The comment here was introduced in
a3e01cf822 and suggests that we should
handle declaration statements and non-declaration statements the same,
but don't because ProhibitAttributes() can't handle GNU attributes. That
has recently changed, so remove the comment and handle all statements
the same.
Differential Revision: https://reviews.llvm.org/D99936
GCC 8 introduced these new pragmas to control loop unrolling. We should support them for compatibility reasons and the implementation itself requires few lines of code, since everything needed is already implemented for #pragma unroll/nounroll.
Double square bracket attribute arguments can be arbitrarily complex,
and the attribute argument parsing logic recovers by skipping tokens.
As a fallback recovery mechanism, parse recovery stops before reading a
semicolon. This could lead to an infinite loop in the attribute list
parsing logic.
These proposals make the same changes to both C++ and C and remove a
restriction on standard attributes appearing multiple times in the same
attribute list.
We could warn on the duplicate attributes, but do not. This is for
consistency as we do not warn on attributes duplicated within the
attribute specifier sequence. If we want to warn on duplicated
standard attributes, we should do so both for both situations:
[[foo, foo]] and [[foo]][[foo]].
Clang currently has a bug where it allows you to write [[foo bar]] and
both attributes are silently accepted. This patch corrects the comma
parsing rules for such attributes and handles the test case fallout, as
a few tests were accidentally doing this.
This changes our approach to processing statement attributes to be more
similar to how we process declaration attributes. Namely,
ActOnAttributedStmt() now calls ProcessStmtAttributes() instead of
vice-versa, and there is now an interface split between building an
attributed statement where you already have a list of semantic
attributes and building an attributed statement with attributes from
the parser.
This should make it easier to support statement attributes that are
dependent on a template. In that case, you would add a
TransformFooAttr() function in TreeTransform.h to perform the semantic
checking (morally similar to how Sema::InstantiateAttrs() already works
for declaration attributes) when transforming the semantic attribute at
instantiation time.
Set the source ranges for parsed GNU-style attributes in
ParseGNUAttributes(), the same way that ParseCXX11Attributes() does it.
Differential Revision: https://reviews.llvm.org/D75844
Set the source ranges for parsed GNU-style attributes in
ParseGNUAttributes(), the same way that ParseCXX11Attributes() does it.
Differential Revision: https://reviews.llvm.org/D75844
... instantiations
They are currently not being diagnosed because ProhibitAttributes() does
not handle attribute lists with an invalid source range. But once it
does, we need to allow GNU attributes in this place.
Additionally, start optionally diagnosing empty attr lists in
ProhibitCXX11Attributes(), since ProhibitAttribute() does it.
Differential Revision: https://reviews.llvm.org/D97362
This line has a TODO comment, but the answer to it seems to be "no"
given that clang itself uses attributes on @try statements in its tests.
This ProhibitAttributes() statement is also dead code since
ProhibitAttributs() does not handle GNU attributes at the moment but
those are the only attributes valid in objc.
Differential Revision: https://reviews.llvm.org/D97371
Added basic parsing/sema/serialization support to extend the
existing 'destroy' clause for use with the 'interop' directive.
Differential Revision: https://reviews.llvm.org/D98834
The condition variable is in scope in the loop increment, so we need to
emit the jump destination from wthin the scope of the condition
variable.
For GCC compatibility (and compatibility with real-world 'FOR_EACH'
macros), 'continue' is permitted in a statement expression within the
condition of a for loop, though, so there are two cases here:
* If the for loop has no condition variable, we can emit the jump
destination before emitting the condition.
* If the for loop has a condition variable, we must defer emitting the
jump destination until after emitting the variable. We diagnose a
'continue' appearing in the initializer of the condition variable,
because it would jump past the initializer into the scope of that
variable.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D98816
Added basic parsing/sema/serialization support for interop directive.
Support for the 'init' clause.
Differential Revision: https://reviews.llvm.org/D98558
Somewhat surprisingly, signature help is emitted as a side-effect of
computing the expected type of a function argument.
The reason is that both actions require enumerating the possible
function signatures and running partial overload resolution, and doing
this twice would be wasteful and complicated.
Change #1: document this, it's subtle :-)
However, sometimes we need to compute the expected type without having
reached the code completion cursor yet - in particular to allow
completion of designators.
eb4ab3358c did this but introduced a
regression - it emits signature help in the wrong location as a side-effect.
Change #2: only emit signature help if the code completion cursor was reached.
Currently there is PP.isCodeCompletionReached(), but we can't use it
because it's set *after* running code completion.
It'd be nice to set this implicitly when the completion token is lexed,
but ConsumeCodeCompletionToken() makes this complicated.
Change #3: call cutOffParsing() *first* when seeing a completion token.
After this, the fact that the Sema::Produce*SignatureHelp() functions
are even more confusing, as they only sometimes do that.
I don't want to rename them in this patch as it's another large
mechanical change, but we should soon.
Change #4: prepare to rename ProduceSignatureHelp() to GuessArgumentType() etc.
Differential Revision: https://reviews.llvm.org/D98488
Previously, the CurFPFeatures state was set to command line settings before
semantic analysis of the nested member functions and initialization
expressions, that's not correct, it should use the pragma state which
is in effect at the lexical position.
Reviewed By: Erich Keane, Aaron Ballman
Differential Revision: https://reviews.llvm.org/D98211
There is no need to check for enabled pragma for core or optional core features,
thus this check is removed
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D97058
Nested `omp [begin|end] declare variant` inherit the selectors from
surrounding `omp (begin|end) declare variant` constructs. To stop such
propagation the user can add the `disable_selector_propagation` to the
`extension` set in the `implementation` selector.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D95765
If we have nested declare variant context, it doesn't make sense to
inherit the match extension from the parent. Instead, just skip it.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D95764
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
https://wg21.link/P2173 is making its way through WG21 currently and
has not been formally adopted yet. This feature provides very useful
functionality in that you can specify attributes on the various
function *declarations* generated by a lambda expression, where the
current C++ grammar only allows attributes which apply to the various
function *types* so generated.
This patch implements P2173 on the assumption that it will be adopted
by WG21 with this syntax for C++23.
This commit refactors extension support to allow
specifying whether pragma is needed or not explicitly.
For backward compatibility pragmas are set to required
for all extensions that were added prior to this but
not for OpenCL 3.0 features.
Differential Revision: https://reviews.llvm.org/D97052
Our diagnostics relating to static assertions were a bit confused. For
instance, when in MS compatibility mode in C (where we accept
static_assert even without including <assert.h>), we would fail
to warn the user that they were using the wrong spelling (even in
pedantic mode), we were missing a compatibility warning about using
_Static_assert in earlier standards modes, diagnostics for the optional
message were not reflected in C as they were in C++, etc.
When '__cl_clang_function_pointers' extension is enabled
the parser should allow obtaining the function address.
This fixes PR49264!
Differential Revision: https://reviews.llvm.org/D97203
GNU-style attribute in enum bodies are allowed (and used by several
tests), and this call to ProhibitAttributes() was dead code.
Differential Revision: https://reviews.llvm.org/D97271
If a static assert has a message as the right side of an and condition, suggest a fix it of replacing the '&&' to ','.
`static_assert(cond && "Failed Cond")` -> `static_assert(cond, "Failed cond")`
This use case comes up when lazily replacing asserts with static asserts.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D89065
The tile directive is in OpenMP's Technical Report 8 and foreseeably will be part of the upcoming OpenMP 5.1 standard.
This implementation is based on an AST transformation providing a de-sugared loop nest. This makes it simple to forward the de-sugared transformation to loop associated directives taking the tiled loops. In contrast to other loop associated directives, the OMPTileDirective does not use CapturedStmts. Letting loop associated directives consume loops from different capture context would be difficult.
A significant amount of code generation logic is taking place in the Sema class. Eventually, I would prefer if these would move into the CodeGen component such that we could make use of the OpenMPIRBuilder, together with flang. Only expressions converting between the language's iteration variable and the logical iteration space need to take place in the semantic analyzer: Getting the of iterations (e.g. the overload resolution of `std::distance`) and converting the logical iteration number to the iteration variable (e.g. overload resolution of `iteration + .omp.iv`). In clang, only CXXForRangeStmt is also represented by its de-sugared components. However, OpenMP loop are not defined as syntatic sugar. Starting with an AST-based approach allows us to gradually move generated AST statements into CodeGen, instead all at once.
I would also like to refactor `checkOpenMPLoop` into its functionalities in a follow-up. In this patch it is used twice. Once for checking proper nesting and emitting diagnostics, and additionally for deriving the logical iteration space per-loop (instead of for the loop nest).
Differential Revision: https://reviews.llvm.org/D76342
Before this commit, expression statements could not be annotated
with statement attributes. Whenever parser found attribute, it
unconditionally assumed that it was followed by a declaration.
This not only doesn't allow expression attributes to have attributes,
but also produces spurious error diagnostics.
In order to maintain all previously compiled code, we still assume
that GNU attributes are followed by declarations unless ALL of those
are statement attributes. And even in this case we are not forcing
the parser to think that it should parse a statement, but rather
let it proceed as if no attributes were found.
Differential Revision: https://reviews.llvm.org/D93630
The attribute definition claimed the attribute was inheritable (which
only applies to declaration attributes) and not a statement attribute.
Further, it treats subject appertainment errors as being parse errors
rather than semantic errors, which leads to us accepting invalid code.
For instance, we currently fail to reject:
void foo() {
int i = 1000;
__attribute__((nomerge, opencl_unroll_hint(8)))
if (i) { foo(); }
}
This addresses the issues by clarifying that opencl_unroll_hint is a
statement attribute and handles its appertainment checks in the
semantic layer instead of the parsing layer. This changes the output of
the diagnostic text to be more consistent with other appertainment
errors.
OpenCL keywords 'pipe' and 'generic' are unconditionally
supported for OpenCL C 2.0 or in OpenCL C++ mode. In OpenCL C 3.0
these keywords are available if corresponding optional core
feature is supported.
Reviewed By: Anastasia, svenvh
Differential Revision: https://reviews.llvm.org/D95778
In Clang today, we parse the different attribute syntaxes
(__attribute__, __declspec, and [[]]) in a fairly rigid order. This
leads to confusion for users when they guess the order incorrectly,
and leads to bug reports like PR24559 or necessitates changes like
D94788.
This patch adds a helper function to allow us to more easily parse
attributes in arbitrary order, and then updates all of the places
where we would parse two or more different syntaxes in a rigid order to
use the helper method. The patch does not attempt to handle Microsoft
attributes ([]) because those are ambiguous with other code constructs
and we don't have any attributes that use the syntax.
Currently, there is some refactoring needed in existing interface of OpenCL option
settings to support OpenCL C 3.0. The problem is that OpenCL extensions and features
are not only determined by the target platform but also by the OpenCL version.
Also, there are core extensions/features which are supported unconditionally in
specific OpenCL C version. In fact, these rules are not being followed for all targets.
For example, there are some targets (as nvptx and r600) which don't support
OpenCL C 2.0 core features (nvptx.languageOptsOpenCL.cl, r600.languageOptsOpenCL.cl).
After the change there will be explicit differentiation between optional core and core
OpenCL features which allows giving diagnostics if target doesn't support any of
necessary core features for specific OpenCL version.
This patch also eliminates `OpenCLOptions` instance duplication from `TargetOptions`.
`OpenCLOptions` instance should take place in `Sema` as it's going to be modified
during parsing. Removing this duplication will also allow to generally simplify
`OpenCLOptions` class for parsing purposes.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D92277
Currently, there are many instances where `SourceLocation` objects are
converted to raw representation to be stored in structs that are
used as fields of tagged unions.
This is done to make the corresponding structs trivial.
Triviality allows avoiding undefined behavior when implicitly changing
the active member of the union.
However, in most cases, we can explicitly construct an active member
using placement new. This patch adds the required active member
selections and replaces `SourceLocation`-s represented as
`unsigned int` with proper `SourceLocation`-s.
One notable exception is `DeclarationNameLoc`: the objects of this class
are often not properly initialized (so the code currently relies on
its default constructor which uses memset). This class will be fixed
in a separate patch.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D94237
This patch adds support for two new variants of the vectorize_width
pragma:
1. vectorize_width(X[, fixed|scalable]) where an optional second
parameter is passed to the vectorize_width pragma, which indicates if
the user wishes to use fixed width or scalable vectorization. For
example the user can now write something like:
#pragma clang loop vectorize_width(4, fixed)
or
#pragma clang loop vectorize_width(4, scalable)
In the absence of a second parameter it is assumed the user wants
fixed width vectorization, in order to maintain compatibility with
existing code.
2. vectorize_width(fixed|scalable) where the width is left unspecified,
but the user hints what type of vectorization they prefer, either
fixed width or scalable.
I have implemented this by making use of the LLVM loop hint attribute:
llvm.loop.vectorize.scalable.enable
Tests were added to
clang/test/CodeGenCXX/pragma-loop.cpp
for both the 'fixed' and 'scalable' optional parameter.
See this thread for context: http://lists.llvm.org/pipermail/cfe-dev/2020-November/067262.html
Differential Revision: https://reviews.llvm.org/D89031
The new clang internal extension '__cl_clang_function_pointers'
allows use of function pointers and other features that have
the same functionality:
- Use of member function pointers;
- Unrestricted use of references to functions;
- Virtual member functions.
This not a vendor extension and therefore it doesn't require any
special target support. Exposing this functionality fully
will require vendor or Khronos extension.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D94021
Part of the <=> changes in C++20 make certain patterns of writing equality
operators ambiguous with themselves (sorry!).
This patch goes through and adjusts all the comparison operators such that
they should work in both C++17 and C++20 modes. It also makes two other small
C++20-specific changes (adding a constructor to a type that cases to be an
aggregate, and adding casts from u8 literals which no longer have type
const char*).
There were four categories of errors that this review fixes.
Here are canonical examples of them, ordered from most to least common:
// 1) Missing const
namespace missing_const {
struct A {
#ifndef FIXED
bool operator==(A const&);
#else
bool operator==(A const&) const;
#endif
};
bool a = A{} == A{}; // error
}
// 2) Type mismatch on CRTP
namespace crtp_mismatch {
template <typename Derived>
struct Base {
#ifndef FIXED
bool operator==(Derived const&) const;
#else
// in one case changed to taking Base const&
friend bool operator==(Derived const&, Derived const&);
#endif
};
struct D : Base<D> { };
bool b = D{} == D{}; // error
}
// 3) iterator/const_iterator with only mixed comparison
namespace iter_const_iter {
template <bool Const>
struct iterator {
using const_iterator = iterator<true>;
iterator();
template <bool B, std::enable_if_t<(Const && !B), int> = 0>
iterator(iterator<B> const&);
#ifndef FIXED
bool operator==(const_iterator const&) const;
#else
friend bool operator==(iterator const&, iterator const&);
#endif
};
bool c = iterator<false>{} == iterator<false>{} // error
|| iterator<false>{} == iterator<true>{}
|| iterator<true>{} == iterator<false>{}
|| iterator<true>{} == iterator<true>{};
}
// 4) Same-type comparison but only have mixed-type operator
namespace ambiguous_choice {
enum Color { Red };
struct C {
C();
C(Color);
operator Color() const;
bool operator==(Color) const;
friend bool operator==(C, C);
};
bool c = C{} == C{}; // error
bool d = C{} == Red;
}
Differential revision: https://reviews.llvm.org/D78938
The `assumes` directive is an OpenMP 5.1 feature that allows the user to
provide assumptions to the optimizer. Assumptions can refer to
directives (`absent` and `contains` clauses), expressions (`holds`
clause), or generic properties (`no_openmp_routines`, `ext_ABCD`, ...).
The `assumes` spelling is used for assumptions in the global scope while
`assume` is used for executable contexts with an associated structured
block.
This patch only implements the global spellings. While clauses with
arguments are "accepted" by the parser, they will simply be ignored for
now. The implementation lowers the assumptions directly to the
`AssumptionAttr`.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D91980
Given the following code:
```
void Foo(int);
void Baz()
{
Bar(sizeof int);
}
```
The error message which is printed today is this:
```
error: expected parentheses around type name in sizeof expression
```
There is no source location printed whatsoever, so fixing a compile break like this becomes extremely hard in a large codebase.
My change improves the error message. But it doesn't output a FixItHint because I wasn't able to figure out how to get the locations for left and right parens. So any tips would be appreciated.
```
<source>:7:6: error: expected parentheses around type name in sizeof expression
Bar(sizeof int);
^
```
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D91129
The `assumes` directive is an OpenMP 5.1 feature that allows the user to
provide assumptions to the optimizer. Assumptions can refer to
directives (`absent` and `contains` clauses), expressions (`holds`
clause), or generic properties (`no_openmp_routines`, `ext_ABCD`, ...).
The `assumes` spelling is used for assumptions in the global scope while
`assume` is used for executable contexts with an associated structured
block.
This patch only implements the global spellings. While clauses with
arguments are "accepted" by the parser, they will simply be ignored for
now. The implementation lowers the assumptions directly to the
`AssumptionAttr`.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D91980
Function Parser::ParseAvailabilityAttribute checks that the message string of
an availability attribute is not a wide string literal. Test case
clang/test/Parser/attr-availability.c specifies that a string literal is
expected.
The code checked that the first token in a string concatenation is a string
literal, and then that the concatenated string consists of 1-byte characters.
On a target where wide character is 1 byte, a string concatenation "a" L"b"
passes both those checks, but L"b" alone is rejected. More generally, "a" u8"b"
passes the checks, but u8"b" alone is rejected.
So check isAscii() instead of character size.
_Nullable_result generally like _Nullable, except when being imported into a
swift async method. rdar://70106409
Differential revision: https://reviews.llvm.org/D92495
552c6c2 removed support for promoting VLAs to constant arrays when the bounds
isn't an ICE, since this can result in miscompiling a conforming program that
assumes that the array is a VLA. Promoting VLAs for fields is still supported,
since clang doesn't support VLAs in fields, so no conforming program could have
a field VLA.
This change is really disruptive, so this commit carves out two more cases
where we promote VLAs which can't miscompile a conforming program:
- When the VLA appears in an ivar -- this seems like a corollary to the field thing
- When the VLA has an initializer -- VLAs can't have an initializer
Differential revision: https://reviews.llvm.org/D90871
template-parameter-list in a lambda.
This implements one of the missing parts of P0857R0. Mark it as not done
on the cxx_status page given that it's still incomplete.
PreferedType were not set when parsing compound literals, hence
designated initializers were not available as code completion suggestions.
This patch sets the preferedtype to parsed type for the following initializer
list.
Fixes https://github.com/clangd/clangd/issues/142.
Differential Revision: https://reviews.llvm.org/D92370
Reviewed by aaron.ballman, rsmith, wchilders
Highlights of review:
- avoid specifying an underlying type (unless such an enum is stored (or part of an abi?))
- avoid using enums as bit-fields, preferring unsigned bit-fields that we static_cast enumerators to. (MS's abi laysout enum bit-fields differently).
- clang-format, clang-format, clang-format.
https://reviews.llvm.org/D91035
Thank you!
Reviewed here: https://reviews.llvm.org/D91409 by Aaron.
Highlights of the review:
- avoid an underlying type for enums
- avoid enum bit fields (MSVC packing anomalies) and favor static_casts to unsigned bit-fields
Patch by Thorsten Schuett <schuett@gmail.com> w some minor fixes in SemaType.cpp where a couple asserts had to be repaired to deal with lack of implicit coversion to int.
Thanks Thorsten!
Since these are scoped enumerators, they have to be prefixed by DeclaratorContext, so lets remove Context from the name, and return some characters to the multiverse.
Patch was reviewed here: https://reviews.llvm.org/D91011
Thank you to aaron, bruno, wyatt and barry for indulging me.
Pragma 'clang fp' is extended to support a new option, 'exceptions'. It
allows to specify floating point exception behavior more flexibly.
Differential Revision: https://reviews.llvm.org/D89849
ParseOpenMP.cpp was pretty much clang-formatted except a few minor
locations. Let's make it a clang formatted file.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D90440
We collect the source location of a trailing return type in the parser,
improving the location for regular functions and providing a location
for lambdas, where previously there was none.
Fixes PR47732.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D90129
Given the following VarTemplateDecl AST,
```
VarTemplateDecl col:26 X
|-TemplateTypeParmDecl typename depth 0 index 0
`-VarDecl X 'bool' cinit
`-CXXBoolLiteralExpr 'bool' true
```
previously, we returned the VarDecl as the top-level decl, which was not
correct, the top-level decl should be VarTemplateDecl.
Differential Revision: https://reviews.llvm.org/D89098
The current C++ grammar allows an anonymous bit-field with an attribute,
but this is ambiguous (the attribute in that case could appertain to the
type instead of the bit-field). The current thinking in the Core Working
Group is that it's better to disallow attributes in that position at the
grammar level so that the ambiguity resolves in favor of applying to the
type.
During discussions about the behavior of the attribute, the Core Working
Group also felt it was better to disallow anonymous bit-fields from
specifying a default member initializer.
This implements both sets of related grammar changes.
Add the `swift_newtype` attribute which allows a type definition to be
imported into Swift as a new type. The imported type must be either an
enumerated type (enum) or an object type (struct).
This is based on the work of the original changes in
8afaf3aad2
Differential Revision: https://reviews.llvm.org/D87652
Reviewed By: Aaron Ballman
With this extension the effects of `omp begin declare variant` will be
applied to template function declarations. The behavior is opt-in and
controlled by the `extension(allow_templates)` trait. While generally
useful, this will enable us to implement complex math function calls by
overloading the templates of the standard library with the ones in
libc++.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D85735
This extension allows to declare variants in between `omp begin/end
declare variant` that do not match the type of the existing function
with that name. Without this extension we would not find a base function
(with a compatible type), therefore create a new one, which would
cause conflicting declarations. With this extension we will not create
"missing" base functions, which basically renders these specializations
harmless. They will be generated but never called.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D85878
Due to `omp begin/end declare variant`, OpenMP context selectors can be
nested. This patch adds initial support for this so we can use it for
target math variants. We should improve the detection of "equivalent"
scores and user conditions, we should also revisit the data structures
of the OMPTraitInfo object, however, both are not pressing issues right
now.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D85877
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
This change implements pragma STDC FENV_ROUND, which is introduced by
the extension to standard (TS 18661-1). The pragma is implemented only
in frontend, it sets apprpriate state of FPOptions stored in Sema. Use
of these bits in constant evaluation adn/or code generator is not in the
scope of this change.
Parser issues warning on unsuppored pragma when it encounteres pragma
STDC FENV_ROUND, however it makes syntax checks and updates Sema state
as if the pragma were supported.
Primary purpose of the partial implementation is to facilitate
development of non-default floating poin environment. Previously a
developer cannot set non-default rounding mode in sources, this mades
preparing tests for say constant evaluation substantially complicated.
Differential Revision: https://reviews.llvm.org/D86921
-frewrite-includes.
Remove the special-case (and highly implausible) diagnostic for a
compound token that crosses a file boundary, and instead model that case
the same as a compound token separated by whitespace, so that file
transitions and presumed file transitions behave the same way.
For example:
#define FOO(x) (x)
FOO({});
... forms a statement-expression after macro expansion. This warning
applies to '({' and '})' delimiting statement-expressions, '[[' and ']]'
delimiting attributes, and '::*' introducing a pointer-to-member.
The warning for forming these compound tokens across macro expansions
(or across files!) is enabled by default; the warning for whitespace
within the tokens is not, but is included in -Wall.
Differential Revision: https://reviews.llvm.org/D86751
This is motivated by tooling (clangd, libclang etc) - headers without
declarations are legitimate even if they're not valid TUs.
The other use -x c-header cases (PCH/modules) are nonstandard anyway and this
warning doesn't seem necessary there either.
Differential Revision: https://reviews.llvm.org/D85789
Summary:
Introduced OMPChildren class to handle all associated clauses, statement
and child expressions/statements. It allows to represent some directives
more correctly (like flush, depobj etc. with pseudo clauses, ordered
depend directives, which are standalone, and target data directives).
Also, it will make easier to avoid using of CapturedStmt in directives,
if required (atomic, tile etc. directives).
Also, it simplifies serialization/deserialization of the
executable/declarative directives.
Reduces number of allocation operations for mapper declarations.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, jfb, cfe-commits, sstefan1, aaron.ballman, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83261
This patch implements Clang front end support for the OpenMP TR8
`present` motion modifier for `omp target update` directives. The
next patch in this series implements OpenMP runtime support.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84711
It was unclear what `isa` was supposed to mean so we did not provide any
traits for this context selector. With this patch we will allow *any*
string or identifier. We use the target attribute and target info to
determine if the trait matches. In other words, we will check if the
provided value is a target feature that is available (at the call site).
Fixes PR46338
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D83281
This patch implements Clang front end support for the OpenMP TR8
`present` motion modifier for `omp target update` directives. The
next patch in this series implements OpenMP runtime support.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84711
`to` and `from` clauses take the same modifiers, which are called
"motion modifiers" in TR8, so implement handling of their modifiers
once not twice. This will make it easier to implement additional
motion modifiers in the future.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84710
name annotation.
Instead, defer forming the member access expression or DeclRefExpr until
we build the use of ClassifyName's result. Just build an
UnresolvedLookupExpr to track the LookupResult until we're ready to
consume it.
This also reverts commit 2f7269b677 (other
than its testcase). That change was an attempted workaround for the same
problem.
This patch implements Clang front end support for the OpenMP TR8
`present` map type modifier. The next patch in this series implements
OpenMP runtime support.
This patch does not attempt to implement TR8 sec. 2.22.7.1 "map
Clause", p. 319, L14-16:
> If a map clause with a present map-type-modifier is present in a map
> clause, then the effect of the clause is ordered before all other
> map clauses that do not have the present modifier.
Compare to L10-11, which Clang does not appear to implement yet:
> For a given construct, the effect of a map clause with the to, from,
> or tofrom map-type is ordered before the effect of a map clause with
> the alloc, release, or delete map-type.
This patch also does not implement the `present` implicit-behavior for
`defaultmap` or the `present` motion-modifier for `target update`.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D83061
Currently a capture-default which is not the first element in the lambda-capture
is diagnosed with a generic expected variable name or 'this' in lambda capture
list, which is true but not very helpful.
If we don't have already parsed a capture-default then a lone "&" or "=" is
likely to be a misplaced capture-default, so diagnose it as such.
Differential Revision: https://reviews.llvm.org/D83681
Reviewed By: aaron.ballman
- add more tests (the test added in 2f448467e4 is weak);
- improve the `MyTemplate<type_typo, int>();` case, with this patch, typo correction
suggests the type decl, and no regressions found.
Differential Revision: https://reviews.llvm.org/D83025
This implements the default(firstprivate) clause as defined in OpenMP
Technical Report 8 (2.22.4).
Reviewed By: jdoerfert, ABataev
Differential Revision: https://reviews.llvm.org/D75591
Summary:
This patch is removing the custom enumeration for OpenMP Directives and Clauses and replace them
with the newly tablegen generated one from llvm/Frontend. This is a first patch and some will follow to share the same
infrastructure where possible. The next patch should use the clauses allowance defined in the tablegen file.
Reviewers: jdoerfert, DavidTruby, sscalpone, kiranchandramohan, ichoyjx
Reviewed By: DavidTruby, ichoyjx
Subscribers: jholewinski, cfe-commits, dblaikie, MaskRay, ymandel, ichoyjx, mgorny, yaxunl, guansong, jfb, sstefan1, aaron.ballman, llvm-commits
Tags: #llvm, #flang, #clang
Differential Revision: https://reviews.llvm.org/D82906
Summary:
Provide `default` and `delete` completion after the function equals.
Reviewers: kadircet, sammccall
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82548
If an `if` statement uses braces for its `then` block, suggest braces for the `else` and `else if` completion blocks, Otherwise don't suggest them.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D82626
instead of postfix-expressions, and improve error recovery for postfix
operators after unary-expressions.
This covers nullptr, __null, and some calls to type traits with special
parsing rules. We would previously not parse a postfix-expression suffix
for these expressions, so would reject expressions such as
__is_trivial(int)["foo"].
For the case where a postfix-expression suffix is *not* permitted after
a unary-expression (for example, after a new-expression or sizeof
expression), produce a diagnostic if one appears there anyway. That's
always ill-formed, but previously produced very bad diagnostics.
This reverts commit defd43a5b3.
with correction to solve msan report
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit b55d723ed6.
Reapply Modify FPFeatures to use delta not absolute settings
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
Summary:
Previously OMPD_unknown was last item in the Directive enumeration and its position was
used in various comparison and assertion. With the new Directive enumeration, this should be
change with llvm::omp::Directive_enumSize. This patch fix two place where it was not done in
D81736.
Reviewers: vdmitrie, jdoerfert, jdenny
Reviewed By: jdoerfert
Subscribers: yaxunl, guansong, sstefan1, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82518
C++ unqualified name lookup searches template parameter scopes
immediately after finishing searching the entity the parameters belong
to. (Eg, for a class template, you search the template parameter scope
after looking in that class template and its base classes and before
looking in the scope containing the class template.) This is complicated
by the fact that scope lookup within a template parameter scope looks in
a different sequence of places prior to reaching the end of the
declarator-id in the template declaration.
We used to approximate the proper lookup rule with a hack in the scope /
decl context walk inside name lookup. Now we instead compute the lookup
parent for each template parameter scope.
In order to get this right, we now make sure to enter a distinct Scope
for each template parameter scope, and make sure to re-enter the
enclosing class scopes properly when handling delay-parsed regions
within a class.
Summary:
As discussed previously when landing patch for OpenMP in Flang, the idea is
to share common part of the OpenMP declaration between the different Frontend.
While doing this it was thought that moving to tablegen instead of Macros will also
give a cleaner and more powerful way of generating these declaration.
This first part of a future series of patches is setting up the base .td file for
DirectiveLanguage as well as the OpenMP version of it. The base file is meant to
be used by other directive language such as OpenACC.
In this first patch, the Directive and Clause enums are generated with tablegen
instead of the macros on OMPConstants.h. The next pacth will extend this
to other enum and move the Flang frontend to use it.
Reviewers: jdoerfert, DavidTruby, fghanim, ABataev, jdenny, hfinkel, jhuber6, kiranchandramohan, kiranktp
Reviewed By: jdoerfert, jdenny
Subscribers: arphaman, martong, cfe-commits, mgorny, yaxunl, hiraditya, guansong, jfb, sstefan1, aaron.ballman, llvm-commits
Tags: #llvm, #openmp, #clang
Differential Revision: https://reviews.llvm.org/D81736
Summary:
As discussed previously when landing patch for OpenMP in Flang, the idea is
to share common part of the OpenMP declaration between the different Frontend.
While doing this it was thought that moving to tablegen instead of Macros will also
give a cleaner and more powerful way of generating these declaration.
This first part of a future series of patches is setting up the base .td file for
DirectiveLanguage as well as the OpenMP version of it. The base file is meant to
be used by other directive language such as OpenACC.
In this first patch, the Directive and Clause enums are generated with tablegen
instead of the macros on OMPConstants.h. The next pacth will extend this
to other enum and move the Flang frontend to use it.
Reviewers: jdoerfert, DavidTruby, fghanim, ABataev, jdenny, hfinkel, jhuber6, kiranchandramohan, kiranktp
Reviewed By: jdoerfert, jdenny
Subscribers: cfe-commits, mgorny, yaxunl, hiraditya, guansong, jfb, sstefan1, aaron.ballman, llvm-commits
Tags: #llvm, #openmp, #clang
Differential Revision: https://reviews.llvm.org/D81736
Summary:
Compiler may erroneously treat current context in OpenMP pragmas as the
context where new type declaration/definition is allowed. But the
declartation/definition of the new types in OpenMP pragmas should not be
allowed.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, sstefan1, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82019
We weren't re-entering template scopes in the right order, causing this
to break self-host with -fdelayed-template-parsing.
This reverts commit 237c2a23b6.
C++ unqualified name lookup searches template parameter scopes
immediately after finishing searching the entity the parameters belong
to. (Eg, for a class template, you search the template parameter scope
after looking in that class template and its base classes and before
looking in the scope containing the class template.) This is complicated
by the fact that scope lookup within a template parameter scope looks in
a different sequence of places prior to reaching the end of the
declarator-id in the template declaration.
We used to approximate the proper lookup rule with a hack in the scope /
decl context walk inside name lookup. Now we instead compute the lookup
parent for each template parameter scope. This gets the right answer and
as a bonus is substantially simpler and more uniform.
In order to get this right, we now make sure to enter a distinct Scope
for each template parameter scope. (The fact that we didn't before was
already a bug, but not really observable most of the time, since
template parameters can't shadow each other.)
Summary:
DelayedTemplateParsing is marked as BENIGN_LANGOPT, so we are allowed to
use a delayed template in a non-delayed TU.
(This is clangd's default configuration on windows: delayed-template-parsing
is on for the preamble and forced off for the current file)
However today clang fails to parse implicit instantiations in a non-dtp
TU of templates defined in a dtp PCH file (and presumably module?).
In this case the delayed parser is not registered, so the function is
simply marked "delayed" again. We then hit an assert:
end of TU template instantiation should not create more late-parsed templates
Reviewers: rsmith
Subscribers: ilya-biryukov, usaxena95, cfe-commits, kadircet
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81474
The ParseStructUnionBody function was separately keeping track of the
field decls for historical reasons, however the "ActOn" functions add
the field to the RecordDecl anyway.
The "ParseStructDeclaration" function, which handles parsing fields
didn't have a way of handling what happens on an anonymous field, and
changing it would alter a large amount of objc code, so I chose instead
to implement this by just filling the FieldDecls vector with the actual
FieldDecls that were successfully added to the recorddecl .
Summary:
Right now it is a '<invalid sloc>' for cases like this.
CounterCoverageMappingBuilder relies on the information to decide the
region for a attributed loop.
Fixes PR40971
Reviewers: ABataev, jdenny, lebedev.ri, aaron.ballman
Reviewed by: jdenny, aaron.ballman
Differential Revision: https://reviews.llvm.org/D80944
DiagnosticErrorTrap is usually inappropriate because it indicates
whether an error message was rendered in a given region (and is
therefore affected by -ferror-limit and by suppression of errors if we
see an invalid declaration).
hasErrorOccurred() is usually inappropriate because it indicates
whethere an "error:" message was displayed, regardless of whether the
message was a warning promoted to an error, and therefore depends on
things like -Werror that are usually irrelevant.
Where applicable, CodeSynthesisContexts are used to attach notes to
the first diagnostic produced in a region of code, isnstead of using an
error trap and then attaching a note to whichever diagnostic happened to
be produced last (or suppressing the note if the final diagnostic is a
disabled warning!).
This is mostly NFC.
Summary:
This patch upstreams support for a new storage only bfloat16 C type.
This type is used to implement primitive support for bfloat16 data, in
line with the Bfloat16 extension of the Armv8.6-a architecture, as
detailed here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
The bfloat type, and its properties are specified in the Arm Architecture
Reference Manual:
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
In detail this patch:
- introduces an opaque, storage-only C-type __bf16, which introduces a new bfloat IR type.
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
The following people contributed to this patch:
- Luke Cheeseman
- Momchil Velikov
- Alexandros Lamprineas
- Luke Geeson
- Simon Tatham
- Ties Stuij
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, fpetrogalli
Reviewed By: SjoerdMeijer
Subscribers: labrinea, majnemer, asmith, dexonsmith, kristof.beyls, arphaman, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76077
Summary:
Clang crashes when trying to finish function body. MaybeODRUseExprs is
not empty because of const static data member parsed in outer evaluation
context, upon call for isTypeIdInParens() function. It builds
annot_primary_expr, later parsed in ParseConstantExpression() in
inner constant expression evaluation context.
Reviewers: rjmccall, rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80925
Summary:
Asm goto is not supported by SLH. Warn if an instance of asm goto is detected
while SLH is enabled.
Test included.
Reviewed By: jyu2
Differential Revision: https://reviews.llvm.org/D79743
This operator is intended for casting between
pointers to objects in different address spaces
and follows similar logic as const_cast in C++.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60193
Objective-C++11 and under MS extensions.
This matches the MSVC behavior, and means that Objective-C behaves as a
set of extensions to the base language, rather than replacing the base
language rule with a different one.
The 'class' or 'struct' keyword is only permitted as part of either an
enum definition or a standalone opaque-enum-declaration, not as part of
an elaborated type specifier. We previously failed to diagnose this, and
generally didn't properly implement the restrictions on elaborated type
specifiers for enumeration types.
In passing, also fixed incorrect parsing for enum-bases, which we
previously parsed as a type-name, but are actually a type-specifier-seq.
This matters for cases like 'enum E : int *p;', which is valid as a
Microsoft extension.
Plus some minor parse diagnostic improvements.
Bumped the recently-added ExtWarn for 'enum E : int x;' to be
DefaultError; this is not an intentional extension, so producing an
error by default seems appropriate, but the warning flag to disable it
may still be useful for code written against old Clang. The same
treatment is given here to the diagnostic for 'enum class E x;', which
we similarly have incorrectly accepted for many years. These diagnostics
continue to be suppressed under -fms-extensions and when compiling
Objective-C code. We will need to decide separately whether Objective-C
should follow the C++ rules or the (older) MSVC rules.
Previously we implemented non-standard disambiguation rules to
distinguish an enum-base from a bit-field but otherwise treated a :
after an elaborated-enum-specifier as introducing an enum-base. That
misparses various examples (anywhere an elaborated-type-specifier can
appear followed by a colon, such as within a ternary operator or
_Generic).
We now implement the C++11 rules, with the old cases accepted as
extensions where that seemed reasonable. These amount to:
* an enum-base must always be accompanied by an enum definition (except
in a standalone declaration of the form 'enum E : T;')
* in a member-declaration, 'enum E :' always introduces an enum-base,
never a bit-field
* in a type-specifier (or similar context), 'enum E :' is not
permitted; the colon means whatever else it would mean in that
context.
Fixed underlying types for enums are also permitted in Objective-C and
under MS extensions, plus as a language extension in all other modes.
The behavior in ObjC and MS extensions modes is unchanged (but the
bit-field disambiguation is a bit better); remaining language modes
follow the C++11 rules.
Fixes PR45726, PR39979, PR19810, PR44941, and most of PR24297, plus C++
core issues 1514 and 1966.
Summary:
Section names used in clang section pragmas were not validated against
previously defined sections, causing section type conflicts to be
ignored by Sema.
This patch enables Clang to capture these section type conflicts by
using the existing Sema's UnifySection method to validate section names
from clang section pragmas.
Reviewers: hans, rnk, javed.absar
Reviewed By: rnk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78572
test cases
Add support for #pragma float_control
Reviewers: rjmccall, erichkeane, sepavloff
Differential Revision: https://reviews.llvm.org/D72841
This reverts commit 85dc033cac, and makes
corrections to the test cases that failed on buildbots.
This is a code clean up of the PropertyAttributeKind and
ObjCPropertyAttributeKind enums in ObjCPropertyDecl and ObjCDeclSpec that are
exactly identical. This non-functional change consolidates these enums
into one. The changes are to many files across clang (and comments in LLVM) so
that everything refers to the new consolidated enum in DeclObjCCommon.h.
2nd Landing Attempt...
Differential Revision: https://reviews.llvm.org/D77233
This is a code clean up of the PropertyAttributeKind and
ObjCPropertyAttributeKind enums in ObjCPropertyDecl and ObjCDeclSpec that are
exactly identical. This non-functional change consolidates these enums
into one. The changes are to many files across clang (and comments in LLVM) so
that everything refers to the new consolidated enum in DeclObjCCommon.h.
Differential Revision: https://reviews.llvm.org/D77233
This reverts commit 61ba1481e2.
I'm reverting this because it breaks the lldb build with
incomplete switch coverage warnings. I would fix it forward,
but am not familiar enough with lldb to determine the correct
fix.
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:3958:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4633:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4889:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
Introduction/Motivation:
LLVM-IR supports integers of non-power-of-2 bitwidth, in the iN syntax.
Integers of non-power-of-two aren't particularly interesting or useful
on most hardware, so much so that no language in Clang has been
motivated to expose it before.
However, in the case of FPGA hardware normal integer types where the
full bitwidth isn't used, is extremely wasteful and has severe
performance/space concerns. Because of this, Intel has introduced this
functionality in the High Level Synthesis compiler[0]
under the name "Arbitrary Precision Integer" (ap_int for short). This
has been extremely useful and effective for our users, permitting them
to optimize their storage and operation space on an architecture where
both can be extremely expensive.
We are proposing upstreaming a more palatable version of this to the
community, in the form of this proposal and accompanying patch. We are
proposing the syntax _ExtInt(N). We intend to propose this to the WG14
committee[1], and the underscore-capital seems like the active direction
for a WG14 paper's acceptance. An alternative that Richard Smith
suggested on the initial review was __int(N), however we believe that
is much less acceptable by WG14. We considered _Int, however _Int is
used as an identifier in libstdc++ and there is no good way to fall
back to an identifier (since _Int(5) is indistinguishable from an
unnamed initializer of a template type named _Int).
[0]https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html)
[1]http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2472.pdf
Differential Revision: https://reviews.llvm.org/D73967
Summary:
According to the standard, variable-category is the optional part of the
defaultmap clause while the compiler always requires it. Turned it into
optional part.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77751
Summary:
Previously, clang emitted a less-usefull diagnostic and didnt recover
well when the keywords is used as identifier in function paramter.
```
void foo(int case, int x); // previously we drop all parameters after
`int case`.
```
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77633
By default, all traits in the OpenMP context selector have to match for
it to be acceptable. Though, we sometimes want a single property out of
multiple to match (=any) or no match at all (=none). We offer these
choices as extensions via
`implementation={extension(match_{all,any,none})}`
to the user. The choice will affect the entire context selector not only
the traits following the match property.
The first user will be D75788. There we can replace
```
#pragma omp begin declare variant match(device={arch(nvptx64)})
#define __CUDA__
#include <__clang_cuda_cmath.h>
// TODO: Hack until we support an extension to the match clause that allows "or".
#undef __CLANG_CUDA_CMATH_H__
#undef __CUDA__
#pragma omp end declare variant
#pragma omp begin declare variant match(device={arch(nvptx)})
#define __CUDA__
#include <__clang_cuda_cmath.h>
#undef __CUDA__
#pragma omp end declare variant
```
with the much simpler
```
#pragma omp begin declare variant match(device={arch(nvptx, nvptx64)}, implementation={extension(match_any)})
#define __CUDA__
#include <__clang_cuda_cmath.h>
#undef __CUDA__
#pragma omp end declare variant
```
Reviewed By: mikerice
Differential Revision: https://reviews.llvm.org/D77414
Summary:
Clang performs expression based completion whenever it can't figure out
base of a member reference expression. It might be quite confusing in cases like
incomplete types. This patch disables that fallback.
Unfortunately `ParsePostfixExpressionSuffix` is quite tangled and this patch
adds more to it.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77570
in the token stream.
Previously we deleted all template-id annotations at the end of each
top-level declaration. That doesn't work: we can do some lookahead and
form a template-id annotation, and then roll back that lookahead, parse,
and decide that we're missing a semicolon at the end of a top-level
declaration, before we reach the annotation token. In that situation,
we'd end up parsing the annotation token after deleting its associated
data, leading to various forms of badness.
We now only delete template-id annotations if the preprocessor can
assure us that there are no annotation tokens left in the token stream
(or if we're already at EOF). This lets us delete the annotation tokens
earlier in a lot of cases; we now clean them up at the end of each
statement and class member, not just after each top-level declaration.
This also permitted some simplification of the delay-parsed templates
cleanup code.
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Reviewed By: fghanim
Differential Revision: https://reviews.llvm.org/D77112
See rational here: https://reviews.llvm.org/D76173#1922916
Time to compile Attr.h in isolation goes from 2.6s to 1.8s.
Original patch by Johannes, plus some additions from Reid to fix some
clang tooling targets.
Effect on transitive includes is marginal, though:
$ diff -u <(sort thedeps-before.txt) <(sort thedeps-after.txt) \
| grep '^[-+] ' | sort | uniq -c | sort -nr
104 - /usr/local/google/home/rnk/llvm-project/clang/include/clang/AST/OpenMPClause.h
87 - /usr/local/google/home/rnk/llvm-project/llvm/include/llvm/Frontend/OpenMP/OMPContext.h
19 - /usr/local/google/home/rnk/llvm-project/llvm/include/llvm/ADT/SmallSet.h
19 - /usr/local/google/home/rnk/llvm-project/llvm/include/llvm/ADT/SetVector.h
14 - /usr/include/c++/9/set
...
Differential Revision: https://reviews.llvm.org/D76184
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Differential Revision: https://reviews.llvm.org/D77112
Need to allow arrayshaping expression in a list of expressions, so use
ParseAssignmentExpression() when try to parse the base of the shaping
operation.
Summary:
Added basic representation and parsing/sema handling of array-shaping
operations. Array shaping expression is an expression of form ([s0]..[sn])base,
where s0, ..., sn must be a positive integer, base - a pointer. This
expression is a kind of cast operation that converts pointer expression
into an array-like kind of expression.
Reviewers: rjmccall, rsmith, jdoerfert
Subscribers: guansong, arphaman, cfe-commits, caomhin, kkwli0
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74144
Summary: We mark these decls as invalid.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77037
scope.
There are a few contexts in which we assume a name is a template name;
if such a context is one where we should perform an unqualified lookup,
and lookup finds nothing, we would form a dependent template name even
if the name is not dependent. This happens in particular for the lookup
of a pseudo-destructor.
In passing, rename ActOnDependentTemplateName to just ActOnTemplateName
given that we apply it for non-dependent template names too.
Instead of bailing out of parsing when we encounter an invalid
template-name or template arguments in a template-id, produce an
annotation token describing the invalid construct.
This avoids duplicate errors and generally allows us to recover better.
In principle we should be able to extend this to store some kinds of
invalid template-id in the AST for tooling use, but that isn't handled
as part of this change.
This is the second part loosely extracted from D71179 and cleaned up.
This patch provides semantic analysis support for `omp begin/end declare
variant`, mostly as defined in OpenMP technical report 8 (TR8) [0].
The sema handling makes code generation obsolete as we generate "the
right" calls that can just be handled as usual. This handling also
applies to the existing, albeit problematic, `omp declare variant
support`. As a consequence a lot of unneeded code generation and
complexity is removed.
A major purpose of this patch is to provide proper `math.h`/`cmath`
support for OpenMP target offloading. See PR42061, PR42798, PR42799. The
current code was developed with this feature in mind, see [1].
The logic is as follows:
If we have seen a `#pragma omp begin declare variant match(<SELECTOR>)`
but not the corresponding `end declare variant`, and we find a function
definition we will:
1) Create a function declaration for the definition we were about to generate.
2) Create a function definition but with a mangled name (according to
`<SELECTOR>`).
3) Annotate the declaration with the `OMPDeclareVariantAttr`, the same
one used already for `omp declare variant`, using and the mangled
function definition as specialization for the context defined by
`<SELECTOR>`.
When a call is created we inspect it. If the target has an
`OMPDeclareVariantAttr` attribute we try to specialize the call. To this
end, all variants are checked, the best applicable one is picked and a
new call to the specialization is created. The new call is used instead
of the original one to the base function. To keep the AST printing and
tooling possible we utilize the PseudoObjectExpr. The original call is
the syntactic expression, the specialized call is the semantic
expression.
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim, aaron.ballman
Subscribers: bollu, guansong, openmp-commits, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75779
This is the first part extracted from D71179 and cleaned up.
This patch provides parsing support for `omp begin/end declare variant`,
as defined in OpenMP technical report 8 (TR8) [0].
A major purpose of this patch is to provide proper math.h/cmath support
for OpenMP target offloading. See PR42061, PR42798, PR42799. The current
code was developed with this feature in mind, see [1].
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74941
Summary: Previously, we dropped the AST node for nonexistent member exprs.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76764
In order to support non-user-named kernels, SYCL needs some way in the
integration headers to name the kernel object themselves. Initially, the
design considered just RTTI naming of the lambdas, this results in a
quite unstable situation in light of some device/host macros.
Additionally, this ends up needing to use RTTI, which is a burden on the
implementation and typically unsupported.
Instead, we've introduced a builtin, __builtin_unique_stable_name, which
takes a type or expression, and results in a constexpr constant
character array that uniquely represents the type (or type of the
expression) being passed to it.
The implementation accomplishes that simply by using a slightly modified
version of the Itanium Mangling. The one exception is when mangling
lambdas, instead of appending the index of the lambda in the function,
it appends the macro-expansion back-trace of the lambda itself in the
form LINE->COL[~LINE->COL...].
Differential Revision: https://reviews.llvm.org/D76620
Normally clang avoids creating expressions when it encounters semantic
errors, even if the parser knows which expression to produce.
This works well for the compiler. However, this is not ideal for
source-level tools that have to deal with broken code, e.g. clangd is
not able to provide navigation features even for names that compiler
knows how to resolve.
The new RecoveryExpr aims to capture the minimal set of information
useful for the tools that need to deal with incorrect code:
source range of the expression being dropped,
subexpressions of the expression.
We aim to make constructing RecoveryExprs as simple as possible to
ensure writing code to avoid dropping expressions is easy.
Producing RecoveryExprs can result in new code paths being taken in the
frontend. In particular, clang can produce some new diagnostics now and
we aim to suppress bogus ones based on Expr::containsErrors.
We deliberately produce RecoveryExprs only in the parser for now to
minimize the code affected by this patch. Producing RecoveryExprs in
Sema potentially allows to preserve more information (e.g. type of an
expression), but also results in more code being affected. E.g.
SFINAE checks will have to take presence of RecoveryExprs into account.
Initial implementation only works in C++ mode, as it relies on compiler
postponing diagnostics on dependent expressions. C and ObjC often do not
do this, so they require more work to make sure we do not produce too
many bogus diagnostics on the new expressions.
See documentation of RecoveryExpr for more details.
original patch from Ilya
This change is based on https://reviews.llvm.org/D61722
Reviewers: sammccall, rsmith
Reviewed By: sammccall, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69330
Suppress those diagnostics if lhs of a member expression contains
errors. Typo correction produces dependent expressions even in
non-template code, that led to spurious diagnostics before.
previous:
/tmp/t.cpp:6:17: error: use 'template' keyword to treat 'f' as a dependent template name
auto a = bilder.f<int>();
^
template
/tmp/t.cpp:6:10: error: use of undeclared identifier 'bilder'; did you mean 'builder'?
auto a = bilder.f<int>();
^~~~~~
builder
vs now:
/tmp/t.cpp:6:10: error: use of undeclared identifier 'bilder'; did you mean 'builder'?
auto a = bilder.f<int>();
^~~~~~
builder
Original patch from Ilya.
Reviewers: sammccall
Reviewed By: sammccall
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65592
TryAnnotateTypeConstraint could annotate a template-id which doesn't end up being a type-constraint,
in which case control flow would incorrectly flow into ParseImplicitInt.
Reenter the loop in this case.
Enable relevant tests for C++20. This required disabling typo-correction during TryAnnotateTypeConstraint
and changing a test case which is broken due to a separate bug (will be reported and handled separately).
Summary:
The parsing of GNU C extended asm statements was a little brittle and
had a few issues:
- It was using Parse::ParseTypeQualifierListOpt to parse the `volatile`
qualifier. That parser is really meant for TypeQualifiers; an asm
statement doesn't really have a type qualifier. This is still maybe
nice to have, but not necessary. We now can check for the `volatile`
token by properly expanding the grammer, rather than abusing
Parse::ParseTypeQualifierListOpt.
- The parsing of `goto` was position dependent, so `asm goto volatile`
wouldn't parse. The qualifiers should be position independent to one
another. Now they are.
- We would warn on duplicate `volatile`, but the parse error for
duplicate `goto` was a generic parse error and wasn't clear.
- We need to add support for the recent GNU C extension `asm inline`.
Adding support to the parser with the above issues highlighted the
need for this refactoring.
Link: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
Reviewers: aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aheejin, jfb, nathanchance, cfe-commits, echristo, efriedma, rsmith, chandlerc, craig.topper, erichkeane, jyu2, void, srhines
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75563
Most clients of SourceManager.h need to do things like turning source
locations into file & line number pairs, but this doesn't require
bringing in FileManager.h and LLVM's FS headers.
The main code change here is to sink SM::createFileID into the cpp file.
I reason that this is not performance critical because it doesn't happen
on the diagnostic path, it happens along the paths of macro expansion
(could be hot) and new includes (less hot).
Saves some includes:
309 - /usr/local/google/home/rnk/llvm-project/clang/include/clang/Basic/FileManager.h
272 - /usr/local/google/home/rnk/llvm-project/clang/include/clang/Basic/FileSystemOptions.h
271 - /usr/local/google/home/rnk/llvm-project/llvm/include/llvm/Support/VirtualFileSystem.h
267 - /usr/local/google/home/rnk/llvm-project/llvm/include/llvm/Support/FileSystem.h
266 - /usr/local/google/home/rnk/llvm-project/llvm/include/llvm/Support/Chrono.h
Differential Revision: https://reviews.llvm.org/D75406
a dependent context.
This matches the GCC behavior.
We track the enclosing template depth when determining whether a
statement expression is within a dependent context; there doesn't appear
to be any other reliable way to determine this.
We previously assumed they were neither value- nor
instantiation-dependent under any circumstances, which would lead to
crashes and other misbehavior.
dependent contexts.
We previously assumed they were neither value- nor
instantiation-dependent under any circumstances, which would lead to
crashes and other misbehavior.
Summary: ParsingInlineAsm was a misleading name. These values are only set for MS-style inline assembly.
Reviewed By: rnk
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75198
Summary:
Clang's "asm goto" feature didn't initially support outputs constraints. That
was the same behavior as gcc's implementation. The decision by gcc not to
support outputs was based on a restriction in their IR regarding terminators.
LLVM doesn't restrict terminators from returning values (e.g. 'invoke'), so
it made sense to support this feature.
Output values are valid only on the 'fallthrough' path. If an output value's used
on an indirect branch, then it's 'poisoned'.
In theory, outputs *could* be valid on the 'indirect' paths, but it's very
difficult to guarantee that the original semantics would be retained. E.g.
because indirect labels could be used as data, we wouldn't be able to split
critical edges in situations where two 'callbr' instructions have the same
indirect label, because the indirect branch's destination would no longer be
the same.
Reviewers: jyknight, nickdesaulniers, hfinkel
Reviewed By: jyknight, nickdesaulniers
Subscribers: MaskRay, rsmith, hiraditya, llvm-commits, cfe-commits, craig.topper, rnk
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69876
The syntax rules for ptr-operator allow attributes after *, &,
&&, therefore we should be able to parse the following:
void fn() {
void (*[[attr]] x)() = &fn;
void (&[[attr]] y)() = fn;
void (&&[[attr]] z)() = fn;
}
However the current logic in TryParsePtrOperatorSeq does not consider
the presence of attributes leading to unexpected parsing errors.
Moreover we should also consider _Atomic a possible qualifier that can
appear after the sequence of attribute specifiers.
This patch implements an almost complete handling of OpenMP
contexts/traits such that we can reuse most of the logic in Flang
through the OMPContext.{h,cpp} in llvm/Frontend/OpenMP.
All but construct SIMD specifiers, e.g., inbranch, and the device ISA
selector are define in `llvm/lib/Frontend/OpenMP/OMPKinds.def`. From
these definitions we generate the enum classes `TraitSet`,
`TraitSelector`, and `TraitProperty` as well as conversion and helper
functions in `llvm/lib/Frontend/OpenMP/OMPContext.{h,cpp}`.
The above enum classes are used in the parser, sema, and the AST
attribute. The latter is not a collection of multiple primitive variant
arguments that contain encodings via numbers and strings but instead a
tree that mirrors the `match` clause (see `struct OpenMPTraitInfo`).
The changes to the parser make it more forgiving when wrong syntax is
read and they also resulted in more specialized diagnostics. The tests
are updated and the core issues are detected as before. Here and
elsewhere this patch tries to be generic, thus we do not distinguish
what selector set, selector, or property is parsed except if they do
behave exceptionally, as for example `user={condition(EXPR)}` does.
The sema logic changed in two ways: First, the OMPDeclareVariantAttr
representation changed, as mentioned above, and the sema was adjusted to
work with the new `OpenMPTraitInfo`. Second, the matching and scoring
logic moved into `OMPContext.{h,cpp}`. It is implemented on a flat
representation of the `match` clause that is not tied to clang.
`OpenMPTraitInfo` provides a method to generate this flat structure (see
`struct VariantMatchInfo`) by computing integer score values and boolean
user conditions from the `clang::Expr` we keep for them.
The OpenMP context is now an explicit object (see `struct OMPContext`).
This is in anticipation of construct traits that need to be tracked. The
OpenMP context, as well as the `VariantMatchInfo`, are basically made up
of a set of active or respectively required traits, e.g., 'host', and an
ordered container of constructs which allows duplication. Matching and
scoring is kept as generic as possible to allow easy extension in the
future.
---
Test changes:
The messages checked in `OpenMP/declare_variant_messages.{c,cpp}` have
been auto generated to match the new warnings and notes of the parser.
The "subset" checks were reversed causing the wrong version to be
picked. The tests have been adjusted to correct this.
We do not print scores if the user did not provide one.
We print spaces to make lists in the `match` clause more legible.
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: merge_guards_bot, rampitec, mgorny, hiraditya, aheejin, fedor.sergeev, simoncook, bollu, guansong, dexonsmith, jfb, s.egerton, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71830
If an error had occurred when annotating a scope spec during the tentative parse
for a type-requirement, we would not revert nor commit the tentative parse, triggerring
an assertion failure.
Commit the TPA in this case and then do error recovery.
directive.
According to OpenMP 5.0, The atomic_default_mem_order clause specifies the default memory ordering behavior for atomic constructs that must be provided by an implementation. If the default memory ordering is specified as seq_cst, all atomic constructs on which memory-order-clause is not specified behave as if the seq_cst clause appears. If the default memory ordering is specified as relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the relaxed clause appears.
If the default memory ordering is specified as acq_rel, atomic constructs on which memory-order-clause is not specified behave as if the release clause appears if the atomic write or atomic update operation is specified, as if the acquire clause appears if the atomic read operation is specified, and as if the acq_rel clause appears if the atomic captured update operation is specified.
isDeclarationSpecifiers did not handle some cases of placeholder-type-specifiers with
type-constraints, causing parsing bugs in abbreviated constructor templates.
Add comprehensive handling of type-constraints to isDeclarationSpecifier.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
See
https://docs.google.com/document/d/1xMkTZMKx9llnMPgso0jrx3ankI4cv60xeZ0y4ksf4wc/preview
for background discussion.
This adds a warning, flags and pragmas to limit the number of
pre-processor tokens either at a certain point in a translation unit, or
overall.
The idea is that this would allow projects to limit the size of certain
widely included headers, or for translation units overall, as a way to
insert backstops for header bloat and prevent compile-time regressions.
Differential revision: https://reviews.llvm.org/D72703
The code for parsing of type-constraints in compound-requirements was not adapted for the new TryAnnotateTypeConstraint which
caused compound-requirements with scope specifiers to ignore them.
Also add regression tests for scope specifiers in type-constraints in more contexts.
This change added two new attributes, rounding mode and exception
behavior to the structure FPOptions. These attributes allow more
flexible treatment of specific floating point environment than it is
provided by #pragma STDC FENV_ACCESS.
Differential Revision: https://reviews.llvm.org/D65994
When used as qualified names, pseudo-destructors are always named as if
they were members of the type, never as members of the namespace
enclosing the type.
As per P1980R0, constraint expressions are unevaluated operands, and their constituent atomic
constraints only become constant evaluated during satisfaction checking.
Change the evaluation context during parsing and instantiation of constraints to unevaluated.
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after fixing MSAN failures caused by incomplete initialization of AutoTypeLocs in TypeSpecLocFiller.
Differential Revision: https://reviews.llvm.org/D65042
Summary:
CodeCompletion was not being triggered after successfully parsed
initializer lists, e.g.
```cpp
void foo(int, bool);
void bar() {
foo({1}^, false);
}
```
CodeCompletion would suggest the function foo as an overload candidate up until
the point marked with `^` but after that point we do not trigger signature help
since parsing succeeds.
This patch handles that case by failing in parsing expression lists whenever we
see a codecompletion token, in addition to getting an invalid subexpression.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73177
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Resubmit after incorrect check in NonTypeTemplateParmDecl broke lldb.
Differential Revision: https://reviews.llvm.org/D65042
This patch implements P1141R2 "Yet another approach for constrained declarations".
General strategy for this patch was:
- Expand AutoType to include optional type-constraint, reflecting the wording and easing the integration of constraints.
- Replace autos in parameter type specifiers with invented parameters in GetTypeSpecTypeForDeclarator, using the same logic
previously used for generic lambdas, now unified with abbreviated templates, by:
- Tracking the template parameter lists in the Declarator object
- Tracking the template parameter depth before parsing function declarators (at which point we can match template
parameters against scope specifiers to know if we have an explicit template parameter list to append invented parameters
to or not).
- When encountering an AutoType in a parameter context we check a stack of InventedTemplateParameterInfo structures that
contain the info required to create and accumulate invented template parameters (fields that were already present in
LambdaScopeInfo, which now inherits from this class and is looked up when an auto is encountered in a lambda context).
Differential Revision: https://reviews.llvm.org/D65042
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
A TemplateIdAnnotation represents only a template-id, not a
nested-name-specifier plus a template-id. Don't make a redundant copy of
the CXXScopeSpec and store it on the template-id annotation.
This slightly improves error recovery by more properly handling the case
where we would form an invalid CXXScopeSpec while parsing a typename
specifier, instead of accidentally putting the token stream into a
broken "annot_template_id with a scope specifier, but with no preceding
annot_cxxscope token" state.
This needs somewhat careful disambiguation, as C++2a explicit(bool) is a
breaking change. We only enable it in cases where the source construct
could not possibly be anything else.
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352