For failed static assertions, try to take the expression apart and print
useful information about why it failed. In particular, look at binary
operators and print the compile-time evaluated value of the LHS/RHS.
Differential Revision: https://reviews.llvm.org/D130894
C99 6.7.4p2 clarifies that a function specifier can only be used in the
declaration of a function. _Noreturn is a function specifier, so it is
a constraint violation to write it on a structure or union field, but
we missed that case.
Fixes#56800
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
report an error when encountering 'while' token parsing declarator
```
clang/test/Parser/while-loop-outside-function.c:3:1: error: while loop outside of a function
while // expected-error {{while loop outside of a function}}
^
clang/test/Parser/while-loop-outside-function.c:7:1: error: while loop outside of a function
while // expected-error {{while loop outside of a function}}
^
```
Fixes: https://github.com/llvm/llvm-project/issues/34462
Differential Revision: https://reviews.llvm.org/D129573
Clang has traditionally allowed C programs to implicitly convert
integers to pointers and pointers to integers, despite it not being
valid to do so except under special circumstances (like converting the
integer 0, which is the null pointer constant, to a pointer). In C89,
this would result in undefined behavior per 3.3.4, and in C99 this rule
was strengthened to be a constraint violation instead. Constraint
violations are most often handled as an error.
This patch changes the warning to default to an error in all C modes
(it is already an error in C++). This gives us better security posture
by calling out potential programmer mistakes in code but still allows
users who need this behavior to use -Wno-error=int-conversion to retain
the warning behavior, or -Wno-int-conversion to silence the diagnostic
entirely.
Differential Revision: https://reviews.llvm.org/D129881
Looks like we again are going to have problems with libcxx tests that
are overly specific in their dependency on clang's diagnostics.
This reverts commit 6542cb55a3.
This patch is basically the rewording of the static assert statement's
output(error) on screen after failing. Failing a _Static_assert in C
should not report that static_assert failed. It’d probably be better to
reword the diagnostic to be more like GCC and say “static assertion”
failed in both C and C++.
consider a c file having code
_Static_assert(0, "oh no!");
In clang the output is like:
<source>:1:1: error: static_assert failed: oh no!
_Static_assert(0, "oh no!");
^ ~
1 error generated.
Compiler returned: 1
Thus here the "static_assert" is not much good, it will be better to
reword it to the "static assertion failed" to more generic. as the gcc
prints as:
<source>:1:1: error: static assertion failed: "oh no!"
1 | _Static_assert(0, "oh no!");
| ^~~~~~~~~~~~~~
Compiler returned: 1
The above can also be seen here. This patch is about rewording
the static_assert to static assertion.
Differential Revision: https://reviews.llvm.org/D129048
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit b7e77ff25f.
Reason: Broke sanitizer builds bots + libcxx. 'static assertion
expression is not an integral constant expression'. More details
available in the Phabricator review: https://reviews.llvm.org/D129048
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Implements [[ https://wg21.link/p2071r1 | P2071 Named Universal Character Escapes ]] - as an extension in all language mode, the patch not warn in c++23 mode will be done later once this paper is plenary approved (in July).
We add
* A code generator that transforms `UnicodeData.txt` and `NameAliases.txt` to a space efficient data structure that can be queried in `O(NameLength)`
* A set of functions in `Unicode.h` to query that data, including
* A function to find an exact match of a given Unicode character name
* A function to perform a loose (ignoring case, space, underscore, medial hyphen) matching
* A function returning the best matching codepoint for a given string per edit distance
* Support of `\N{}` escape sequences in String and character Literals, with loose and typos diagnostics/fixits
* Support of `\N{}` as UCN with loose matching diagnostics/fixits.
Loose matching is considered an error to match closely the semantics of P2071.
The generated data contributes to 280kB of data to the binaries.
`UnicodeData.txt` and `NameAliases.txt` are not committed to the repository in this patch, and regenerating the data is a manual process.
Reviewed By: tahonermann
Differential Revision: https://reviews.llvm.org/D123064
This patch is the last prerequisite to switch the default behaviour to -fno-lax-vector-conversions in the future.
The first path ;D124093; fixed the altivec implicit castings.
Reviewed By: amyk
Differential Revision: https://reviews.llvm.org/D126540
For backwards compatiblity, we emit only a warning instead of an error if the
attribute is one of the existing type attributes that we have historically
allowed to "slide" to the `DeclSpec` just as if it had been specified in GNU
syntax. (We will call these "legacy type attributes" below.)
The high-level changes that achieve this are:
- We introduce a new field `Declarator::DeclarationAttrs` (with appropriate
accessors) to store C++11 attributes occurring in the attribute-specifier-seq
at the beginning of a simple-declaration (and other similar declarations).
Previously, these attributes were placed on the `DeclSpec`, which made it
impossible to reconstruct later on whether the attributes had in fact been
placed on the decl-specifier-seq or ahead of the declaration.
- In the parser, we propgate declaration attributes and decl-specifier-seq
attributes separately until we can place them in
`Declarator::DeclarationAttrs` or `DeclSpec::Attrs`, respectively.
- In `ProcessDeclAttributes()`, in addition to processing declarator attributes,
we now also process the attributes from `Declarator::DeclarationAttrs` (except
if they are legacy type attributes).
- In `ConvertDeclSpecToType()`, in addition to processing `DeclSpec` attributes,
we also process any legacy type attributes that occur in
`Declarator::DeclarationAttrs` (and emit a warning).
- We make `ProcessDeclAttribute` emit an error if it sees any non-declaration
attributes in C++11 syntax, except in the following cases:
- If it is being called for attributes on a `DeclSpec` or `DeclaratorChunk`
- If the attribute is a legacy type attribute (in which case we only emit
a warning)
The standard justifies treating attributes at the beginning of a
simple-declaration and attributes after a declarator-id the same. Here are some
relevant parts of the standard:
- The attribute-specifier-seq at the beginning of a simple-declaration
"appertains to each of the entities declared by the declarators of the
init-declarator-list" (https://eel.is/c++draft/dcl.dcl#dcl.pre-3)
- "In the declaration for an entity, attributes appertaining to that entity can
appear at the start of the declaration and after the declarator-id for that
declaration." (https://eel.is/c++draft/dcl.dcl#dcl.pre-note-2)
- "The optional attribute-specifier-seq following a declarator-id appertains to
the entity that is declared."
(https://eel.is/c++draft/dcl.dcl#dcl.meaning.general-1)
The standard contains similar wording to that for a simple-declaration in other
similar types of declarations, for example:
- "The optional attribute-specifier-seq in a parameter-declaration appertains to
the parameter." (https://eel.is/c++draft/dcl.fct#3)
- "The optional attribute-specifier-seq in an exception-declaration appertains
to the parameter of the catch clause" (https://eel.is/c++draft/except.pre#1)
The new behavior is tested both on the newly added type attribute
`annotate_type`, for which we emit errors, and for the legacy type attribute
`address_space` (chosen somewhat randomly from the various legacy type
attributes), for which we emit warnings.
Depends On D111548
Reviewed By: aaron.ballman, rsmith
Differential Revision: https://reviews.llvm.org/D126061
For newer OpenCL extensions that do not require a pragma, such as
`cl_khr_subgroup_shuffle`, a user could still accidentally attempt to
use a pragma. This would result in a warning
"unknown OpenCL extension 'cl_khr_subgroup_shuffle' - ignoring"
which could be mistakenly interpreted as "clang does not support this
extension at all" instead of "clang does not require any pragma for
this extension".
Differential Revision: https://reviews.llvm.org/D126660
Post-commit feedback on https://reviews.llvm.org/D122895 pointed out
that the diagnostic wording for some code was using "declaration" in a
confusing way, such as:
int foo(); // warning: a function declaration without a prototype is deprecated in all versions of C and is not supported in C2x
int foo(int arg) { // warning: a function declaration without a prototype is deprecated in all versions of C and is not supported in C2x
return 5;
}
And that we had other minor issues with the diagnostics being somewhat
confusing.
This patch addresses the confusion by reworking the implementation to
be a bit more simple and a bit less chatty. Specifically, it changes
the warning and note diagnostics to be able to specify "declaration" or
"definition" as appropriate, and it changes the function merging logic
so that the function without a prototype is always what gets warned on,
and the function with a prototype is sometimes what gets noted.
Additionally, when diagnosing a K&R C definition that is preceded by a
function without a prototype, we don't note the prior declaration, we
warn on it because it will also be changing behavior in C2x.
Differential Revision: https://reviews.llvm.org/D125814
The standard says:
The optional requires-clause ([temp.pre]) in an init-declarator or
member-declarator shall be present only if the declarator declares a
templated function ([dcl.fct]).
This implements that limitation, and updates the tests to the best of my
ability to capture the intent of the original checks.
Differential Revision: https://reviews.llvm.org/D125711
Before issuing the warning about use of a strict prototype, check if
the declarator is required to have a prototype through some other means
determined at parse time.
This silences false positives in OpenCL code (where the functions are
forced to have a prototype) and block literal expressions.
C89 allowed a type specifier to be elided with the resulting type being
int, aka implicit int behavior. This feature was subsequently removed
in C99 without a deprecation period, so implementations continued to
support the feature. Now, as with implicit function declarations, is a
good time to reevaluate the need for this support.
This patch allows -Wimplicit-int to issue warnings in C89 mode (off by
default), defaults the warning to an error in C99 through C17, and
disables support for the feature entirely in C2x. It also removes a
warning about missing declaration specifiers that really was just an
implicit int warning in disguise and other minor related cleanups.
WG14 has elected to remove support for K&R C functions in C2x. The
feature was introduced into C89 already deprecated, so after this long
of a deprecation period, the committee has made an empty parameter list
mean the same thing in C as it means in C++: the function accepts no
arguments exactly as if the function were written with (void) as the
parameter list.
This patch implements WG14 N2841 No function declarators without
prototypes (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2841.htm)
and WG14 N2432 Remove support for function definitions with identifier
lists (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2432.pdf).
It also adds The -fno-knr-functions command line option to opt into
this behavior in other language modes.
Differential Revision: https://reviews.llvm.org/D123955
Functions without prototypes in C (also known as K&R C functions) were
introduced into C89 as a deprecated feature and C2x is now reclaiming
that syntax space with different semantics. However, Clang's
-Wstrict-prototypes diagnostic is off-by-default (even in pedantic
mode) and does not suffice to warn users about issues in their code.
This patch changes the behavior of -Wstrict-prototypes to only diagnose
declarations and definitions which are not going to change behavior in
C2x mode, and enables the diagnostic in -pedantic mode. The diagnostic
is now specifically about the fact that the feature is deprecated.
It also adds -Wdeprecated-non-prototype, which is grouped under
-Wstrict-prototypes and diagnoses declarations or definitions which
will change behavior in C2x mode. This diagnostic is enabled by default
because the risk is higher for the user to continue to use the
deprecated feature.
Differential Revision: https://reviews.llvm.org/D122895
A significant number of our tests in C accidentally use functions
without prototypes. This patch converts the function signatures to have
a prototype for the situations where the test is not specific to K&R C
declarations. e.g.,
void func();
becomes
void func(void);
This adds support for multiple attributes in `#pragma clang attribute push`, for example:
```
```
or
```
```
Related attributes can now be applied with a single pragma, which makes it harder for developers to make an accidental error later when editing the code.
rdar://78269653
Differential Revision: https://reviews.llvm.org/D121283
GCC supports:
- `namespace <gnu attributes> identifier`
- `namespace identifier <gnu attributes>`
But clang supports only `namespace identifier <gnu attributes>` and diagnostics for `namespace <gnu attributes> identifier` case looks unclear:
Code:
```
namespace __attribute__((visibility("hidden"))) A
{
}
```
Diags:
```
test.cpp:1:49: error: expected identifier or '{'
namespace __attribute__((visibility("hidden"))) A
^
test.cpp:1:49: error: C++ requires a type specifier for all declarations
test.cpp:3:2: error: expected ';' after top level declarator
}
```
This patch adds support for `namespace <gnu attributes> identifier` and also forbids gnu attributes for nested namespaces (this already done for C++ attributes).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D121245
Motivation:
```
int test(int x, int y) {
int r = 0;
[[clang::always_inline]] r += foo(x, y); // force compiler to inline this function here
return r;
}
```
In 2018, @kuhar proposed "Introduce per-callsite inline intrinsics" in https://reviews.llvm.org/D51200 to solve this motivation case (and many others).
This patch solves this problem with call site attribute. "noinline" statement attribute already landed in D119061. Also, some LLVM Inliner fixes landed so call site attribute is stronger than function attribute.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D120717
Motivation:
```
int foo(int x, int y) { // any compiler will happily inline this function
return x / y;
}
int test(int x, int y) {
int r = 0;
[[clang::noinline]] r += foo(x, y); // for some reason we don't want any inlining here
return r;
}
```
In 2018, @kuhar proposed "Introduce per-callsite inline intrinsics" in https://reviews.llvm.org/D51200 to solve this motivation case (and many others).
This patch solves this problem with call site attribute. The implementation is "smaller" wrt approach which uses new intrinsics and thanks to https://reviews.llvm.org/D79121 (Add nomerge statement attribute to clang), we have got some basic infrastructure to deal with attrs on statements with call expressions.
GCC devs are more inclined to call attribute solution as well, as builtins are problematic for them - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104187. But they have no patch proposal yet so.. We have free hands here.
If this approach makes sense, next future steps would be support for call site attributes for always_inline / flatten.
Reviewed By: aaron.ballman, kuhar
Differential Revision: https://reviews.llvm.org/D119061
This patch adds -Wno-strict-prototypes to all of the test cases that
use functions without prototypes, but not as the primary concern of the
test. e.g., attributes testing whether they can/cannot be applied to a
function without a prototype, etc.
This is done in preparation for enabling -Wstrict-prototypes by
default.
A significant number of our tests in C accidentally use functions
without prototypes. This patch converts the function signatures to have
a prototype for the situations where the test is not specific to K&R C
declarations. e.g.,
void func();
becomes
void func(void);
This is the fifth batch of tests being updated (there are a significant
number of other tests left to be updated).
Note, the behavior of -ast-print is broken. It prints functions with a
prototype (void) as if they have no prototype () in C. Some tests need
to disable strict prototype checking when recompiling the results of an
-ast-print invocation.
These changes make the Clang parser recognize expression parameter pack
expansion and initializer lists in attribute arguments. Because
expression parameter pack expansion requires additional handling while
creating and instantiating templates, the support for them must be
explicitly supported through the AcceptsExprPack flag.
Handling expression pack expansions may require a delay to when the
arguments of an attribute are correctly populated. To this end,
attributes that are set to accept these - through setting the
AcceptsExprPack flag - will automatically have an additional variadic
expression argument member named DelayedArgs. This member is not
exposed the same way other arguments are but is set through the new
CreateWithDelayedArgs creator function generated for applicable
attributes.
To illustrate how to implement support for expression pack expansion
support, clang::annotate is made to support pack expansions. This is
done by making handleAnnotationAttr delay setting the actual attribute
arguments until after template instantiation if it was unable to
populate the arguments due to dependencies in the parsed expressions.
Implement P2128R6 in C++23 mode.
Unlike GCC's implementation, this doesn't try to recover when a user
meant to use a comma expression.
Because the syntax changes meaning in C++23, the patch is *NOT*
implemented as an extension. Instead, declaring an array with not
exactly 1 parameter is an error in older languages modes. There is an
off-by-default extension warning in C++23 mode.
Unlike the standard, we supports default arguments;
Ie, we assume, based on conversations in WG21, that the proposed
resolution to CWG2507 will be accepted.
We allow arrays OpenMP sections and C++23 multidimensional array to
coexist:
[a , b] multi dimensional array
[a : b] open mp section
[a, b: c] // error
The rest of the patch is relatively straight forward: we take care to
support an arbitrary number of arguments everywhere.
A significant number of our tests in C accidentally use functions
without prototypes. This patch converts the function signatures to have
a prototype for the situations where the test is not specific to K&R C
declarations. e.g.,
void func();
becomes
void func(void);
This is the fourth batch of tests being updated (there are a significant
number of other tests left to be updated).
The parsing code for a typename requirement currently asserts when
given something which is not a valid type-requirement
(http://eel.is/c++draft/expr.prim.req.type#nt:type-requirement). This
removes the assertion to continue on to the proper diagnostic.
This resolves PR53057.
Note that in that PR, it is using _BitInt(N) as a dependent type name.
This patch does not attempt to support that as it is not clear that is
a valid type requirement (it does not match the grammar production for
one). The workaround in the PR, however, is definitely valid and works
as expected.
This allows the body to be parsed.
An special-case that would replace a missing if condition with OpaqueValueExpr
was removed as it's now redundant (unless recovery-expr is disabled).
For loops are not handled at this point, as the parsing is more complicated.
Differential Revision: https://reviews.llvm.org/D113752
When parsing the following construct, we parse it as an erroneous
deduction guide declaration and correctly diagnose the issues with it.
template<class> struct B;
struct A { B() noexcept(false); };
However, we then go on to finish late parsing the declaration and this
expects that what we've parsed is a CXXMethodDecl. A
CXXDeductionGuideDecl is not a CXXMethodDecl (it's a FunctionDecl), and
so we assert on the cast.
This fixes the crash by switching from cast<> to dyn_cast<> and not
setting up a "this" scope when the declaration is not a CXXMethodDecl.
This fixes PR49735.
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
There was some confusion during the discussion of a patch as to whether
`any` can be used to blast an attribute with no subject list onto
basically everything in a program by not specifying a subrule. This
patch adds documentation and tests to make it clear that this situation
is not supported and will be diagnosed.