Callers of TraceSwitchPart expect that TraceAcquire will always succeed
after the call. It's possible that TryTraceFunc/TraceMutexLock in TraceSwitchPart
that restore the current stack/mutexset filled the trace part exactly up
to the TracePart::kAlignment gap and the next TraceAcquire won't succeed.
Skip the alignment gap after writing initial stack/mutexset to avoid that.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D129777
These tests are now green:
```
Trace.MultiPart
Trace.RestoreAccess
Trace.RestoreMutexLock
TraceAlloc.FinishedThreadReuse
TraceAlloc.FinishedThreadReuse2
TraceAlloc.SingleThread
```
rdar://82107856
SlotPairLocker calls SlotLock under ctx->multi_slot_mtx.
SlotLock can invoke global reset DoReset if we are out of slots/epochs.
But DoReset locks ctx->multi_slot_mtx as well, which leads to deadlock.
Resolve the deadlock by removing SlotPairLocker/multi_slot_mtx
and only lock one slot for which we will do RestoreStack.
We need to lock that slot because RestoreStack accesses the slot journal.
But it's unclear why we need to lock the current slot.
Initially I did it just to be on the safer side (but at that time
we dit not lock the second slot, so it was easy just to lock the current slot).
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D116040
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
This change switches tsan to the new runtime which features:
- 2x smaller shadow memory (2x of app memory)
- faster fully vectorized race detection
- small fixed-size vector clocks (512b)
- fast vectorized vector clock operations
- unlimited number of alive threads/goroutimes
Depends on D112602.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D112603
Instead of creating real threads for trace tests
create a new ThreadState in the main thread.
This makes the tests more unit-testy and will also
help with future trace tests that will need
more than 1 thread. Creating more than 1 real thread and
dispatching test actions across multiple threads in the
required deterministic order is painful.
This is resubmit of reverted D110546 with 2 changes:
1. The previous version patched ImitateTlsWrite to not
expect ThreadState to be allocated in TLS (the CHECK
failed for the fake test threads).
This added an ugly hack into production code and was still
logically wrong because we imitated write to the main
thread TLS/stack when we started the fake test thread
(which has nothing to do with the main thread TLS/stack).
This version uses ThreadType::Fiber instead of ThreadType::Regular
for the fake threads. This naturally makes ThreadStart skip
obtaining stack/tls and imitating writes to them.
2. This version still skips the tests on Darwin and PowerPC
to be on the safer side. Build bots reported failures for PowerPC
for the previous version.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D111156
The trace tests crashed on darwin because of some thread
initialization issues (thread initialization is somewhat
different on darwin).
Instead of starting real threads, create a new ThreadState
in the main thread. This makes the tests more unit-testy
and hopefully won't crash on darwin (there is almost no
platform-specific code involved now).
This will also help with future trace tests that will need
more than 1 thread. Creating more than 1 real thread and
dispatching test actions across multiple threads in the
required deterministic order is painful.
Depends on D110539.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D110546
According to comments at https://reviews.llvm.org/D107911,
Trace.MemoryAccessSize fails on Mac buildbots.
Because this test is newly introduced, and is the only user of the code
added in that patch, disable the test on Mac till the problem is
resolved.
Differential Revision: https://reviews.llvm.org/D108294
Some compilers started complaining about the test:
tsan_trace_test.cpp:128:21: error: missing field 'type' initializer
Fix it by initializing all 5 fields, even though the type field will be
reset in the for loop.
Differential Revision: https://reviews.llvm.org/D108207
Add structures for the new trace format,
functions that serialize and add events to the trace
and trace replaying logic.
Differential Revision: https://reviews.llvm.org/D107911