This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
Precisely specifying the unused parts of the bitfield is critical for
performance. If we don't specify them, compiler will generate code to load
the old value and shuffle it to extract the unused bits to apply to the new
value. If we specify the unused part and store 0 in there, all that
unnecessary code goes away (store of the 0 const is combined with other
constant parts).
I don't see a good way to ensure we cover all of u64 bits with fields.
So at least introduce named kUnusedBits consts and check that bits
sum up to 64.
Depends on D113978.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D113979
In the old runtime we used to use different number of trace parts
for C++ and Go to reduce trace memory consumption for Go.
But now it's easier and better to use smaller parts because
we already use minimal possible number of parts for C++ (3).
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D113978
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This reverts commit 797fe59e6b.
The use of "EventType type : 3" is replicated for all Event structs and
therefore was still present. As a result this still caused failures on
older GCCs (9.2 or 8.3 or earlier).
The particular bot that was failing due to buggy GCC was fixed by
fef39cc472.
Therefore, no reason to keep the workaround around; revert it.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D108192
Add structures for the new trace format,
functions that serialize and add events to the trace
and trace replaying logic.
Differential Revision: https://reviews.llvm.org/D107911
Now that sanitizer_common mutex has feature-parity with tsan mutex,
switch tsan to the sanitizer_common mutex and remove tsan's custom mutex.
Reviewed By: vitalybuka, melver
Differential Revision: https://reviews.llvm.org/D106379
I don't think the stat subsystem was ever used since tsan
development in 2012. But it adds lots of code and this
effectively dead code needs to be updated if the runtime
code changes, which adds maintanance cost for no benefit.
Normal profiler usually gives enough info and that info
is more trustworthy.
Remove the stats subsystem.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D106276
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Currently we either define SANITIZER_GO for Go or don't define it at all for C++.
This works fine with preprocessor (ifdef/ifndef/defined), but does not work
for C++ if statements (e.g. if (SANITIZER_GO) {...}). Also this is different
from majority of SANITIZER_FOO macros which are always defined to either 0 or 1.
Always define SANITIZER_GO to either 0 or 1.
This allows to use SANITIZER_GO in expressions and in flag default values.
Also remove kGoMode and kCppMode, which were meant to be used in expressions,
but they are not defined in sanitizer_common code, so SANITIZER_GO become prevalent.
Also convert some preprocessor checks to C++ if's or ternary expressions.
Majority of this change is done mechanically with:
sed "s#ifdef SANITIZER_GO#if SANITIZER_GO#g"
sed "s#ifndef SANITIZER_GO#if \!SANITIZER_GO#g"
sed "s#defined(SANITIZER_GO)#SANITIZER_GO#g"
llvm-svn: 285443
Revision 229127 introduced a bug:
zero value is not OK for trace headers,
because stack0 needs constructor call.
Instead unmap the unused part of trace after
all ctors have been executed.
llvm-svn: 229263
The ContainsSameAccess optimization substantially reduces pressure
on trace by eliminating duplicate accesses. So now we can reduce
default trace size to reduce per-goroutine memory consumption.
Current default size is 64K events, new -- 32K events.
In either case user can change it with GORACE env var.
Reduces per-goroutine memory consumption from 356K to 226K.
llvm-svn: 229117
Summary:
This change removes `__tsan::StackTrace` class. There are
now three alternatives:
# Lightweight `__sanitizer::StackTrace`, which doesn't own a buffer
of PCs. It is used in functions that need stack traces in read-only
mode, and helps to prevent unnecessary allocations/copies (e.g.
for StackTraces fetched from StackDepot).
# `__sanitizer::BufferedStackTrace`, which stores buffer of PCs in
a constant array. It is used in TraceHeader (non-Go version)
# `__tsan::VarSizeStackTrace`, which owns buffer of PCs, dynamically
allocated via TSan internal allocator.
Test Plan: compiler-rt test suite
Reviewers: dvyukov, kcc
Reviewed By: kcc
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D6004
llvm-svn: 221194
The new storage (MetaMap) is based on direct shadow (instead of a hashmap + per-block lists).
This solves a number of problems:
- eliminates quadratic behaviour in SyncTab::GetAndLock (https://code.google.com/p/thread-sanitizer/issues/detail?id=26)
- eliminates contention in SyncTab
- eliminates contention in internal allocator during allocation of sync objects
- removes a bunch of ad-hoc code in java interface
- reduces java shadow from 2x to 1/2x
- allows to memorize heap block meta info for Java and Go
- allows to cleanup sync object meta info for Go
- which in turn enabled deadlock detector for Go
llvm-svn: 209810
This allows to increase max shadow stack size to 64K,
and reliably catch shadow stack overflows instead of silently
corrupting memory.
llvm-svn: 192797
Algorithm description: http://code.google.com/p/thread-sanitizer/wiki/ThreadSanitizerAlgorithm
Status:
The tool is known to work on large real-life applications, but still has quite a few rough edges.
Nothing is guaranteed yet.
The tool works on x86_64 Linux.
Support for 64-bit MacOS 10.7+ is planned for late 2012.
Support for 32-bit OSes is doable, but problematic and not yet planed.
Further commits coming:
- tests
- makefiles
- documentation
- clang driver patch
The code was previously developed at http://code.google.com/p/data-race-test/source/browse/trunk/v2/
by Dmitry Vyukov and Kostya Serebryany with contributions from
Timur Iskhodzhanov, Alexander Potapenko, Alexey Samsonov and Evgeniy Stepanov.
llvm-svn: 156542