The stack pointer is stored in the second slot in the jump buffer on
AArch64. Use the correct slot value to read this rather than the
following register.
Reviewed by: melver
Differential Revision: https://reviews.llvm.org/D125762
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
stats_size argument is unnecessary in GetMemoryProfile and in the callback.
It just clutters code. The callback knowns how many stats to expect.
Depends on D112789.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112790
Print meaningful stack frames for stack/tls races
(instead of PC 1/2 that don't symbolize).
Imitate stack/tls writes after we create and initialize
the new thread, otherwise the races are not detected.
This is re-submit of the following reverted commits,
but without tests as they failed on a number of OSes/arches:
"tsan: fix and test detection of TLS races"
"tsan: fix tls_race3 test on darwin"
"tsan: print a meaningful frame for stack races"
Differential Revision: https://reviews.llvm.org/D111147
The trace tests crashed on darwin because of some thread
initialization issues (thread initialization is somewhat
different on darwin).
Instead of starting real threads, create a new ThreadState
in the main thread. This makes the tests more unit-testy
and hopefully won't crash on darwin (there is almost no
platform-specific code involved now).
This will also help with future trace tests that will need
more than 1 thread. Creating more than 1 real thread and
dispatching test actions across multiple threads in the
required deterministic order is painful.
Depends on D110539.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D110546
Currently detection of races with TLS/stack initialization
is broken because we imitate the write before thread initialization,
so it's modelled with a wrong thread/epoch.
Fix that and add a test.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D110538
Fix few remaining cases where we use u64 instead of the new RawShadow type.
Depends on D110265.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D110266
Remove unnecessary enum values in the memory profiler.
There is no point in spelling them, it can only lead to bugs
and larger diffs when values are added/removed.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D110263
Write uptime in real time seconds for every mem profile record.
Uptime is useful to make more sense out of the profile,
compare random lines, etc.
Depends on D110153.
Reviewed By: melver, vitalybuka
Differential Revision: https://reviews.llvm.org/D110154
We allocate things from the internal allocator,
it's useful to know how much it consumes.
Depends on D110150.
Reviewed By: melver, vitalybuka
Differential Revision: https://reviews.llvm.org/D110151
We currently query number of threads before reading /proc/self/smaps.
But reading /proc/self/smaps can take lots of time for huge processes
and it's retries several times with different buffer sizes.
Overall it can take tens of seconds. This can make number of threads
significantly inconsistent with the rest of the stats.
So query it after reading /proc/self/smaps.
Depends on D110149.
Reviewed By: melver, vitalybuka
Differential Revision: https://reviews.llvm.org/D110150
Include info about MBlock/SyncObj memory consumption in the memory profile.
Depends on D110148.
Reviewed By: melver, vitalybuka
Differential Revision: https://reviews.llvm.org/D110149
We account low and high ranges, but forgot abount the mid range.
Account mid range as well.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D110148
Currently there are 2 levels when selecting the active mapping:
the branchy ifdef tree + another ifdef tree in SelectMapping.
Moreover, there is an additional indirection for some platforms
via HAS_48_BIT_ADDRESS_SPACE define. This makes already complex
logic even more complex and almost impossible to read.
Remove one level of indirection and define the active mapping
in SelectMapping.
Depends on D107742.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D107743
Define all fields to 0 for all mappings.
This allows to write portable code and tests.
For all existing cases 0 values work out of the box
because we check if an address belongs to the range
and nothing belongs to [0, 0] range.
Depends on D107738.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D107739
Unify Go mapping naming with C++ naming to allow
writing portable code/tests that can work for both C++ and Go.
No functional changes.
Depends on D107737.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D107738
This was reverted by f176803ef1 due to
Ubuntu 16.04 x86-64 glibc 2.23 problems.
This commit additionally calls `__tls_get_addr({modid,0})` to work around the
dlpi_tls_data==NULL issues for glibc<2.25
(https://sourceware.org/bugzilla/show_bug.cgi?id=19826)
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
This simplification enables D99566 for TLS Variant I architectures.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS ranges. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
In the future, we can move `ThreadDescriptorSize` code to lsan (and consider
intercepting `pthread_setspecific`) to avoid hacks in generic code.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
Go requires 47 bits VA for tsan.
Go will run race_detector testcases unless tsan warns about "unsupported VMA range"
Author: mzh (Meng Zhuo)
Reviewed-in: https://reviews.llvm.org/D98238
- Fixing VS compiler and other cases settings this time.
Reviewers: dmajor, hans
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D89759
Revert "Fix compiler-rt build on Windows after D89640"
This reverts commit a7acee89d6.
This reverts commit d09b08919c.
Reason: breaks Linux / x86_64 build.
Temporarily revert "tsan: fix leak of ThreadSignalContext for fibers"
because it breaks the LLDB bot on GreenDragon.
This reverts commit 93f7743851.
This reverts commit d8a0f76de7.
When creating and destroying fibers in tsan a thread state
is created and destroyed. Currently, a memory mapping is
leaked with each fiber (in __tsan_destroy_fiber).
This causes applications with many short running fibers
to crash or hang because of linux vm.max_map_count.
The root of this is that ThreadState holds a pointer to
ThreadSignalContext for handling signals. The initialization
and destruction of it is tied to platform specific events
in tsan_interceptors_posix and missed when destroying a fiber
(specifically, SigCtx is used to lazily create the
ThreadSignalContext in tsan_interceptors_posix). This patch
cleans up the memory by inverting the control from the
platform specific code calling the generic ThreadFinish to
ThreadFinish calling a platform specific clean-up routine
after finishing a thread.
The relevant code causing the leak with fibers is the fiber destruction:
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber) {
FiberSwitchImpl(thr, fiber);
ThreadFinish(fiber);
FiberSwitchImpl(fiber, thr);
internal_free(fiber);
}
I would appreciate feedback if this way of fixing the leak is ok.
Also, I think it would be worthwhile to more closely look at the
lifecycle of ThreadState (i.e. it uses no constructor/destructor,
thus requiring manual callbacks for cleanup) and how OS-Threads/user
level fibers are differentiated in the codebase. I would be happy to
contribute more if someone could point me at the right place to
discuss this issue.
Reviewed-in: https://reviews.llvm.org/D76073
Author: Florian (Florian)