This patch gives basic parsing and semantic support for
"masked taskloop simd" construct introduced in OpenMP 5.1 (section 2.16.8)
Differential Revision: https://reviews.llvm.org/D128693
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
Now that we have the sanitizer metadata that is actually on the global
variable, and now that we use debuginfo in order to do symbolization of
globals, we can delete the 'llvm.asan.globals' IR synthesis.
This patch deletes the 'location' part of the __asan_global that's
embedded in the binary as well, because it's unnecessary. This saves
about ~1.7% of the optimised non-debug with-asserts clang binary.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D127911
Information in the function `Prologue Data` is intentionally opaque.
When a function with `Prologue Data` is duplicated. The self (global
value) references inside `Prologue Data` is still pointing to the
original function. This may cause errors like `fatal error: error in backend: Cannot represent a difference across sections`.
This patch detaches the information from function `Prologue Data`
and attaches it to a function metadata node.
This and D116130 fix https://github.com/llvm/llvm-project/issues/49689.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D115844
Implementing target in_reduction by wrapping target task with host task with in_reduction and if clause. This is in compliance with OpenMP 5.0 section: 2.19.5.6.
So, this
```
for (int i=0; i<N; i++) {
res = res+i
}
```
will become
```
#pragma omp task in_reduction(+:res) if(0)
#pragma omp target map(res)
for (int i=0; i<N; i++) {
res = res+i
}
```
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D125669
These intrinsics are now fundemental for SVE code generation and have been
present for a year and a half, hence move them out of the experimental
namespace.
Differential Revision: https://reviews.llvm.org/D127976
Some RISC-V builtins requires ICE operands. We should call
getIntegerConstantExpr instead of EmitScalarExpr to match other
targets.
This was made a little trickier by the vector intrinsics not having
a valid type string, but there are two that have ICE operands so
I specified them manually.
Before C99 introduced flexible array member, common practice uses size-1 array
to emulate FAM, e.g. https://github.com/python/cpython/issues/94250
As a result, -fsanitize=array-bounds instrumentation skipped such structures
as a workaround (from 539e4a77bb).
D126864 accidentally dropped the workaround. Add it back with tests.
This patch gives basic parsing and semantic support for "masked taskloop"
construct introduced in OpenMP 5.1 (section 2.16.7)
Differential Revision: https://reviews.llvm.org/D128478
Add option -fhip-kernel-arg-name to emit kernel argument
name metadata, which is needed for certain HIP applications.
Reviewed by: Artem Belevich, Fangrui Song, Brian Sumner
Differential Revision: https://reviews.llvm.org/D128022
Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f6324983 but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
n = 3: any trailing array member of undefined size is a flexible array member (strict c99 conformance)
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
Simplify debug info back to just "limited" or "full" by rolling the ctor
type homing fully into the "limited" debug info.
Also fix a bug I found along the way that was causing ctor type homing
to kick in even when something could be vtable homed (where vtable
homing is stronger/more effective than ctor homing) - fixing at the same
time as it keeps the tests (that were testing only "limited non ctor"
homing and now test ctor homing) passing.
This patch is needed because developers expect "GCCBuiltin" items to be the GCC intrinsics equivalent and not the Clang internals.
Reviewed By: #libc_abi, RKSimon, xbolva00
Differential Revision: https://reviews.llvm.org/D127460
Previously `#pragma STDC FENV_ACCESS ON` always set dynamic rounding
mode and strict exception handling. It is not correct in the presence
of other pragmas that also modify rounding mode and exception handling.
For example, the effect of previous pragma FENV_ROUND could be
cancelled, which is not conformant with the C standard. Also
`#pragma STDC FENV_ACCESS OFF` turned off only FEnvAccess flag, leaving
rounding mode and exception handling unchanged, which is incorrect in
general case.
Concrete rounding and exception mode depend on a combination of several
factors like various pragmas and command-line options. During the review
of this patch an idea was proposed that the semantic actions associated
with such pragmas should only set appropriate flags. Actual rounding
mode and exception handling should be calculated taking into account the
state of all relevant options. In such implementation the pragma
FENV_ACCESS should not override properties set by other pragmas but
should set them if such setting is absent.
To implement this approach the following main changes are made:
- Field `FPRoundingMode` is removed from `LangOptions`. Actually there
are no options that set it to arbitrary rounding mode, the choice was
only `dynamic` or `tonearest`. Instead, a new boolean flag
`RoundingMath` is added, with the same meaning as the corresponding
command-line option.
- Type `FPExceptionModeKind` now has possible value `FPE_Default`. It
does not represent any particular exception mode but indicates that
such mode was not set and default value should be used. It allows to
distinguish the case:
{
#pragma STDC FENV_ACCESS ON
...
}
where the pragma must set FPE_Strict, from the case:
{
#pragma clang fp exceptions(ignore)
#pragma STDC FENV_ACCESS ON
...
}
where exception mode should remain `FPE_Ignore`.
- Class `FPOptions` has now methods `getRoundingMode` and
`getExceptionMode`, which calculates the respective properties from
other specified FP properties.
- Class `LangOptions` has now methods `getDefaultRoundingMode` and
`getDefaultExceptionMode`, which calculates default modes from the
specified options and should be used instead of `getRoundingMode` and
`getFPExceptionMode` of the same class.
Differential Revision: https://reviews.llvm.org/D126364
This reverts commits:
d3ddc251acd90eecff5c
It turned out there're some options turned on that leaks the memory
intentionally, which fires the asan builds after the patch being
applied. The issue has been fixed in
7bc00ce5cd, so reland it.
Below is the original commit message:
The intent of this patch is to selectively carry some states over to
the Builder so we won't lose the information of the previous symbols.
This used to be several downstream patches of Cling, it aims to fix
errors in Clang Interpreter when trying to use inline functions.
Before this patch:
clang-repl> inline int foo() { return 42;}
clang-repl> int x = foo();
JIT session error: Symbols not found: [ _Z3foov ]
error: Failed to materialize symbols:
{ (main, { x, $.incr_module_1.__inits.0, __orc_init_func.incr_module_1 }) }
Co-authored-by: Axel Naumann <Axel.Naumann@cern.ch>
Signed-off-by: Jun Zhang <jun@junz.org>
Instead, just pop the cleanups at the end of the asm statement.
This fixes an assertion failure in BuildStmtExpr. It also fixes a bug
where blocks and C compound literals were destructed at the end of the
asm statement instead of at the end of the enclosing scope.
Differential Revision: https://reviews.llvm.org/D125936
XL considers different vector types to be incompatible with each other.
For example assignment between variables of types vector float and vector
long long or even vector signed int and vector unsigned int are diagnosed.
clang, however does not diagnose such cases and does a simple bitcast between
the two types. This could easily result in program errors. This patch is to
fix the implicit casts in altivec.h so that there is no incompatible vector
type errors whit -fno-lax-vector-conversions, this is the prerequisite patch
to switch the default to -fno-lax-vector-conversions later.
Reviewed By: nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D124093
This reverts commits:
d3ddc251acd90eecff5c
This relands below commit with asan fix:
The intent of this patch is to selectively carry some states over to
the Builder so we won't lose the information of the previous symbols.
This used to be several downstream patches of Cling, it aims to fix
errors in Clang Interpreter when trying to use inline functions.
Before this patch:
clang-repl> inline int foo() { return 42;}
clang-repl> int x = foo();
JIT session error: Symbols not found: [ _Z3foov ]
error: Failed to materialize symbols:
{ (main, { x, $.incr_module_1.__inits.0, __orc_init_func.incr_module_1 }) }
Co-authored-by: Axel Naumann <Axel.Naumann@cern.ch>
Signed-off-by: Jun Zhang <jun@junz.org>
Differential Revision: https://reviews.llvm.org/D127730
RE-LAND (reverts a revert):
This reverts commit 8e1f47b596.
This patch adds generation of sanitizer metadata attributes (which were
added in D126100) to the clang frontend.
We still currently generate the llvm.asan.globals that's consumed by
the IR pass, but the plan is to eventually migrate off of that onto
purely debuginfo and these IR attributes.
Reviewed By: vitalybuka, kstoimenov
Differential Revision: https://reviews.llvm.org/D126929
This patch adds generation of sanitizer metadata attributes (which were
added in D126100) to the clang frontend.
We still currently generate the `llvm.asan.globals` that's consumed by
the IR pass, but the plan is to eventually migrate off of that onto
purely debuginfo and these IR attributes.
Reviewed By: vitalybuka, kstoimenov
Differential Revision: https://reviews.llvm.org/D126929
The option mdefault-visibility-export-mapping is created to allow
mapping default visibility to an explicit shared library export
(e.g. dllexport). Exactly how and if this is manifested is target
dependent (since it depends on how they map dllexport in the IR).
Three values are provided for the option:
* none: the default and behavior without the option, no additional export linkage information is created.
* explicit: add the export for entities with explict default visibility from the source, including RTTI
* all: add the export for all entities with default visibility
This option is useful for targets which do not export symbols as part of
their usual default linkage behaviour (e.g. AIX), such targets
traditionally specified such information in external files (e.g. export
lists), but this mapping allows them to use the visibility information
typically used for this purpose on other (e.g. ELF) platforms.
This relands commit: 8c8a2679a2
with fixes for the compile time and assert problems that were reported
by:
* making shouldMapVisibilityToDLLExport inline and provide an early return
in the case where no mapping is in effect (aka non-AIX platforms)
* don't try to export RTTI types which we will give internal linkage to
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D126340
Previously, omitting unnecessary DWARF unwinds was only done in two
cases:
* For Darwin + aarch64, if no DWARF unwind info is needed for all the
functions in a TU, then the `__eh_frame` section would be omitted
entirely. If any one function needed DWARF unwind, then MC would emit
DWARF unwind entries for all the functions in the TU.
* For watchOS, MC would omit DWARF unwind on a per-function basis, as
long as compact unwind was available for that function.
This diff makes it so that we omit DWARF unwind on a per-function basis
for Darwin + aarch64 as well. In addition, we introduce the flag
`--emit-dwarf-unwind=` which can toggle between `always`,
`no-compact-unwind` (only emit DWARF when CU cannot be emitted for a
given function), and the target platform `default`. `no-compact-unwind`
is particularly useful for newer x86_64 platforms: we don't want to omit
DWARF unwind for x86_64 in general due to possible backwards compat
issues, but we should make it possible for people to opt into this
behavior if they are only targeting newer platforms.
**Motivation:** I'm working on adding support for `__eh_frame` to LLD,
but I'm concerned that we would suffer a perf hit. Processing compact
unwind is already expensive, and that's a simpler format than EH frames.
Given that MC currently produces one EH frame entry for every compact
unwind entry, I don't think processing them will be cheap. I tried to do
something clever on LLD's end to drop the unnecessary EH frames at parse
time, but this made the code significantly more complex. So I'm looking
at fixing this at the MC level instead.
**Addendum:** It turns out that there was a latent bug in the X86
backend when `OmitDwarfIfHaveCompactUnwind` is naively enabled, which is
not too surprising given that this combination has not been heretofore
used.
For functions that have unwind info that cannot be encoded with CU, MC
would end up dropping both the compact unwind entry (OK; existing
behavior) as well as the DWARF entries (not OK). This diff fixes things
so that we emit the DWARF entry, as well as a CU entry with encoding
`UNWIND_X86_MODE_DWARF` -- this basically tells the unwinder to look for
the DWARF entry. I'm not 100% sure the `UNWIND_X86_MODE_DWARF` CU entry
is necessary, this was the simplest fix. ld64 seems to be able to handle
both the absence and presence of this CU entry. Ultimately ld64 (and
LLD) will synthesize `UNWIND_X86_MODE_DWARF` if it is absent, so there
is no impact to the final binary size.
Reviewed By: davide, lhames
Differential Revision: https://reviews.llvm.org/D122258
In the same spirit as D73543 and in reply to https://reviews.llvm.org/D126768#3549920 this patch is adding support for `__builtin_memset_inline`.
The idea is to get support from the compiler to easily write efficient memory function implementations.
This patch could be split in two:
- one for the LLVM part adding the `llvm.memset.inline.*` intrinsics.
- and another one for the Clang part providing the instrinsic as a builtin.
Differential Revision: https://reviews.llvm.org/D126903
By both AAPCS32 and AAPCS64, the test for whether an aggregate
qualifies as homogeneous (either HFA or HVA) is based on the data
layout alone. So any logical member of the structure that does not
affect the data layout also should not affect homogeneity. In
particular, an empty bitfield ('int : 0') should make no difference.
In fact, clang considered it to make a difference in C but not in C++,
and justified that policy as compatible with gcc. But that's
considered a bug in gcc as well (at least for Arm targets), and it's
fixed in gcc 12.1.
This fix mimics gcc's: zero-sized bitfields are now ignored in all
languages for the Arm (32- and 64-bit) ABIs. But I've left the
previous behaviour unchanged in other ABIs, by means of adding an
ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate query
method which the Arm subclasses override.
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D127197
The intent of this patch is to selectively carry some states over to
the Builder so we won't lose the information of the previous symbols.
This used to be several downstream patches of Cling, it aims to fix
errors in Clang Interpreter when trying to use inline functions.
Before this patch:
clang-repl> inline int foo() { return 42;}
clang-repl> int x = foo();
JIT session error: Symbols not found: [ _Z3foov ]
error: Failed to materialize symbols:
{ (main, { x, $.incr_module_1.__inits.0, __orc_init_func.incr_module_1 }) }
Co-authored-by: Axel Naumann <Axel.Naumann@cern.ch>
Signed-off-by: Jun Zhang <jun@junz.org>
Differential Revision: https://reviews.llvm.org/D126781
D83592 added comments to be part of skipped regions, and as part of that, it
also shrinks a skipped range if it spans a line that contains a non-comment
token. This is done by `adjustSkippedRange`.
The `adjustSkippedRange` currently runs on skipped regions that are not
comments, causing a 5min regression while building a big C++ files without any
comments.
Fix the compile time introduced in D83592 by tagging SkippedRange with kind
information and use that to decide what needs additional processing.
Differential Revision: https://reviews.llvm.org/D127338
Originally broken by me in D122608, this is a regression where we
attempt to replace an extern-C thing with 'itself'. The problem is that
we end up deleting it, causing the value to fail when it gets put into
llvm.used.
DebugTypeVisitor
This recommits d1346e2. I've added a line to the test case to enable it
only on assert builds.
Differential Revision: https://reviews.llvm.org/D125839
A variable with `weak` attribute signifies that it can be replaced with
a "strong" symbol link time. Therefore it must not emitted with
"weak_odr" linkage, as that allows the backend to use its value in
optimizations.
The frontend already considers weak const variables as
non-constant (note_constexpr_var_init_weak diagnostic) so this change
makes frontend and backend consistent.
This commit reverses the
f49573d1 weak globals that are const should get weak_odr linkage.
commit from 2009-08-05 which introduced this behavior. Unfortunately
that commit doesn't provide any details on why the change was made.
This was discussed in
https://discourse.llvm.org/t/weak-attribute-semantics-on-const-variables/62311
Differential Revision: https://reviews.llvm.org/D126324
This patch adds the codegen support for `atomic compare capture` in clang.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D120290
This patch removes all `IgnoreImpCasts` in Sema, and only uses it if necessary. If the expression is not of the same type as the pointer value, a cast is inserted.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D126602
This caused assertions, see comment on the code review:
llvm/clang/lib/AST/Decl.cpp:1510:
clang::LinkageInfo clang::LinkageComputer::getLVForDecl(const clang::NamedDecl *, clang::LVComputationKind):
Assertion `D->getCachedLinkage() == LV.getLinkage()' failed.
> The option mdefault-visibility-export-mapping is created to allow
> mapping default visibility to an explicit shared library export
> (e.g. dllexport). Exactly how and if this is manifested is target
> dependent (since it depends on how they map dllexport in the IR).
>
> Three values are provided for the option:
>
> * none: the default and behavior without the option, no additional export linkage information is created.
> * explicit: add the export for entities with explict default visibility from the source, including RTTI
> * all: add the export for all entities with default visibility
>
> This option is useful for targets which do not export symbols as part of
> their usual default linkage behaviour (e.g. AIX), such targets
> traditionally specified such information in external files (e.g. export
> lists), but this mapping allows them to use the visibility information
> typically used for this purpose on other (e.g. ELF) platforms.
>
> Reviewed By: MaskRay
>
> Differential Revision: https://reviews.llvm.org/D126340
This reverts commit 8c8a2679a2.
We use the `OffloadBinary` to create binary images of offloading files
and their corresonding metadata. This patch changes this to inherit from
the base `Binary` class. This allows us to create and insepect these
more generically. This patch includes all the necessary glue to
implement this as a new binary format, along with added the magic bytes
we use to distinguish the offloading binary to the `file_magic`
implementation.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D126812
The option mdefault-visibility-export-mapping is created to allow
mapping default visibility to an explicit shared library export
(e.g. dllexport). Exactly how and if this is manifested is target
dependent (since it depends on how they map dllexport in the IR).
Three values are provided for the option:
* none: the default and behavior without the option, no additional export linkage information is created.
* explicit: add the export for entities with explict default visibility from the source, including RTTI
* all: add the export for all entities with default visibility
This option is useful for targets which do not export symbols as part of
their usual default linkage behaviour (e.g. AIX), such targets
traditionally specified such information in external files (e.g. export
lists), but this mapping allows them to use the visibility information
typically used for this purpose on other (e.g. ELF) platforms.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D126340
Without this patch, arguments to the
`llvm::OpenMPIRBuilder::AtomicOpValue` initializer are reversed.
Reviewed By: ABataev, tianshilei1992
Differential Revision: https://reviews.llvm.org/D126619
This patch adds !nosanitize metadata to FixedMetadataKinds.def, !nosanitize indicates that LLVM should not insert any sanitizer instrumentation.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D126294
C++ generated code with huge amount of switch cases chokes badly while emitting
coverage mapping, in our specific testcase (~72k cases), it won't stop after hours.
After this change, the frontend job now finishes in 4.5s and shrinks down `@__covrec_`
by 288k when compared to disabling simplification altogether.
There's probably no good way to create a testcase for this, but it's easy to
reproduce, just add thousands of cases in the below switch, and build with
`-fprofile-instr-generate -fcoverage-mapping`.
```
enum type : int {
FEATURE_INVALID = 0,
FEATURE_A = 1,
...
};
const char *to_string(type e) {
switch (e) {
case type::FEATURE_INVALID: return "FEATURE_INVALID";
case type::FEATURE_A: return "FEATURE_A";}
...
}
```
Differential Revision: https://reviews.llvm.org/D126345
Refactor the code that handles the align clause of 'omp allocate' so
it can be used with globals as well as local variables.
Differential Revision: https://reviews.llvm.org/D126426
CUDA requires that static variables be visible to the host when
offloading. However, The standard semantics of a stiatc variable dictate
that it should not be visible outside of the current file. In order to
access it from the host we need to perform "externalization" on the
static variable on the device. This requires generating a semi-unique
name that can be affixed to the variable as to not cause linker errors.
This is currently done using the CUID functionality, an MD5 hash value
set up by the clang driver. This allows us to achieve is mostly unique
ID that is unique even between multiple compilations of the same file.
However, this is not always availible. Instead, this patch uses the
unique ID from the file to generate a unique symbol name. This will
create a unique name that is consistent between the host and device side
compilations without requiring the CUID to be entered by the driver. The
one downside to this is that we are no longer stable under multiple
compilations of the same file. However, this is a very niche use-case
and is not supported by Nvidia's CUDA compiler so it likely to be good
enough.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125904
This creates an entry with address=nullptr and flag=0x80.
When an 'omp_all_memory' entry is specified any other 'out' or
'inout' entries are not needed and are not passed to the runtime.
Differential Revision: https://reviews.llvm.org/D126321
Adds support for the reserved locator 'omp_all_memory' for use
in depend clauses with 'out' or 'inout' dependence-types.
Differential Revision: https://reviews.llvm.org/D125828
https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=msvc-170
unsigned char __readx18byte(unsigned long)
unsigned short __readx18word(unsigned long)
unsigned long __readx18dword(unsigned long)
unsigned __int64 __readx18qword(unsigned long)
Given the lack of documentation of the intrinsics, we chose to align the offset with just
`CharUnits::One()` when calling `IRBuilderBase::CreateAlignedLoad()`
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D126024
https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=msvc-170
void __writex18byte(unsigned long, unsigned char)
void __writex18word(unsigned long, unsigned short)
void __writex18dword(unsigned long, unsigned long)
void __writex18qword(unsigned long, unsigned __int64)
Given the lack of documentation of the intrinsics, we chose to align the offset with just
`CharUnits::One()` when calling `IRBuilderBase::CreateAlignedStore()`.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D126023
Support for `__attribute__((no_builtin("foo")))` was added in https://reviews.llvm.org/D68028,
but builtins were still being used even when the attribute was placed on a function.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D124701
Allows emitting define amdgpu_kernel void @func() IR from C or C++.
This replaces the current workflow which is to write a stub in opencl that
calls an external C function implemented in C++ combined through llvm-link.
Calling the resulting function still requires a manual implementation of the
ABI from the host side. The primary application is for more rapid debugging
of the amdgpu backend by permuting a C or C++ test file instead of manually
updating an IR file.
Implementation closely follows D54425. Non-amd reviewers from there.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D125970
Fix __has_builtin to return 1 only if the requested target features
of a builtin are enabled by refactoring the code for checking
required target features of a builtin and use it in evaluation
of __has_builtin.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D125829
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.
The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.
Differential Revision: https://reviews.llvm.org/D125557
An upcoming patch will extend llvm-symbolizer to provide the source line
information for global variables. The goal is to move AddressSanitizer
off of internal debug info for symbolization onto the DWARF standard
(and doing a clean-up in the process). Currently, ASan reports the line
information for constant strings if a memory safety bug happens around
them. We want to keep this behaviour, so we need to emit debuginfo for
these variables as well.
Reviewed By: dblaikie, rnk, aprantl
Differential Revision: https://reviews.llvm.org/D123534
An upcoming patch will extend llvm-symbolizer to provide the source line
information for global variables. The goal is to move AddressSanitizer
off of internal debug info for symbolization onto the DWARF standard
(and doing a clean-up in the process). Currently, ASan reports the line
information for constant strings if a memory safety bug happens around
them. We want to keep this behaviour, so we need to emit debuginfo for
these variables as well.
Reviewed By: dblaikie, rnk, aprantl
Differential Revision: https://reviews.llvm.org/D123534
We use globals to configure debugging at compile-time for the device
runtime. Because these are only used by the OpenMP runtime we shouldn't
define them if we aren't using the device runtime. When a user passes in
'-nogpulib' this indicates that we are not using the device runtime, so
we should check for the precense of this flag and not emit these globals
if used.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D125314
In order to do offloading compilation we need to embed files into the
host and create fatbainaries. Clang uses a special binary format to
bundle several files along with their metadata into a single binary
image. This is currently performed using the `-fembed-offload-binary`
option. However this is not very extensibile since it requires changing
the command flag every time we want to add something and makes optional
arguments difficult. This patch introduces a new tool called
`clang-offload-packager` that behaves similarly to CUDA's `fatbinary`.
This tool takes several input files with metadata and embeds it into a
single image that can then be embedded in the host.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125165
The changes made in D123460 generalized the code generation for OpenMP's
offloading entries. We can use the same scheme to register globals for
CUDA code. This patch adds the code generation to create these
offloading entries when compiling using the new offloading driver mode.
The offloading entries are simple structs that contain the information
necessary to register the global. The struct used is as follows:
```
Type struct __tgt_offload_entry {
void *addr; // Pointer to the offload entry info.
// (function or global)
char *name; // Name of the function or global.
size_t size; // Size of the entry info (0 if it a function).
int32_t flags;
int32_t reserved;
};
```
Currently CUDA handles RDC code generation by deferring the registration
of globals in the current TU to a callback function containing the
modules ID. Later all the module IDs will be used to register all of the
globals at once. Rather than mimic this, offloading entries allow us to
mimic the way OpenMP registers globals. That is, we create a simple
global struct for each device global to be registered. These are placed
at a special section `cuda_offloading_entires`. Because this section is
a valid C-identifier, the linker will profide a `__start` and `__stop`
pointer that we can use to iterate and register all globals at runtime.
the registration requires a flag variable to indicate which registration
function to use. I have assigned the flags somewhat arbitrarily, but
these use the following values.
Kernel: 0
Variable: 0
Managed: 1
Surface: 2
Texture: 3
Depends on D120272
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D123471
This adds support for variable stride with the val, uval, and ref linear
modifiers. Previously only the no modifer type ls<argno> was supported.
val -> Ls<argno>
uval -> Us<argno>
ref -> Rs<argno>
Differential Revision: https://reviews.llvm.org/D125330
Add mangling for linear parameters specified with ref, uval, and val
for 'omp declare simd' vector functions.
Add missing stride for linear this parameters.
Differential Revision: https://reviews.llvm.org/D125269
In case of placement new, if we do not know the alignment of the
operand, we can't assume it has the preferred alignment. It might be
e.g. a pointer to a struct member which follows ABI alignment rules.
This makes UBSAN no longer report "constructor call on misaligned
address" when constructing a double into a struct field of type double
on i686. The psABI specifies an alignment of 4 bytes, but the preferred
alignment used by Clang is 8 bytes.
We now use ABI alignment for allocating new as well, as the preferred
alignment should be used for over-aligning e.g. local variables, which
isn't relevant for ABI code dealing with operator new. AFAICT there
wouldn't be problems either way though.
Fixes#54845.
Differential Revision: https://reviews.llvm.org/D124736
D117829 added the generic "__builtin_reduce_mul" which we can use to replace the x86 specific integer mul reduction builtins - internally these were mapping to the same intrinsic already so there are no test changes required.
Differential Revision: https://reviews.llvm.org/D125222
Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.mul intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fmul reduction intrinsic also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fmul support this shouldn't affect the integer case.
Differential Revision: https://reviews.llvm.org/D117829
Compared to the old implementation:
* In C++, we only recurse into aggregate classes.
* Unnamed bit-fields are not printed.
* Constant evaluation is supported.
* Proper conversion is done when passing arguments through `...`.
* Additional arguments are supported and are injected prior to the
format string; this directly supports use with `fprintf`, for example.
* An arbitrary callable can be passed rather than only a function
pointer. In particular, in C++, a function template or overload set is
acceptable.
* All text generated by Clang is printed via `%s` rather than directly;
this avoids issues where Clang's pretty-printing output might itself
contain a `%` character.
* Fields of types that we don't know how to print are printed with a
`"*%p"` format and passed by address to the print function.
* No return value is produced.
Reviewed By: aaron.ballman, erichkeane, yihanaa
Differential Revision: https://reviews.llvm.org/D124221
CUDA/HIP needs to mangle for aux target. When mangling for aux target,
the mangler should use mangling number for aux target. Previously
in https://reviews.llvm.org/D122734 a state was introduced in
ASTContext to let the mangler get mangling number for aux target
from ASTContext. This patch removes that state from ASTConext
and add an IsAux member to MangleContext to indicate that
the mangle context is for aux target. This reflects the reality that
the mangle context is created for mangling aux target and makes
ASTContext cleaner.
Reviewed by: Artem Belevich, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D124842
If alignment specified with align clause is less than natural alignment for
list item type, the alignment should be set to the natural alignment.
See OMP5.1 specification, page 185, lines 7-10
Differential Revision: https://reviews.llvm.org/D124676
Currently when using `atomic update` with floating-point variables, if
the operation is add or sub, `cmpxchg`, instead of `atomicrmw` is emitted, as
shown in [1]. In fact, about three years ago, llvm-svn: 351850 added the
support for FP operations. This patch adds the support in OpenMP as well.
[1] https://godbolt.org/z/M7b4ba9na
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D124724
This patch adds support for the conditional (ternary) operator on SVE
scalable vector types in C++, matching the behaviour for NEON vector
types. Like the conditional operator for NEON types, this is disabled in
C mode.
Differential Revision: https://reviews.llvm.org/D124091
D124741 added the generic "__builtin_reduce_add" which we can use to replace the x86 specific integer add reduction builtins - internally these were mapping to the same intrinsic already so there are no test changes required.
Differential Revision: https://reviews.llvm.org/D124757
Similar to the existing bitwise reduction builtins, this lowers to a llvm.vector.reduce.add intrinsic call.
For other reductions, we've tried to share builtins for float/integer vectors, but the fadd reduction intrinsics also take a starting value argument and can either do unordered or serialized, but not reduction-trees as specified for the builtins. However we address fadd support this shouldn't affect the integer case.
(Split off from D117829)
Differential Revision: https://reviews.llvm.org/D124741
The DXIL validator version option(/validator-version) decide the validator version when compile hlsl.
The format is major.minor like 1.0.
In normal case, the value of validator version should be got from DXIL validator. Before we got DXIL validator ready for llvm/main, DXIL validator version option is added first to set validator version.
It will affect code generation for DXIL, so it is treated as a code gen option.
A new member std::string DxilValidatorVersion is added to clang::CodeGenOptions.
Then CGHLSLRuntime is added to clang::CodeGenModule.
It is used to translate clang::CodeGenOptions::DxilValidatorVersion into a ModuleFlag under key "dx.valver" at end of clang code generation.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D123884
This patch moves the logic for generating the offloading entries to the
OpenMPIRBuilder. This makes it easier to re-use in other places, such as
for OpenMP support in Flang or using the same method for generating
offloading entires for other languages like Cuda.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D123460
Thanks for @rsmith to point this. I'm sorry for introducing this bug.
See @rsmith 's comment in https://reviews.llvm.org/D122248
Eg:(By @rsmith ) https://godbolt.org/z/o7vcbWaEf
I have added a test case
struct:
```
struct U19A {
int a;
};
struct U19B {
struct U19A a;
};
struct U19B a = {
.a.a = 2022
};
```
Dump result:
```
struct U19B {
struct U19A a = {
int a = 2022
}
}
```
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D122920
MSVC and Itanium mangling use different mangling numbers
for function-scope structs, which causes inconsistent
mangled kernel names in device and host compilations.
This patch uses Itanium mangling number for structs
in for mangling device side names in CUDA/HIP host
compilation on Windows to fix this issue.
A state is added to ASTContext to indicate whether the
current name mangling is for device side names in host
compilation. Device and host mangling number
are encoded/decoded as upper and lower half of 32 bit
unsigned integer to fit into the original mangling number
field for AST. Diagnostic will be emitted if a manglining
number exceeds limit.
Reviewed by: Artem Belevich, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D122734
Fixes: SWDEV-328515
Need to emit final update of the inscan reduction variables. For
worksharing loops, the reduction values are stored in the temp array,
need to copy the last element to the original var at the end of the
construct.
Differential Revision: https://reviews.llvm.org/D121156
Different TU's may have this globl var. appending linkage can
only be used with lld recognized special variables.
Change it to internal linkage.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D124466
The callback is expected to create a branch to the ContinuationBB (sometimes called FiniBB in some lambdas) argument when finishing. This creates problems:
1. The InsertPoint used for CodeGenIP does not need to be the end of a block. If it is not, a naive callback will insert a branch instruction into the middle of the block.
2. The BasicBlock the CodeGenIP is pointing to may or may not have a terminator. There is an conflict where to branch to if the block already has a terminator.
3. Some API functions work only with block having a terminator. Some workarounds have been used to insert a temporary terminator that is removed again.
4. Some callbacks are sensitive to whether the BasicBlock has a terminator or not. This creates a callback ordering problem where different callback may have different behaviour depending on whether a previous callback created a terminator or not. The problem also exists for FinalizeCallbackTy where some callbacks do create branch to another "continue" block, but unlike BodyGenCallbackTy does not receive the target as argument. This is not addressed in this patch.
With this patch, the callback receives an CodeGenIP into a BasicBlock where to insert instructions. If it has to insert control flow, it can split the block at that position as needed but otherwise no separate ContinuationBB is needed. In particular, a callback can be empty without breaking the emitted IR. If the caller needs the control flow to branch to a specific target, it can insert the branch instruction itself and pass an InsertPoint before the terminator to the callback.
Certain frontends such as Clang may expect the current IRBuilder position to be at the end of a basic block. In this case its callbacks must split the block at CodeGenIP before setting the IRBuilder position such that the instructions after CodeGenIP are moved to another basic block and before returning create a new branch instruction to the split block.
Some utility functions such as `splitBB` are supporting correct splitting of BasicBlocks, independent of whether they have a terminator or not, returning/setting the InsertPoint of an IRBuilder to the end of split predecessor block, and optionally omitting creating a branch to the split successor block to be added later.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D118409
Default behavior for .file directory was changed in D105856, but
ptxas (CUDA 11.5 release) refuses to parse it:
$ llc -march=nvptx64 llvm/test/DebugInfo/NVPTX/debug-file-loc.ll
$ ptxas debug-file-loc.s
ptxas debug-file-loc.s, line 42; fatal : Parsing error near
'"foo.h"': syntax error
Added a new field to MCAsmInfo to control default value of
UseDwarfDirectory. This value is used if -dwarf-directory command line
option is not specified.
Differential Revision: https://reviews.llvm.org/D121299
A struct like { float a; int :0; } should per the SystemZ ABI be passed in a
GPR, but to match a bug in GCC it has been passed in an FPR (see 759449c).
GCC has now corrected the C++ ABI for this case, and this patch for clang
follows suit.
Reviewed By: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D122388
In case of OpenMP programs, thread local variables can be present in
any clause pertaining to OpenMP constructs, as we know that compiler
generates artificial functions and in some cases values are passed to
those artificial functions thru parameters. For an example, if thread
local variable is present in copyin clause (testcase attached with the
patch), parameter with same name is generated as parameter to artificial
function. When user inquires the thread Local variable, its debug info
is hidden by the parameter. User never gets the actual TLS variable
when inquires it, instead gets the artificial parameter.
Current patch suppresses the debug info for such artificial parameter to
enable correct debugging of TLS variables.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D123787
This patch is a continuation of https://reviews.llvm.org/D123353.
Not only kernels in anonymous namespace, but also template
kernels with template arguments in anonymous namespace
need to be externalized.
To be more generic, this patch checks the linkage of a kernel
assuming the kernel does not have __global__ attribute. If
the linkage is internal then clang will externalize it.
This patch also fixes the postfix for externalized symbol
since nvptx does not allow '.' in symbol name.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D124189
Fixes: https://github.com/llvm/llvm-project/issues/54560
attribute((__aligned__)) is present but ignored`
In the original code, the 'getDeclAlignIfRequired' function is used.
The 'getDeclAlignIfRequired' function will return the max alignment
of all aligned attributes if the type has aligned attributes. The
function doesn't consider the type at all.
The 'getTypeAlignIfRequired' function uses the type's alignment value,
which also used by the 'alignof' function. I think we should use the
function of 'getTypeAlignIfRequired'.
Reviewed By: dblaikie, jmorse, wolfgangp
Differential Revision: https://reviews.llvm.org/D124006
D70524 added support for auto return types for C++ member functions. I was
implementing support on the LLDB side for looking up the deduced type.
I ran into trouble with some cases with respect to lambdas. I looked into
how gcc was handling these cases and it appears gcc emits the deduced return type for lambdas.
So I am changing out behavior to match that.
Differential Revision: https://reviews.llvm.org/D123319
The legacy passes are deprecated now and would be removed in near
future. This patch tries to remove legacy passes in coroutines.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D123918
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50,
64c045e25b, and
de6ddaeef3,
and reverts aa643f455a.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a.
This is sort of a followup to D37310; that basically fixed the same
issue, but then the libstdc++ implementation of <atomic> changed. Re-fix
the the issue in essentially the same way: look through the addressof
operation to find the alignment of the underlying object.
Differential Revision: https://reviews.llvm.org/D123950
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
This reverts commit af0285122f.
The test "libomp::loop_dispatch.c" on builder
openmp-gcc-x86_64-linux-debian fails from time-to-time.
See #54969. This patch is unrelated.
The OMPScheduleType enum stores the constants from libomp's internal sched_type in kmp.h and are used by several kmp API functions. The enum values have an internal structure, namely each scheduling algorithm (e.g.) exists in four variants: unordered, orderend, normerge unordered, and nomerge ordered.
This patch (basically a followup to D114940) splits the "ordered" and "nomerge" bits into separate flags, as was already done for the "monotonic" and "nonmonotonic", so we can apply bit flags operations on them. It also now contains all possible combinations according to kmp's sched_type. Deriving of the OMPScheduleType enum from clause parameters has been moved form MLIR's OpenMPToLLVMIRTranslation.cpp to OpenMPIRBuilder to make available for clang as well. Since the primary purpose of the flag is the binary interface to libomp, it has been made more private to LLVMFrontend. The primary interface for generating worksharing-loop using OpenMPIRBuilder code becomes `applyWorkshareLoop` which derives the OMPScheduleType automatically and calls the appropriate emitter function.
While this is mostly a NFC refactor, it still applies the following functional changes:
* The logic from OpenMPToLLVMIRTranslation to derive the OMPScheduleType also applies to clang. Most notably, it now applies the nonmonotonic flag for non-static schedules by default.
* In OpenMPToLLVMIRTranslation, the nonmonotonic default flag was previously not applied if the simd modifier was used. I assume this was a bug, since the effect was due to `loop.schedule_modifier()` returning `mlir::omp::ScheduleModifier::none` instead of `llvm::Optional::None`.
* In OpenMPToLLVMIRTranslation, the nonmonotonic default flag was set even if ordered was specified, in breach to what the comment before citing the OpenMP specification says. I assume this was an oversight.
The ordered flag with parameter was not considered in this patch. Changes will need to be made (e.g. adding/modifying function parameters) when support for it is added. The lengthy names of the enum values can be discussed, for the moment this is avoiding reusing previously existing enum value names such as `StaticChunked` to avoid confusion.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D123403
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50, and
64c045e25b
which were reverted in
e75d8b7037
due to a crasher bug where CodeGen would emit a builtin glvalue as an
rvalue if it constant-folds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345