenko 5296b6d12a [BOLT] Change symbol handling for secondary function entries
Summary:
Some functions could be called at an address inside their function body.
Typically, these functions are written in assembly as C/C++ does not
have a multi-entry function concept. The addresses inside a function
body that could be referenced from outside are called secondary entry
points.

In BOLT we support processing functions with secondary/multiple entry
points. We used to mark basic blocks representing those entry points
with a special flag. There was only one problem - each basic block has
exactly one MCSymbol associated with it, and for the most efficient
processing we prefer that symbol to be local/temporary. However, in
certain scenarios, e.g. when running in non-relocation mode, we need
the entry symbol to be global/non-temporary.

We could create global symbols for secondary points ahead of time when
the entry point is marked in the symbol table. But not all such entries
are properly marked. This means that potentially we could discover an
entry point only after disassembling the code that references it, and
it could happen after a local label was already created at the same
location together with all its references. Replacing the local symbol
and updating the references turned out to be an error-prone process.

This diff takes a different approach. All basic blocks are created with
permanently local symbols. Whenever there's a need to add a secondary
entry point, we create an extra global symbol or use an existing one
at that location. Containing BinaryFunction maps a local symbol of a
basic block to the global symbol representing a secondary entry point.
This way we can tell if the basic block is a secondary entry point,
and we emit both symbols for all secondary entry points. Since secondary
entry points are quite rare, the overhead of this approach is minimal.

Note that the same location could be referenced via local symbol from
inside a function and via global entry point symbol from outside.
This is true for both primary and secondary entry points.

(cherry picked from FBD21150193)
2020-04-19 22:29:54 -07:00
Rafael Auler 12380b8b06 Fix assembly after adding entry points
Summary:
When a given function B, located after function A, references
one of A's basic blocks, it registers a new global symbol at the
reference address and update A's Labels vector via
BinaryFunction::addEntryPoint(). However, we don't update A's branch
targets at this point. So we end up with an inconsistent CFG, where the
basic block names are global symbols, but the internal branch operands
are still referencing the old local name of the corresponding blocks
that got promoted to an entry point. This patch fix this by detecting
this situation in addEntryPoint and iterating over all instructions,
looking for references to the old symbol and replacing them to use the
new global symbol (since this is now an entry point).

Fixes facebookincubator/BOLT#26

(cherry picked from FBD8728407)
2018-07-03 11:57:46 -07:00