XFAIL map32bit, define the maximum possible allocation size in
mmap_large.cpp.
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D105629
These tests depend on TSan seeing the intercepted memcpy(), so they
break when the compiler chooses the builtin version.
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D105629
The existing one actually failed on the int* p, not on int z (as can be
seen by the fault being 8 bytes rather than 4).
This is also needed to make sure the stack safety analysis does not
classify the alloca as safe.
Reviewed By: hctim
Differential Revision: https://reviews.llvm.org/D105705
This reverts commit 52aeacfbf5.
There isn't full agreement on a path forward yet, but there is agreement that
this shouldn't land as-is. See discussion on https://reviews.llvm.org/D105338
Also reverts unreviewed "[clang] Improve `-Wnull-dereference` diag to be more in-line with reality"
This reverts commit f4877c78c0.
And all the related changes to tests:
This reverts commit 9a0152799f.
This reverts commit 3f7c9cc274.
This reverts commit 329f8197ef.
This reverts commit aa9f58cc2c.
This reverts commit 2df37d5ddd.
This reverts commit a72a441812.
Store to null is deleted, so the test no longer did what it was expecting to do.
Conceal that by creating null pointer in a more elaborate way,
thus retaining original test coverage.
Update the asan_symbolize_script for changes in argparse output
in Python 3.10. The parser output 'options' instead of 'optional
arguments'.
Differential Revision: https://reviews.llvm.org/D105489
The __llvm_prf_names section uses SHF_GNU_RETAIN. However, GNU ld before 2015-10
(https://sourceware.org/bugzilla/show_bug.cgi?id=19161) neither supports it nor
retains __llvm_prf_names according to __start___llvm_prf_names. So --gc-sections
does not work on such old GNU ld.
This is not a problem for gold and sufficiently new lld.
We would find an address with matching tag, only to discover in
ShowCandidate that it's very far away from [stack].
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105197
If the fault address is at the boundary of memory regions, this could
cause us to segfault otherwise.
Ran test with old compiler_rt to make sure it fails.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105032
This change introduces libMutagen/libclang_rt.mutagen.a as a subset of libFuzzer/libclang_rt.fuzzer.a. This library contains only the fuzzing strategies used by libFuzzer to produce new test inputs from provided inputs, dictionaries, and SanitizerCoverage feedback.
Most of this change is simply moving sections of code to one side or the other of the library boundary. The only meaningful new code is:
* The Mutagen.h interface and its implementation in Mutagen.cpp.
* The following methods in MutagenDispatcher.cpp:
* UseCmp
* UseMemmem
* SetCustomMutator
* SetCustomCrossOver
* LateInitialize (similar to the MutationDispatcher's original constructor)
* Mutate_AddWordFromTORC (uses callbacks instead of accessing TPC directly)
* StartMutationSequence
* MutationSequence
* DictionaryEntrySequence
* RecommendDictionary
* RecommendDictionaryEntry
* FuzzerMutate.cpp (which now justs sets callbacks and handles printing)
* MutagenUnittest.cpp (which adds tests of Mutagen.h)
A note on performance: This change was tested with a 100 passes of test/fuzzer/LargeTest.cpp with 1000 runs per pass, both with and without the change. The running time distribution was qualitatively similar both with and without the change, and the average difference was within 30 microseconds (2.240 ms/run vs 2.212 ms/run, respectively). Both times were much higher than observed with the fully optimized system clang (~0.38 ms/run), most likely due to the combination of CMake "dev mode" settings (e.g. CMAKE_BUILD_TYPE="Debug", LLVM_ENABLE_LTO=OFF, etc.). The difference between the two versions built similarly seems to be "in the noise" and suggests no meaningful performance degradation.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D102447
This allows application code checks if origin tracking is on before
printing out traces.
-dfsan-track-origins can be 0,1,2.
The current code only distinguishes 1 and 2 in compile time, but not at runtime.
Made runtime distinguish 1 and 2 too.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D105128
A heap or global buffer that is far away from the faulting address is
unlikely to be the cause, especially if there is a potential
use-after-free as well, so we want to show it after the other
causes.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D104781
I can't be sure of the cause but I believe these fail
due to to fast unwinding not working on Thumb.
Whatever the case, they have been failing on our bots
for a long time:
https://lab.llvm.org/buildbot/#/builders/170/builds/46
Require fast-unwinder-works for both.
Word on the grapevine was that the committee had some discussion that
ended with unanimous agreement on eliminating relational function pointer comparisons.
We wanted to be bold and just ban all of them cold turkey.
But then we chickened out at the last second and are going for
eliminating just the spaceship overload candidate instead, for now.
See D104680 for reference.
This should be fine and "safe", because the only possible semantic change this
would cause is that overload resolution could possibly be ambiguous if
there was another viable candidate equally as good.
But to save face a little we are going to:
* Issue an "error" for three-way comparisons on function pointers.
But all this is doing really is changing one vague error message,
from an "invalid operands to binary expression" into an
"ordered comparison of function pointers", which sounds more like we mean business.
* Otherwise "warn" that comparing function pointers like that is totally
not cool (unless we are told to keep quiet about this).
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D104892
on arm64e, pointer auth would catch this access violation before asan.
sign the function pointer so pointer auth will ignore this violation and let asan catch it in this test case.
rdar://79652167
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D104828
The comment says it was flaky in 2016,
but it wasn't possible to debug it back then.
Re-enable the test at least on linux/x86_64.
It will either work, or at least we should
see failure output from lit today.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D104592
Mmap interceptor is not atomic in the sense that it
exposes unmapped shadow for a brief period of time.
This breaks programs that mmap over another mmap
and access the region concurrently.
Don't unmap shadow in the mmap interceptor to fix this.
Just mapping new shadow on top should be enough to zero it.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D104593
These have been broken by https://reviews.llvm.org/D104494.
However, `lib/fuzzer/dataflow/` is unused (?) so addressing this is not a priority.
Added TODOs to re-enable them in the future.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D104568
Explain what the given stack trace means before showing it, rather than
only in the paragraph at the end.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D104523
The default callback instrumentation in x86 LAM mode uses ASLR bits
to randomly choose a tag, and thus has a 1/64 chance of choosing a
stack tag of 0, causing stack tests to fail intermittently. By using
__hwasan_generate_tag to pick tags, we guarantee non-zero tags and
eliminate the test flakiness.
aarch64 doesn't seem to have this problem using thread-local addresses
to pick tags, so perhaps we can remove this workaround once we implement
a similar mechanism for LAM.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D104470
The current naming scheme adds the `dfs$` prefix to all
DFSan-instrumented functions. This breaks mangling and prevents stack
trace printers and other tools from automatically demangling function
names.
This new naming scheme is mangling-compatible, with the `.dfsan`
suffix being a vendor-specific suffix:
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling-structure
With this fix, demangling utils would work out-of-the-box.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D104494
Before: ADDR is located -320 bytes to the right of 1072-byte region
After: ADDR is located 752 bytes inside 1072-byte region
Reviewed By: eugenis, walli99
Differential Revision: https://reviews.llvm.org/D104412
Adds the basic instrumentation needed for stack tagging.
Currently does not support stack short granules or TLS stack histories,
since a different code path is followed for the callback instrumentation
we use.
We may simply wait to support these two features until we switch to
a custom calling convention.
Patch By: xiangzhangllvm, morehouse
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102901
This mostly follows LLVM's InstrProfReader.cpp error handling.
Previously, attempting to merge corrupted profile data would result in
crashes. See https://crbug.com/1216811#c4.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D104050
Complete support for fast8:
- amend shadow size and mapping in runtime
- remove fast16 mode and -dfsan-fast-16-labels flag
- remove legacy mode and make fast8 mode the default
- remove dfsan-fast-8-labels flag
- remove functions in dfsan interface only applicable to legacy
- remove legacy-related instrumentation code and tests
- update documentation.
Reviewed By: stephan.yichao.zhao, browneee
Differential Revision: https://reviews.llvm.org/D103745
dfsan does not use sanitizer allocator as others. In practice,
we let it use glibc's allocator since tcmalloc needs more work
to be working with dfsan well. With glibc, we observe large
memory leakage. This could relate to two things:
1) glibc allocator has limitation: for example, tcmalloc can reduce memory footprint 2x easily
2) glibc may call unmmap directly as an internal system call by using system call number. so DFSan has no way to release shadow spaces for those unmmap.
Using sanitizer allocator addresses the above issues
1) its memory management is close to tcmalloc
2) we can register callback when sanitizer allocator calls unmmap, so dfsan can release shadow spaces correctly.
Our experiment with internal server-based application proved that with the change, in a-few-day run, memory usage leakage is close to what tcmalloc does w/o dfsan.
This change mainly follows MSan's code.
1) define allocator callbacks at dfsan_allocator.h|cpp
2) mark allocator APIs to be discard
3) intercept allocator APIs
4) make dfsan_set_label consistent with MSan's SetShadow when setting 0 labels, define dfsan_release_meta_memory when unmap is called
5) add flags about whether zeroing memory after malloc/free. dfsan works at byte-level, so bit-level oparations can cause reading undefined shadow. See D96842. zeroing memory after malloc helps this. About zeroing after free, reading after free is definitely UB, but if user code does so, it is hard to debug an overtainting caused by this w/o running MSan. So we add the flag to help debugging.
This change will be split to small changes for review. Before that, a question is
"this code shares a lot of with MSan, for example, dfsan_allocator.* and dfsan_new_delete.*.
Does it make sense to unify the code at sanitizer_common? will that introduce some
maintenance issue?"
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101204
The linkage/visibility of `__profn_*` variables are derived
from the profiled functions.
extern_weak => linkonce
available_externally => linkonce_odr
internal => private
extern => private
_ => unchanged
The linkage/visibility of `__profc_*`/`__profd_*` variables are derived from
`__profn_*` with linkage/visibility wrestling for Windows.
The changes can be folded to the following without changing semantics.
```
if (TT.isOSBinFormatCOFF() && !NeedComdat) {
Linkage = GlobalValue::InternalLinkage;
Visibility = GlobalValue::DefaultVisibility;
}
```
That said, I think we can just delete the code block.
An extern/internal function will now use private `__profc_*`/`__profd_*`
variables, instead of internal ones. This saves some symbol table entries.
A non-comdat {linkonce,weak}_odr function will now use hidden external
`__profc_*`/`__profd_*` variables instead of internal ones. There is potential
object file size increase because such symbols need `/INCLUDE:` directives.
However such non-comdat functions are rare (note that non-comdat weak
definitions don't prevent duplicate definition error).
The behavior changes match ELF.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D103355
We have been seeing this test fail intermittently on our
2 stage AArch64 bot.
As far back as https://lab.llvm.org/buildbot/#/builders/53/builds/2694
Likely due to a lack of resources at certain times on the
shared machine. Up the time limit to give us some more room.
(this limit only applies to the watchdog thread, so if the
test passes then it won't take 20s)
Since https://reviews.llvm.org/D102046 some tests have
been falling back to fast unwinding on our Thumb bot.
This fails because fast unwinding does not work on Thumb.
By adding the extra information we ensure this does not happen
during testing, but the built library can still fast unwind
as a last resort.
Since there are some situations it can work in, like if
eveything is built with clang. During testing we've got gcc
built system libs and clang built tests.
The same change was made for sanitizer-common in
https://reviews.llvm.org/D96337.
Reviewed By: zatrazz
Differential Revision: https://reviews.llvm.org/D103463
DFSan has flags to control flows between pointers and objects referred
by pointers. For example,
a = *p;
L(a) = L(*p) when -dfsan-combine-pointer-labels-on-load = false
L(a) = L(*p) + L(p) when -dfsan-combine-pointer-labels-on-load = true
*p = b;
L(*p) = L(b) when -dfsan-combine-pointer-labels-on-store = false
L(*p) = L(b) + L(p) when -dfsan-combine-pointer-labels-on-store = true
The question is what to do with p += c.
In practice we found many confusing flows if we propagate labels from c
to p. So a new flag works like this
p += c;
L(p) = L(p) when -dfsan-propagate-via-pointer-arithmetic = false
L(p) = L(p) + L(c) when -dfsan-propagate-via-pointer-arithmetic = true
Reviewed-by: gbalats
Differential Revision: https://reviews.llvm.org/D103176
This change introduces libMutagen/libclang_rt.mutagen.a as a subset of libFuzzer/libclang_rt.fuzzer.a. This library contains only the fuzzing strategies used by libFuzzer to produce new test inputs from provided inputs, dictionaries, and SanitizerCoverage feedback.
Most of this change is simply moving sections of code to one side or the other of the library boundary. The only meaningful new code is:
* The Mutagen.h interface and its implementation in Mutagen.cpp.
* The following methods in MutagenDispatcher.cpp:
* UseCmp
* UseMemmem
* SetCustomMutator
* SetCustomCrossOver
* LateInitialize (similar to the MutationDispatcher's original constructor)
* Mutate_AddWordFromTORC (uses callbacks instead of accessing TPC directly)
* StartMutationSequence
* MutationSequence
* DictionaryEntrySequence
* RecommendDictionary
* RecommendDictionaryEntry
* FuzzerMutate.cpp (which now justs sets callbacks and handles printing)
* MutagenUnittest.cpp (which adds tests of Mutagen.h)
A note on performance: This change was tested with a 100 passes of test/fuzzer/LargeTest.cpp with 1000 runs per pass, both with and without the change. The running time distribution was qualitatively similar both with and without the change, and the average difference was within 30 microseconds (2.240 ms/run vs 2.212 ms/run, respectively). Both times were much higher than observed with the fully optimized system clang (~0.38 ms/run), most likely due to the combination of CMake "dev mode" settings (e.g. CMAKE_BUILD_TYPE="Debug", LLVM_ENABLE_LTO=OFF, etc.). The difference between the two versions built similarly seems to be "in the noise" and suggests no meaningful performance degradation.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D102447
This reverts commit 6911114d8c.
Broke the QEMU sanitizer bots due to a missing header dependency. This
actually needs to be fixed on the bot-side, but for now reverting this
patch until I can fix up the bot.
This patch moves -fsanitize=scudo to link the standalone scudo library,
rather than the original compiler-rt based library. This is one of the
major remaining roadblocks to deleting the compiler-rt based scudo,
which should not be used any more. The standalone Scudo is better in
pretty much every way and is much more suitable for production usage.
As well as patching the litmus tests for checking that the
scudo_standalone lib is linked instead of the scudo lib, this patch also
ports all the scudo lit tests to run under scudo standalone.
This patch also adds a feature to scudo standalone that was under test
in the original scudo - that arguments passed to an aligned operator new
were checked that the alignment was a power of two.
Some lit tests could not be migrated, due to the following issues:
1. Features that aren't supported in scudo standalone, like the rss
limit.
2. Different quarantine implementation where the test needs some more
thought.
3. Small bugs in scudo standalone that should probably be fixed, like
the Secondary allocator having a full page on the LHS of an allocation
that only contains the chunk header, so underflows by <= a page aren't
caught.
4. Slight differences in behaviour that's technically correct, like
'realloc(malloc(1), 0)' returns nullptr in standalone, but a real
pointer in old scudo.
5. Some tests that might be migratable, but not easily.
Tests that are obviously not applicable to scudo standalone (like
testing that no sanitizer symbols made it into the DSO) have been
deleted.
After this patch, the remaining work is:
1. Update the Scudo documentation. The flags have changed, etc.
2. Delete the old version of scudo.
3. Patch up the tests in lit-unmigrated, or fix Scudo standalone.
Reviewed By: cryptoad, vitalybuka
Differential Revision: https://reviews.llvm.org/D102543
Handy when testing specific files, already supported in other components.
Example:
cd build; ./bin/llvm-lit ../compiler-rt/test/tsan/ignore_free.cpp
Differential Revision: https://reviews.llvm.org/D103054
This reduces the size of chrome.dll.pdb built with optimizations,
coverage, and line table info from 4,690,210,816 to 2,181,128,192, which
makes it possible to fit under the 4GB limit.
This change can greatly reduce binary size in coverage builds, which do
not need value profiling. IR PGO builds are unaffected. There is a minor
behavior change for frontend PGO.
PGO and coverage both use InstrProfiling to create profile data with
counters. PGO records the address of each function in the __profd_
global. It is used later to map runtime function pointer values back to
source-level function names. Coverage does not appear to use this
information.
Recording the address of every function with code coverage drastically
increases code size. Consider this program:
void foo();
void bar();
inline void inlineMe(int x) {
if (x > 0)
foo();
else
bar();
}
int getVal();
int main() { inlineMe(getVal()); }
With code coverage, the InstrProfiling pass runs before inlining, and it
captures the address of inlineMe in the __profd_ global. This greatly
increases code size, because now the compiler can no longer delete
trivial code.
One downside to this approach is that users of frontend PGO must apply
the -mllvm -enable-value-profiling flag globally in TUs that enable PGO.
Otherwise, some inline virtual method addresses may not be recorded and
will not be able to be promoted. My assumption is that this mllvm flag
is not popular, and most frontend PGO users don't enable it.
Differential Revision: https://reviews.llvm.org/D102818
sleep(1) does not guaranty afterfork order.
Also relative child/parent afterfork order is not important for this test so we
can just avoid checking that.
Reviewed By: dvyukov
Differential Revision: https://reviews.llvm.org/D102810
If there are no counters, an mmap() of the counters section would fail
due to the size argument being too small (EINVAL).
rdar://78175925
Differential Revision: https://reviews.llvm.org/D102735
Override __cxa_atexit and ignore callbacks.
This prevents crashes in a configuration when the symbolizer
is built into sanitizer runtime and consequently into the test process.
LLVM libraries have some global objects destroyed during exit,
so if the test process triggers any bugs after that, the symbolizer crashes.
An example stack trace of such crash:
For the standalone llvm-symbolizer this does not hurt,
we just don't destroy few global objects on exit.
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D102470
https://reviews.llvm.org/D101681 landed a change to check the testing
configuration which relies on using the `-print-runtime-dir` flag of
clang to determine where the runtime testing library is.
The patch treated not being able to find the path reported by clang
as an error. Unfortunately this seems to break the
`llvm-clang-win-x-aarch64` bot. Either the bot is misconfigured or
clang is reporting a bogus path.
To temporarily unbreak the bot downgrade the fatal error to a warning.
While we're here also print information about the command used to
determine the path to aid debugging.
to a warning.
https://reviews.llvm.org/D101681 introduced a check to make sure the
compiler and compiler-rt were using the same library path when
`COMPILER_RT_TEST_STANDALONE_BUILD_LIBS=ON`, i.e. the developer's
intention is to test the just built libs rather that shipped with the
compiler used for testing.
It seems this broken some bots that are likely misconfigured.
So to unbreak them, for now let's make this a warning so the bot
owners can investigate without breaking their builds.
The path to the runtime libraries used by the compiler under test
is normally identical to the path where just built libraries are
created. However, this is not necessarily the case when doing standalone
builds. This is because the external compiler used by tests may choose
to get its runtime libraries from somewhere else.
When doing standalone builds there are two types of testing we could be
doing:
* Test the just built runtime libraries.
* Test the runtime libraries shipped with the compile under test.
Both types of testing are valid but it confusingly turns out compiler-rt
actually did a mixture of these types of testing.
* The `test/builtins/Unit/` test suite always tested the just built runtime
libraries.
* All other testsuites implicitly use whatever runtime library the
compiler decides to link.
There is no way for us to infer which type of testing the developer
wants so this patch introduces a new
`COMPILER_RT_TEST_STANDALONE_BUILD_LIBS` CMake
option which explicitly declares which runtime libraries should be
tested. If it is `ON` then the just built libraries should be tested,
otherwise the libraries in the external compiler should be tested.
When testing starts the lit test suite queries the compiler used for
testing to see where it will get its runtime libraries from. If these
paths are identical no action is taken (the common case). If the paths
are not identical then we check the value of
`COMPILER_RT_TEST_STANDALONE_BUILD_LIBS` (progated into the config as
`test_standalone_build_libs`) and check if the test suite supports testing in the
requested configuration.
* If we want to test just built libs and the test suite supports it
(currently only `test/builtins/Unit`) then testing proceeds without any changes.
* If we want to test the just built libs and the test suite doesn't
support it we emit a fatal error to prevent the developer from
testing the wrong runtime libraries.
* If we are testing the compiler's built libs then we adjust
`config.compiler_rt_libdir` to point at the compiler's runtime
directory. This makes the `test/builtins/Unit` tests use the
compiler's builtin library. No other changes are required because
all other testsuites implicitly use the compiler's built libs.
To make the above work the
`test_suite_supports_overriding_runtime_lib_path` test suite config
option has been introduced so we can identify what each test suite
supports.
Note all of these checks **have to be performed** when lit runs.
We cannot run the checks at CMake generation time because
multi-configuration build systems prevent us from knowing what the
paths will be.
We could perhaps support `COMPILER_RT_TEST_STANDALONE_BUILD_LIBS` being
`ON` for most test suites (when the runtime library paths differs) in
the future by specifiying a custom compiler resource directory path.
Doing so is out of scope for this patch.
rdar://77182297
Differential Revision: https://reviews.llvm.org/D101681
`-fno-exceptions -fno-asynchronous-unwind-tables` compiled programs don't
produce .eh_frame on Linux and other ELF platforms, so the slow unwinder cannot
print stack traces. Just fall back to the fast unwinder: this allows
-fno-asynchronous-unwind-tables without requiring the sanitizer option
`fast_unwind_on_fatal=1`
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D102046
This removes one of the last dependencies on old Scudo, and should allow
us to delete the old Scudo soon.
Reviewed By: vitalybuka, cryptoad
Differential Revision: https://reviews.llvm.org/D102349
-fsanitize-hwaddress-experimental-aliasing is intended to distinguish
aliasing mode from LAM mode on x86_64. check-hwasan is configured
to use aliasing mode while check-hwasan-lam is configured to use LAM
mode.
The current patch doesn't actually do anything differently in the two
modes. A subsequent patch will actually build the separate runtimes
and use them in each mode.
Currently LAM mode tests must be run in an emulator that
has LAM support. To ensure LAM mode isn't broken by future patches, I
will next set up a QEMU buildbot to run the HWASan tests in LAM.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102288
We have some significant amount of duplication around
CheckFailed functionality. Each sanitizer copy-pasted
a chunk of code. Some got random improvements like
dealing with recursive failures better. These improvements
could benefit all sanitizers, but they don't.
Deduplicate CheckFailed logic across sanitizers and let each
sanitizer only print the current stack trace.
I've tried to dedup stack printing as well,
but this got me into cmake hell. So let's keep this part
duplicated in each sanitizer for now.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102221
We already declare subset of annotations in test.h.
But some are duplicated and declared in tests.
Move all annotation declarations to test.h.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102152
Add a simple test that uses syscall annotations.
Just to ensure at least basic functionality works.
Also factor out annotated syscall wrappers into a separate
header file as they may be useful for future tests.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D102223
This test has two modes - testing reused threads with multiple loops of
batch create/join, and testing new threads with a single loop of
create/join per fork.
The non-reuse variant catches the problem that was fixed in D101881 with
a high probability.
Differential Revision: https://reviews.llvm.org/D101936
This patch does a few cleanup things:
1. The non-standalone scudo has a problem where GWP-ASan allocations
may not meet alignment requirements where Scudo was requested to have
alignment >= 16. Use the new GWP-ASan API to fix this.
2. The standalone variant loses some debugging information inside of
GWP-ASan because we ask GWP-ASan to allocate an aligned size in the
frontend. This means reports end up with 'UaF on a 16-byte allocation'
for a 1-byte allocation with 16-byte alignment. Also use the new API to
fix this.
3. Add post-alloc hooks for GWP-ASan intercepted allocations, and add
stats tracking for GWP-ASan allocations.
4. Add a small test that checks the alignment of the frontend
allocator, so that it can be used under GWP-ASan torture mode.
5. Add GWP-ASan torture mode as a testing configuration to catch these
regressions.
Depends on D94830, D95889.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D95884
Address sanitizer can detect stack exhaustion via its SEGV handler, which is
executed on a separate stack using the sigaltstack mechanism. When libFuzzer is
used with address sanitizer, it installs its own signal handlers which defer to
those put in place by the sanitizer before performing additional actions. In the
particular case of a stack overflow, the current setup fails because libFuzzer
doesn't preserve the flag for executing the signal handler on a separate stack:
when we run out of stack space, the operating system can't run the SEGV handler,
so address sanitizer never reports the issue. See the included test for an
example.
This commit fixes the issue by making libFuzzer preserve the SA_ONSTACK flag
when installing its signal handlers; the dedicated signal-handler stack set up
by the sanitizer runtime appears to be large enough to support the additional
frames from the fuzzer.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101824
The linker suggests using -Wl,-z,notext.
Replaced assert by exit also fixed this.
After renaming, interceptor.c would be used to test interceptors in general by D101204.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101649
Code patterns like this are common, `#` at the line beginning
(https://google.github.io/styleguide/cppguide.html#Preprocessor_Directives),
one space indentation for if/elif/else directives.
```
#if SANITIZER_LINUX
# if defined(__aarch64__)
# endif
#endif
```
However, currently clang-format wants to reformat the code to
```
#if SANITIZER_LINUX
#if defined(__aarch64__)
#endif
#endif
```
This significantly harms readability in my review. Use `IndentPPDirectives:
AfterHash` to defeat the diagnostic. clang-format will now suggest:
```
#if SANITIZER_LINUX
# if defined(__aarch64__)
# endif
#endif
```
Unfortunately there is no clang-format option using indent with 1 for
just preprocessor directives. However, this is still one step forward
from the current behavior.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D100238
Before commit "sanitizer_common: introduce kInvalidTid/kMainTid"
asan invalid/unknown thread id was 0xffffff, so presumably we printed "T16777215".
Now it's -1, so we print T-1. Fix the test.
I think the new format is even better, "T-1" clearly looks like something special
rather than a random large number.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101634
Commit efd254b636 ("tsan: fix deadlock in pthread_atfork callbacks")
fixed another deadlock related to atfork handling.
But builders with DCHECKs enabled reported failures of
pthread_atfork_deadlock2.c and pthread_atfork_deadlock3.c tests
related to the fact that we hold runtime locks on interceptor exit:
https://lab.llvm.org/buildbot/#/builders/70/builds/6727
This issue is somewhat inherent to the current approach,
we indeed execute user code (atfork callbacks) with runtime lock held.
Refactor fork handling to not run user code (atfork callbacks)
with runtime locks held. This change does this by installing
own atfork callbacks during runtime initialization.
Atfork callbacks run in LIFO order, so the expectation is that
our callbacks run last, right before the actual fork.
This way we lock runtime mutexes around fork, but not around
user callbacks.
Extend tests to also install after fork callbacks just to cover
more scenarios. Some tests also started reporting real races
that we previously suppressed.
Also extend tests to cover fork syscall support.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101517
Fix format specifier.
Fix warnings about non-standard attribute placement.
Make free_race2.c test a bit more interesting:
test access with/without an offset.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101424
Commit efd254b636 ("tsan: fix deadlock in pthread_atfork callbacks")
fixed another deadlock related to atfork handling.
But builders with DCHECKs enabled reported failures of
pthread_atfork_deadlock2.c and pthread_atfork_deadlock3.c tests
related to the fact that we hold runtime locks on interceptor exit:
https://lab.llvm.org/buildbot/#/builders/70/builds/6727
This issue is somewhat inherent to the current approach,
we indeed execute user code (atfork callbacks) with runtime lock held.
Refactor fork handling to not run user code (atfork callbacks)
with runtime locks held. This change does this by installing
own atfork callbacks during runtime initialization.
Atfork callbacks run in LIFO order, so the expectation is that
our callbacks run last, right before the actual fork.
This way we lock runtime mutexes around fork, but not around
user callbacks.
Extend tests to also install after fork callbacks just to cover
more scenarios. Some tests also started reporting real races
that we previously suppressed.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101385
We take report/thread_registry locks around fork.
This means we cannot report any bugs in atfork handlers.
We resolved this by enabling per-thread ignores around fork.
This resolved some of the cases, but not all.
The added test triggers a race report from a signal handler
called from atfork callback, we reset per-thread ignores
around signal handlers, so we tried to report it and deadlocked.
But there are more cases: a signal handler can be called
synchronously if it's sent to itself. Or any other report
types would cause deadlocks as well: mutex misuse,
signal handler spoiling errno, etc.
Disable all reports for the duration of fork with
thr->suppress_reports and don't re-enable them around
signal handlers.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101154
This reapplies 1e1d75b190, which was reverted in ce1a4d5323 due to build
failures.
The unconditional dependencies on clang and llvm-jitlink in
compiler-rt/test/orc/CMakeLists.txt have been removed -- they don't appear to
be necessary, and I suspect they're the cause of the build failures seen
earlier.
Some builders failed with a missing clang dependency. E.g.
CMake Error at /Users/buildslave/jenkins/workspace/clang-stage1-RA/clang-build \
/lib/cmake/llvm/AddLLVM.cmake:1786 (add_dependencies):
The dependency target "clang" of target "check-compiler-rt" does not exist.
Reverting while I investigate.
This reverts commit 1e1d75b190.
Now that page aliasing for x64 has landed, we don't need to worry about
passing tagged pointers to libc, and thus D98875 removed it.
Unfortunately, we still test on aarch64 devices that don't have the
kernel tagged address ABI (https://reviews.llvm.org/D98875#2649269).
All the memory that we pass to the kernel in these tests is from global
variables. Instead of having architecture-specific untagging mechanisms
for this memory, let's just not tag the globals.
Reviewed By: eugenis, morehouse
Differential Revision: https://reviews.llvm.org/D101121
This patch does a few cleanup things:
1. The non-standalone scudo has a problem where GWP-ASan allocations
may not meet alignment requirements where Scudo was requested to have
alignment >= 16. Use the new GWP-ASan API to fix this.
2. The standalone variant loses some debugging information inside of
GWP-ASan because we ask GWP-ASan to allocate an aligned size in the
frontend. This means reports end up with 'UaF on a 16-byte allocation'
for a 1-byte allocation with 16-byte alignment. Also use the new API to
fix this.
3. Add post-alloc hooks for GWP-ASan intercepted allocations, and add
stats tracking for GWP-ASan allocations.
4. Add a small test that checks the alignment of the frontend
allocator, so that it can be used under GWP-ASan torture mode.
5. Add GWP-ASan torture mode as a testing configuration to catch these
regressions.
Depends on D94830, D95889.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D95884
The first version of origin tracking tracks only memory stores. Although
this is sufficient for understanding correct flows, it is hard to figure
out where an undefined value is read from. To find reading undefined values,
we still have to do a reverse binary search from the last store in the chain
with printing and logging at possible code paths. This is
quite inefficient.
Tracking memory load instructions can help this case. The main issues of
tracking loads are performance and code size overheads.
With tracking only stores, the code size overhead is 38%,
memory overhead is 1x, and cpu overhead is 3x. In practice #load is much
larger than #store, so both code size and cpu overhead increases. The
first blocker is code size overhead: link fails if we inline tracking
loads. The workaround is using external function calls to propagate
metadata. This is also the workaround ASan uses. The cpu overhead
is ~10x. This is a trade off between debuggability and performance,
and will be used only when debugging cases that tracking only stores
is not enough.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D100967
This test from @MaskRay comment on D69428. The patch is looking to
break this behavior. If we go with D69428 I hope we will have some
workaround for this test or include explicit test update into the patch.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D100906
... so that FreeBSD specific GetTls/glibc specific pthread_self code can be
removed. This also helps FreeBSD arm64/powerpc64 which don't have GetTls
implementation yet.
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize`. However, huge glibc x86-64 binaries with numerous shared objects
may observe time complexity penalty, so exclude them for now. Use the simplified
method with non-Android Linux for now, but in theory this can be used with *BSD
and potentially other ELF OSes.
This removal of RISC-V `__builtin_thread_pointer` makes the code compilable with
more compiler versions (added in Clang in 2020-03, added in GCC in 2020-07).
This simplification enables D99566 for TLS Variant I architectures.
Note: as of musl 1.2.2 and FreeBSD 12.2, dlpi_tls_data returned by
dl_iterate_phdr is not desired: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=254774
This can be worked around by using `__tls_get_addr({modid,0})` instead
of `dlpi_tls_data`. The workaround can be shared with the workaround for glibc<2.25.
This fixes some tests on Alpine Linux x86-64 (musl)
```
test/lsan/Linux/cleanup_in_tsd_destructor.c
test/lsan/Linux/fork.cpp
test/lsan/Linux/fork_threaded.cpp
test/lsan/Linux/use_tls_static.cpp
test/lsan/many_tls_keys_thread.cpp
test/msan/tls_reuse.cpp
```
and `test/lsan/TestCases/many_tls_keys_pthread.cpp` on glibc aarch64.
The number of sanitizer test failures does not change on FreeBSD/amd64 12.2.
Differential Revision: https://reviews.llvm.org/D98926
Allow test contents to be copied before execution by using
`%ld_flags_rpath_so`, `%ld_flags_rpath_exe`, and `%dynamiclib`
substitutions.
rdar://76302416
Differential Revision: https://reviews.llvm.org/D100240
Mark the test as unsupported to bring the bot online. Could probably be
permanently fixed by using one of the workarounds already present in
compiler-rt.
ASan declares these functions as strongly-defined, which results in
'duplicate symbol' errors when trying to replace them in user code when
linking the runtimes statically.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D100220
These tests were added in:
1daa48f00559e422c90b
malloc_zero.c and realloc_too_big.c fail when only
leak sanitizer is enabled.
http://lab.llvm.org:8011/#/builders/59/builds/1635
(also in an armv8 32 bit build)
(I would XFAIL them but the same test is run with
address and leak sanitizer enabled and that one does
pass)
This was reverted by f176803ef1 due to
Ubuntu 16.04 x86-64 glibc 2.23 problems.
This commit additionally calls `__tls_get_addr({modid,0})` to work around the
dlpi_tls_data==NULL issues for glibc<2.25
(https://sourceware.org/bugzilla/show_bug.cgi?id=19826)
GetTls is the range of
* thread control block and optional TLS_PRE_TCB_SIZE
* static TLS blocks plus static TLS surplus
On glibc, lsan requires the range to include
`pthread::{specific_1stblock,specific}` so that allocations only referenced by
`pthread_setspecific` can be scanned.
This patch uses `dl_iterate_phdr` to collect TLS blocks. Find the one
with `dlpi_tls_modid==1` as one of the initially loaded module, then find
consecutive ranges. The boundaries give us addr and size.
This allows us to drop the glibc internal `_dl_get_tls_static_info` and
`InitTlsSize` entirely. Use the simplified method with non-Android Linux for
now, but in theory this can be used with *BSD and potentially other ELF OSes.
This simplification enables D99566 for TLS Variant I architectures.
See https://reviews.llvm.org/D93972#2480556 for analysis on GetTls usage
across various sanitizers.
Differential Revision: https://reviews.llvm.org/D98926
With D98926, many_tls_keys_pthread.cpp appears to be working.
On glibc 2.30-0ubuntu2, swapcontext.cpp and Linux/fork_and_leak.cpp work fine
but they strangely fail on clang-cmake-aarch64-full
(https://lab.llvm.org/buildbot/#/builders/7/builds/2240).
Disable them for now.
Note: check-lsan was recently enabled on AArch64 in D98985. A test takes
10+ seconds. We should figure out the bottleneck.
```
/b/sanitizer-x86_64-linux/build/llvm-project/compiler-rt/test/memprof/TestCases/test_terse.cpp:11:11: error: CHECK: expected string not found in input
// CHECK: MIB:[[STACKID:[0-9]+]]/1/40.00/40/40/20.00/20/20/[[AVELIFETIME:[0-9]+]].00/[[AVELIFETIME]]/[[AVELIFETIME]]/0/0/0/0
^
<stdin>:1:1: note: scanning from here
MIB:StackID/AllocCount/AveSize/MinSize/MaxSize/AveAccessCount/MinAccessCount/MaxAccessCount/AveLifetime/MinLifetime/MaxLifetime/NumMigratedCpu/NumLifetimeOverlaps/NumSameAllocCpu/NumSameDeallocCpu
^
<stdin>:4:1: note: possible intended match here
MIB:134217729/1/40.00/40/40/20.00/20/20/7.00/7/7/1/0/0/0
```
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Make TSan runtime initialization and finalization hooks work
even if these hooks are not built in the main executable. When these
hooks are defined in another library that is not directly linked against
the TSan runtime (e.g., Swift runtime) we cannot rely on the "strong-def
overriding weak-def" mechanics and have to look them up via `dlsym()`.
Let's also define hooks that are easier to use from C-only code:
```
extern "C" void __tsan_on_initialize();
extern "C" int __tsan_on_finalize(int failed);
```
For now, these will call through to the old hooks. Eventually, we want
to adopt the new hooks downstream and remove the old ones.
This is part of the effort to support Swift Tasks (async/await and
actors) in TSan.
rdar://74256720
Reviewed By: vitalybuka, delcypher
Differential Revision: https://reviews.llvm.org/D98810
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Supported ctime_r, fgets, getcwd, get_current_dir_name, gethostname,
getrlimit, getrusage, strcpy, time, inet_pton, localtime_r,
getpwuid_r, epoll_wait, poll, select, sched_getaffinity
Most of them work as calling their non-origin verision directly.
This is a part of https://reviews.llvm.org/D95835.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D98966
Supported strrchr, strrstr, strto*, recvmmsg, recrmsg, nanosleep,
memchr, snprintf, socketpair, sprintf, getocketname, getsocketopt,
gettimeofday, getpeername.
strcpy was added because the test of sprintf need it. It will be
committed by D98966. Please ignore it when reviewing.
This is a part of https://reviews.llvm.org/D95835.
Reviewed By: gbalats
Differential Revision: https://reviews.llvm.org/D99109
`check-lsan` passed on an aarch64-*-linux machine.
Unsupport `many_tls_keys_pthread.cpp` for now: it requires GetTls to include
`specific_1stblock` and `specific` in `struct pthread`.
Differential Revision: https://reviews.llvm.org/D98985
Subsequent patches will implement page-aliasing mode for x86_64, which
will initially only work for the primary heap allocator. We force
callback instrumentation to simplify the initial aliasing
implementation.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98069
If we don't specify the c++ version in these tests, it could cause compile errors because the compiler could default to an older c++
rdar://75247244
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D98913
As reported in D96348 <https://reviews.llvm.org/D96348>, the
`Posix/regex_startend.cpp` test `FAIL`s on Solaris because
`REG_STARTEND` isn't defined. It's a BSD extension not present everywhere.
E.g. AIX doesn't have it, too.
Fixed by wrapping the test in `#ifdef REG_STARTEND`.
Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D98425
On Darwin, MallocNanoZone may log after execv, which messes up this test.
Disable MallocNanoZone for this test since we don't use it anyway with asan.
This environment variable should only affect Darwin and not change behavior on other platforms.
rdar://74992832
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D98735
Right now, when you have an invalid memory address, asan would just crash and does not offer much useful info.
This patch attempted to give a bit more detail on the access.
Differential Revision: https://reviews.llvm.org/D98280
If a log message is triggered between execv and child, this test fails.
In the meantime, disable the test to unblock CI
rdar://74992832
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D98453
Previously, on GLibc systems, the interceptor was calling __compat_regexec
(regexec@GLIBC_2.2.5) insead of the newer __regexec (regexec@GLIBC_2.3.4).
The __compat_regexec strips the REG_STARTEND flag but does not report an
error if other flags are present. This can result in infinite loops for
programs that use REG_STARTEND to find all matches inside a buffer (since
ignoring REG_STARTEND means that the search always starts from the first
character).
The underlying issue is that GLibc's dlsym(RTLD_NEXT, ...) appears to
always return the oldest versioned symbol instead of the default. This
means it does not match the behaviour of dlsym(RTLD_DEFAULT, ...) or the
behaviour documented in the manpage.
It appears a similar issue was encountered with realpath and worked around
in 77ef78a0a5.
See also https://sourceware.org/bugzilla/show_bug.cgi?id=14932 and
https://sourceware.org/bugzilla/show_bug.cgi?id=1319.
Fixes https://github.com/google/sanitizers/issues/1371
Reviewed By: #sanitizers, vitalybuka, marxin
Differential Revision: https://reviews.llvm.org/D96348
Looks like the default options for halt_on_error are different between linux and mac. set it to 0 in the test so the behavior is the same on both platforms.
rdar://75110847
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D98089
Two ASan tests currently `FAIL' on Solaris
AddressSanitizer-i386-sunos :: TestCases/large_func_test.cpp
AddressSanitizer-i386-sunos :: TestCases/use-after-delete.cpp
both for the same reason:
error: no check strings found with prefix 'CHECK-SunOS:'
Fixed by adding the appropriate check strings.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D97931
Previously, this test only ran for mac because platforms have different messaging. This diff enables the test for all posix
rdar://75110847
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D98079
Currently, `print_module_map` is only respected for ubsan if it is ran in tandem with asan. This patch adds support for this flag in standalone mode. I copied the pattern used to implement this for asan.
Also added a common `print_module_map` lit test for Darwin only. Since the print messages are different per platform, we need to write a regex test to cover them. This test is coming in a separate patch
rdar://56135732
Reviewed By: vitalybuka, vsk, delcypher
Differential Revision: https://reviews.llvm.org/D97746
The runtimes build uses variables set by add_lit_testsuite to collect
testsuites from all the runtimes.
Differential Revision: https://reviews.llvm.org/D97913
One ASan test currently `XPASS`es on Solaris:
AddressSanitizer-i386-sunos :: TestCases/Posix/unpoison-alternate-stack.cpp
It was originally `XFAIL`ed in D88501 <https://reviews.llvm.org/D88501>
because `longjmp` from a signal handled is highly unportable, warned
against in XPG7, and was not supported by Solaris `libc` at the time.
However, since then support has been added for some cases including the
current one, so the `XFAIL` can go.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D97933
One ASan test currently `XPASS`es on Solaris:
AddressSanitizer-i386-sunos :: TestCases/Posix/no_asan_gen_globals.c
It was originally `XFAIL`ed in D88218 <https://reviews.llvm.org/D88218>
because Solaris `ld`, unlike GNU `ld`, doesn't strip local labels. Since
then, the integrated assembler has stopped emitting those local labels, so
the difference becomes moot and the `XFAIL` can go.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D97932
We're having flaky failures on this test on the sanitizer slow
buildbot. Not per-run flaky, but it'll be green for a while, then red
for a while. I suspect that changes in codegen are causing the
LLVM_VP_MAX_NUM_VALS_PER_SITE=150 to be above and below the limit
sporadically. The limit on my machine using lld and a non-bootstrapped
compiler is 175, but the bot uses GNU ld and ld.gold at different
points, which could be affecting behaviour.
Change this threshold to LLVM_VP_MAX_NUM_VALS_PER_SITE=130 in order to
try and get it below the failure point, at least for the foreseeable
future.
http://lab.llvm.org:8011/#/builders/37/builds/2744
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (LLD 13 (D96914); GNU ld 2.37 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker does not let `__start_/__stop_` references retain their sections.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on COFF/Mach-O are not affected.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D97649
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (D96914 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker no longer lets `__start_/__stop_` references retain them.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on other COFF/Mach-O are not affected.
Differential Revision: https://reviews.llvm.org/D97649
This reverts commit 680f836c2f.
Disable the non-default-rounding-mode scalbn[f] tests when we're using
the MSVC libraries.
Differential Revision: https://reviews.llvm.org/D91841
This would cause linking errors after https://reviews.llvm.org/D97483
that introduced new prefixes for ABI wrappers with origin tracking mode.
We will renable this after the full origin tracking is checked in.
DFSan at store does store shadow data; store app data; and at load does
load shadow data; load app data.
When an application data is atomic, one overtainting case is
thread A: load shadow
thread B: store shadow
thread B: store app
thread A: load app
If the application address had been used by other flows, thread A reads
previous shadow, causing overtainting.
The change is similar to MSan's solution.
1) enforce ordering of app load/store
2) load shadow after load app; store shadow before shadow app
3) do not track atomic store by reseting its shadow to be 0.
The last one is to address a case like this.
Thread A: load app
Thread B: store shadow
Thread A: load shadow
Thread B: store app
This approach eliminates overtainting as a trade-off between undertainting
flows via shadow data race.
Note that this change addresses only native atomic instructions, but
does not support builtin libcalls yet.
https://llvm.org/docs/Atomics.html#libcalls-atomic
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97310
Fix a buffer overrun that can occur when parsing '%c' at the end of a
filename pattern string.
rdar://74571261
Reviewed By: kastiglione
Differential Revision: https://reviews.llvm.org/D97239
Define inline versions of __compiler_rt_fmax* and __compiler_rt_scalbn*
rather than depend on the versions in libm. As with
__compiler_rt_logbn*, these functions are only defined for single,
double, and quad precision (binary128).
Fixes PR32279 for targets using only these FP formats (e.g. Android
on arm/arm64/x86/x86_64).
For single and double precision, on AArch64, use __builtin_fmax[f]
instead of the new inline function, because the builtin expands to the
AArch64 fmaxnm instruction.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D91841
Added a lit test that finds its corresponding crash log and checks to make sure it has asn output under `Application Specific Information`.
This required adding two python commands:
- `get_pid_from_output`: takes the output from the asan instrumentation and parses out the process ID
- `print_crashreport_for_pid`: takes in the pid of the process and the file name of the binary that was run and prints the contents of the corresponding crash log.
This test was added in preparation for changing the integration with crash reporter from the old api to the new api, which is implemented in a subsequent commit.
rdar://69767688
Reviewed By: delcypher
Commited by Dan Liew on behalf of Emily Shi.
Differential Revision: https://reviews.llvm.org/D96737
Depending on the order in which lld and compiler-rt projects are
processed by CMake, `TARGET lld` might evaluate to `TRUE` or `FALSE`
even though `lld-available` lit stanza is always set because lld is
being built. We check whether lld project is enabled instead which
is used by other compiler-rt tests.
The ideal solution here would be to use CMake generator expressions,
but those cannot be used for dependencies yet, see:
https://gitlab.kitware.com/cmake/cmake/-/issues/19467
Differential Revision: https://reviews.llvm.org/D97256
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
When adding this function in https://reviews.llvm.org/D68794 I did not
notice that internal_prctl has the API of the syscall to prctl rather
than the API of the glibc (posix) wrapper.
This means that the error return value is not necessarily -1 and that
errno is not set by the call.
For InitPrctl this means that the checks do not catch running on a
kernel *without* the required ABI (not caught since I only tested this
function correctly enables the ABI when it exists).
This commit updates the two calls which check for an error condition to
use internal_iserror. That function sets a provided integer to an
equivalent errno value and returns a boolean to indicate success or not.
Tested by running on a kernel that has this ABI and on one that does
not. Verified that running on the kernel without this ABI the current
code prints the provided error message and does not attempt to run the
program. Verified that running on the kernel with this ABI the current
code does not print an error message and turns on the ABI.
This done on an x86 kernel (where the ABI does not exist), an AArch64
kernel without this ABI, and an AArch64 kernel with this ABI.
In order to keep running the testsuite on kernels that do not provide
this new ABI we add another option to the HWASAN_OPTIONS environment
variable, this option determines whether the library kills the process
if it fails to enable the relaxed syscall ABI or not.
This new flag is `fail_without_syscall_abi`.
The check-hwasan testsuite results do not change with this patch on
either x86, AArch64 without a kernel supporting this ABI, and AArch64
with a kernel supporting this ABI.
Differential Revision: https://reviews.llvm.org/D96964
If tsan runtime will try to allocate something during exit handling,
the allocation will fail because there is no VA whatsoever.
It's observed to fail with the following error in some cases:
failed to allocate 0x1000 (4096) bytes of DTLS_NextBlock.
So terminate the process immediately.
Reviewed-in: https://reviews.llvm.org/D96874
This test was found to fail for some of our downstream builds, on
computers where python was not on the default $PATH. Therefore
add a %python substitution to use sys.executable, based on similar
solutions for python calls in tests elsewhere in LLVM.
Differential Revision: https://reviews.llvm.org/D96799
If an app mmaps lots of memory, a user mmap may end up
in the tsan region for traces. Shadow for this range
overlaps with shadow for other user regions.
This causes havok: from false positives to crashes.
Don't leave unmapped holes in the traces region.
Reviewed-in: https://reviews.llvm.org/D96697
Not sure what the issue is, but it might be because the test copies
llvm-symbolizer to a different directory, and it can't find libc++.
Try to add some REQUIRES that we use in other tests where we copy
llvm tools out of their original directories.
Windows' memory unmapping has to be explicit, there is no madvise.
Similarly, re-mapping memory has to be explicit as well. This patch
implements a basic method for remapping memory which was previously
returned to the OS on Windows.
Patch by Matthew G. McGovern and Jordyn Puryear
As discussed, these tests are compiled with optimization to mimic real
sanitizer usage [1].
Let's mark relevant functions with `noinline` so we can continue to
check against the stack traces in the report.
[1] https://reviews.llvm.org/D96198
This reverts commit 04af72c542.
Differential Revision: https://reviews.llvm.org/D96357
The recent suffix-log-path_test.c checks for a full stacktrace and
since on some arm-linux-gnu configuration the slow unwinder is used
on default (when the compiler emits thumb code as default), it
requires -funwind-tables on tests.
It also seems to fix the issues disable by d025df3c1d.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D96337
This test started failing after https://reviews.llvm.org/D95849
defaulted --allow-unused-prefixes to false.
Taking a look at the test, I didn't see an obvious need to add
OS-specific check lines for each supported value of %os.
rdar://74207657
These tests use `--check-prefix=CHECK-%os` but then didn't have
a CHECK line for every os.
In most tests, the linux expectations were sufficient (they match
the "wrap_" prefix with .*), so just remove the check-prefix there.
In the places where this didn't easily work, make sure there are
at least CHECK-Windows and CHECK-Darwin lines.
The new pass manager was enabled by default [1].
The commit message states the following relevant differences:
* The inliner works slightly differently
* -O1 does some amount of inlining
These tests are affected because they specify `-O1` and then check the
reported stack trace.
[1] https://reviews.llvm.org/D95380
Differential Revision: https://reviews.llvm.org/D96198
This is a part of https://reviews.llvm.org/D95835.
This change is to address two problems
1) When recording stacks in origin tracking, libunwind is not async signal safe. Inside signal callbacks, we need
to use fast unwind. Fast unwind needs threads
2) StackDepot used by origin tracking is not async signal safe, we set a flag per thread inside
a signal callback to prevent from using it.
The thread registration is similar to ASan and MSan.
Related MSan changes are
* 98f5ea0dba
* f653cda269
* 5a7c364343
Some changes in the diff are used in the next diffs
1) The test case pthread.c is not very interesting for now. It will be
extended to test origin tracking later.
2) DFsanThread::InSignalHandler will be used by origin tracking later.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D95963
We want way to set a path to llvm-symbolizer that isn't relative
to the current working directory; this change adds a variable that
expands to the path relative to the current binary.
This approach came from comments in https://reviews.llvm.org/D93070
Differential Revision: https://reviews.llvm.org/D94563
AsanThread::Destroy implementation expected to be called on
child thread.
I missed authors concern regarding this reviewing D95184.
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D95731
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
DFSan uses TLS to pass metadata of arguments and return values. When an
instrumented function accesses the TLS, if a signal callback happens, and
the callback calls other instrumented functions with updating the same TLS,
the TLS is in an inconsistent state after the callback ends. This may cause
either under-tainting or over-tainting.
This fix follows MSan's workaround.
cb22c67a21
It simply resets TLS at restore. This prevents from over-tainting. Although
under-tainting may still happen, a taint flow can be found eventually if we
run a DFSan-instrumented program multiple times. The alternative option is
saving the entire TLS. However the TLS storage takes 2k bytes, and signal calls
could be nested. So it does not seem worth.
This diff fixes sigaction. A following diff will be fixing signal.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D95642
C identifier name input sections such as __llvm_prf_* are GC roots so
they cannot be discarded. In LLD, the SHF_LINK_ORDER flag overrides the
C identifier name semantics.
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object, and it
gets lowered to SHF_LINK_ORDER flag. When a function symbol is discarded
by the linker, setting up !associated metadata allows linker to discard
counters, data and values associated with that function symbol.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
With D92696, the Scudo Standalone GWP-ASan flag parsing was changed to
the new GWP-ASan optional one. We do not necessarily want this, as this
duplicates flag parsing code in Scudo Standalone when using the
GWP-ASan integration.
This CL reverts the changes within Scudo Standalone, and increases
`MaxFlags` to 20 as an addionnal option got us to the current max.
Differential Revision: https://reviews.llvm.org/D95542
D90422 changed this test to write a fixed value into register x23
instead of x20, but it did not update the list of reserved registers.
This meant that x23 may have been live across the register write,
although this happens to not be the case with the current compiler.
Fix the problem by updating the reserved register list.
This function is called by the __atomic_is_lock_free() builtin if the value
cannot be resolved to true at compile time. Lack of this function is
causing the non-lockfree atomics tests in libc++ to not be run (see D91911)
This function is also added in D85044, but that review also adds support
for using lock-free atomics in more cases, whereas this is a minimal change
that just adds __atomic_is_lock_free() for the implementation of atomic.c.
Reviewed By: ldionne
Differential Revision: https://reviews.llvm.org/D92302
Some tests are broken at API level 30 on AOSP-master devices. When we
change the buildbuit to API level 30, the following tests get enabled.
They're currently broken due to various issues, and so fix up those
issues.
Reviewed By: oontvoo, eugenis
Differential Revision: https://reviews.llvm.org/D94100
This makes suppression list to work similar to __lsan_ignore_object.
Existing behavior was inconsistent and very inconvenient for complex
data structures.
Example:
struct B;
struct A { B* ptr; };
A* t = makeA();
t->ptr = makeB();
Before the patch: if makeA suppressed by suppression file, lsan will
still report the makeB() leak, so we need two suppressions.
After the patch: a single makeA suppression is enough (the same as a
single __lsan_ignore_object(t)).
Differential Revision: https://reviews.llvm.org/D93884
The macOS name mangling adds another underscore. Therefore, on macOS
the __atomic_* functions are actually ___atomic_* in libcompiler_rt.dylib.
To handle this case, prepend the asm() argument with __USER_LABEL_PREFIX__
in the same way that atomic.c does.
Reviewed By: ldionne
Differential Revision: https://reviews.llvm.org/D92833
On subtargets that have a red zone, we will copy the stack pointer to the base
pointer in the prologue prior to updating the stack pointer. There are no other
updates to the base pointer after that. This suggests that we should be able to
restore the stack pointer from the base pointer rather than loading it from the
back chain or adding the frame size back to either the stack pointer or the
frame pointer.
This came about because functions that call setjmp need to restore the SP from
the FP because the back chain might have been clobbered
(see https://reviews.llvm.org/D92906). However, if the stack is realigned, the
restored SP might be incorrect (which is what caused the failures in the two
ASan test cases).
This patch was tested quite extensivelly both with sanitizer runtimes and
general code.
Differential revision: https://reviews.llvm.org/D93327
It's possible currently that the sanitizer runtimes when testing grab
the path to the symbolizer through *SAN_SYMBOLIZER_PATH=...
This can be polluted by things like Android's setup script. This patch
forces external_symbolizer_path=$new_build_out_dir/llvm-symbolizer when
%env_tool_options is used.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93352
llvm-cov -path-equivalence=/tmp,... is used by some checked-in coverage mapping
files where the original filename is under /tmp. If the test itself produces the
coverage mapping file, there is no need for /tmp.
For coverage_emptylines.cpp: the source filename is under the build directory.
If the build directory is under /tmp, the path mapping will make
llvm-cov fail to find the file.
The wrapper clears shadow for addr and addrlen when written to.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D93046
The wrapper clears shadow for any bytes written to addr or addrlen.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D92964
The wrapper clears shadow for optval and optlen when written.
Reviewed By: stephan.yichao.zhao, vitalybuka
Differential Revision: https://reviews.llvm.org/D92961
*************
* The problem
*************
See motivation examples in compiler-rt/test/dfsan/pair.cpp. The current
DFSan always uses a 16bit shadow value for a variable with any type by
combining all shadow values of all bytes of the variable. So it cannot
distinguish two fields of a struct: each field's shadow value equals the
combined shadow value of all fields. This introduces an overtaint issue.
Consider a parsing function
std::pair<char*, int> get_token(char* p);
where p points to a buffer to parse, the returned pair includes the next
token and the pointer to the position in the buffer after the token.
If the token is tainted, then both the returned pointer and int ar
tainted. If the parser keeps on using get_token for the rest parsing,
all the following outputs are tainted because of the tainted pointer.
The CL is the first change to address the issue.
**************************
* The proposed improvement
**************************
Eventually all fields and indices have their own shadow values in
variables and memory.
For example, variables with type {i1, i3}, [2 x i1], {[2 x i4], i8},
[2 x {i1, i1}] have shadow values with type {i16, i16}, [2 x i16],
{[2 x i16], i16}, [2 x {i16, i16}] correspondingly; variables with
primary type still have shadow values i16.
***************************
* An potential implementation plan
***************************
The idea is to adopt the change incrementially.
1) This CL
Support field-level accuracy at variables/args/ret in TLS mode,
load/store/alloca still use combined shadow values.
After the alloca promotion and SSA construction phases (>=-O1), we
assume alloca and memory operations are reduced. So if struct
variables do not relate to memory, their tracking is accurate at
field level.
2) Support field-level accuracy at alloca
3) Support field-level accuracy at load/store
These two should make O0 and real memory access work.
4) Support vector if necessary.
5) Support Args mode if necessary.
6) Support passing more accurate shadow values via custom functions if
necessary.
***************
* About this CL.
***************
The CL did the following
1) extended TLS arg/ret to work with aggregate types. This is similar
to what MSan does.
2) implemented how to map between an original type/value/zero-const to
its shadow type/value/zero-const.
3) extended (insert|extract)value to use field/index-level progagation.
4) for other instructions, propagation rules are combining inputs by or.
The CL converts between aggragate and primary shadow values at the
cases.
5) Custom function interfaces also need such a conversion because
all existing custom functions use i16. It is unclear whether custome
functions need more accurate shadow propagation yet.
6) Added test cases for aggregate type related cases.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D92261
This patch adds both extendhftf2 and trunctfhf2 to support
conversion between half-precision and quad-precision floating-point
values. They are built iff the compiler supports _Float16.
Some notes on ARM plaforms: while fp16 is supported on all
architectures, _Float16 is supported only for 32-bit ARM, 64-bit ARM,
and SPIR (as indicated by clang/docs/LanguageExtensions.rst). Also,
fp16 is a storage format and 64-bit ARM supports floating-point
convert precision to half as base armv8-a instruction.
This patch does not change the ABI for 32-bit ARM, it will continue
to pass _Float16 as uint16.
This re-enabled revert done by https://reviews.llvm.org/rGb534beabeed3ba1777cd0ff9ce552d077e496726
Differential Revision: https://reviews.llvm.org/D92242
This patch is similar to D84708. When testing compiler-rt on different
baremetal targets, it helps to have the ability to pass some more parameters
at test time that allows you to build the test executable for a
given target. For an example, you may need a different linker command
file for different targets.
This patch will allows to do things like
$ llvm-lit --param=append_target_cflags="-T simulator.ld"
or
$ llvm-lit --param=append_target_cflags="-T hardware.ld"
In this way, you can run tests on different targets without having to run
cmake again.
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D91783
r302591 dropped -fsanitize-address-globals-dead-stripping for ELF platforms
(to work around a gold<2.27 bug: https://sourceware.org/bugzilla/show_bug.cgi?id=19002)
Upgrade REQUIRES: from lto (COMPILER_RT_TEST_USE_LLD (set by Android, but rarely used elsewhere)) to lto-available.
If COMPILER_RT_TEST_USE_LLD is not set, config.use_lld will be False.
However, if feature 'binutils_lto' is available, lto_supported can still be True,
but config.target_cflags will not get -fuse-ld=lld from config.lto_flags
As a result, we may use clang -flto with system 'ld' which may not support the bitcode file, e.g.
ld: error: /tmp/lto-constmerge-odr-44a1ee.o: Unknown attribute kind (70) (Producer: 'LLVM12.0.0git' Reader: 'LLVM 12.0.0git')
// The system ld+LLVMgold.so do not support ATTR_KIND_MUSTPROGRESS (70).
Just require lld-available and add -fuse-ld=lld.
This patch fixes builtins' CMakeLists.txt and their VFP tests to check
the standard macro defined in the ACLE for VFP support. It also enables
the tests to be built and run for single-precision-only targets while
builtins were built with double-precision support.
Differential revision: https://reviews.llvm.org/D92497
On AArch64 it allows use the native FP16 ABI (although libcalls are
not emitted for fptrunc/fpext lowering), while on other architectures
the expected current semantic is preserved (arm for instance).
For testing the _Float16 usage is enabled by architecture base,
currently only for arm, aarch64, and arm64.
This re-enabled revert done by https://reviews.llvm.org/rGb534beabeed3ba1777cd0ff9ce552d077e496726
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D92241
The author of "https://reviews.llvm.org/D92428" marked
'resize_tls_dynamic.cpp' with XFAIL for powerpc64 since
it fails on a bunch of PowerPC buildbots. However, the
original test case passes on clang-ppc64le-rhel bot. So
marking this as XFAIL makes this bot to fail as the test
case passes unexpectedly. We are marking this unsupported
on all PowerPC64 for now until it is fixed for all the
PowerPC buildbots.
Previously, ASan would produce reports like this:
ERROR: AddressSanitizer: breakpoint on unknown address 0x000000000000 (pc 0x7fffdd7c5e86 ...)
This is unhelpful, because the developer may think this is a null
pointer dereference, and not a breakpoint exception on some PC.
The cause was that SignalContext::GetAddress would read the
ExceptionInformation array to retreive an address for any kind of
exception. That data is only available for access violation exceptions.
This changes it to be conditional on the exception type, and to use the
PC otherwise.
I added a variety of tests for common exception types:
- int div zero
- breakpoint
- ud2a / illegal instruction
- SSE misalignment
I also tightened up IsMemoryAccess and GetWriteFlag to check the
ExceptionCode rather than looking at ExceptionInformation[1] directly.
Differential Revision: https://reviews.llvm.org/D92344
Revert "[compiler-rt] [builtins] Support conversion between fp16 and fp128" & dependency
Revert "[compiler-rt] [builtins] Use _Float16 on extendhfsf2, truncdfhf2 __truncsfhf2 if available"
This reverts commit 7a94829881.
This reverts commit 1fb91fcf9c.
Remove an invalid check from sizes.cpp that only passes when overcommit is disabled.
Fixes PR48274.
Differential Revision: https://reviews.llvm.org/D91999
Similar to __asan_set_error_report_callback, pass the entire report to a
user provided callback function.
Differential Revision: https://reviews.llvm.org/D91825
Also unpoison IO_write_base/_IO_write_end buffer
memcpy from fclose and fflash can copy internal bytes without metadata into user memory.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D91858
During the initial Solaris sanitizer port, I missed to enable the
`sanitizer_common` and `ubsan_minimal` testsuites. This patch fixes this,
correcting a few unportabilities:
- `Posix/getpass.cpp` failed to link since Solaris lacks `libutil`.
Omitting the library lets the test `PASS`, but I thought adding `%libutil`
along the lines of `%librt` to be overkill.
- One subtest of `Posix/getpw_getgr.cpp` is disabled because Solaris
`getpwent_r` has a different signature than expected.
- `/dev/null` is a symlink on Solaris.
- XPG7 specifies that `uname` returns a non-negative value on success.
Tested on `amd64-pc-solaris2.11` and `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D91606
On AArch64 it allows use the native FP16 ABI (although libcalls are
not emitted for fptrunc/fpext lowering), while on other architectures
the expected current semantic is preserved (arm for instance).
Differential Revision: https://reviews.llvm.org/D91733
This patch adds both extendhftf2 and trunctfhf2 to support
conversion between half-precision and quad-precision floating-point
values. They are enabled iff the compiler supports _Float16.
Some notes on ARM plaforms: while __fp16 is supported on all
architectures, _Float16 is supported only for 32-bit ARM, 64-bit ARM,
and SPIR (as indicated by clang/docs/LanguageExtensions.rst). Also,
__fp16 is a storage format and promoted to 'float' for argument passing
and 64-bit ARM supports floating-point convert precision to half as
base armv8-a instruction.
It means that although extendhfsf2, truncdfhf2 __truncsfhf2 will be
built for 64-bit ARM, they will be never used in practice (compiler
won't emit libcall to them). This patch does not change the ABI for
32-bit ARM, it will continue to pass _Float16 as uint16.
Differential Revision: https://reviews.llvm.org/D91732
Add a new interface __sanitizer_get_report_path which will return the
full path to the report file if __sanitizer_set_report_path was
previously called (otherwise it returns null). This is useful in
particular for memory profiling handlers to access the path which
was specified at compile time (and passed down via
__memprof_profile_filename), including the pid added to the path when
the file is opened.
There wasn't a test for __sanitizer_set_report_path, so I added one
which additionally tests the new interface.
Differential Revision: https://reviews.llvm.org/D91765
HwasanThreadList::DontNeedThread clobbers Thread::next_,
Breaking the freelist. As a result, only the top of the freelist ever
gets reused, and the rest of it is lost.
Since the Thread object with its associated ring buffer is only 8Kb, this is
typically only noticable in long running processes, such as fuzzers.
Fix the problem by switching from an intrusive linked list to a vector.
Differential Revision: https://reviews.llvm.org/D91392
Disable the test on old systems.
pthread_cond_clockwait is supported by glibc-2.30.
It also supported by Android api 30 even though we
do not run tsan on Android.
Fixes https://github.com/google/sanitizers/issues/1259
Reviewed By: dvyukov
Adds a new option, `handle_winexcept` to try to intercept uncaught
Visual C++ exceptions on Windows. On Linux, such exceptions are handled
implicitly by `std::terminate()` raising `SIBABRT`. This option brings the
Windows behavior in line with Linux.
Unfortunately this exception code is intentionally undocumented, however
has remained stable for the last decade. More information can be found
here: https://devblogs.microsoft.com/oldnewthing/20100730-00/?p=13273
Reviewed By: morehouse, metzman
Differential Revision: https://reviews.llvm.org/D89755
HwasanThreadList::DontNeedThread clobbers Thread::next_, breaking the
freelist. As a result, only the top of the freelist ever gets reused,
and the rest of it is lost.
Since the Thread object its associated ring buffer is only 8Kb, this is
typically only noticable in long running processes, such as fuzzers.
Fix the problem by switching from an intrusive linked list to a vector.
Differential Revision: https://reviews.llvm.org/D91208
The tests do not report the expected leak when issued with use_stack
or use_tls option equal to 0 on arm-linux-gnueabihf (ubuntu 18.04,
glibc 2.27).
This issue is being tracked by https://bugs.llvm.org/show_bug.cgi?id=48052
This is necessary for enabling LSAN on Android (D89251) because:
- LSAN will have false negatives if run with emulated-tls.
- Bionic ELF-TLS is not compatible with Gold (hence the need for LLD)
Differential Revision: https://reviews.llvm.org/D89615
The __isPlatformVersionAtLeast routine is an implementation of `if (@available)` check
that uses the _availability_version_check API on Darwin that's supported on
macOS 10.15, iOS 13, tvOS 13 and watchOS 6.
Differential Revision: https://reviews.llvm.org/D90367
The issue was unexpected macro expansion when the bot's test output
directory contained a token matching a build system macro (e.g.
"linux"). Switch to using a hardcoded path, which is invalid but is
sufficient for ensuring that the path is passed down to the runtime.
Differential Revision: https://reviews.llvm.org/D90466
Similar to -fprofile-generate=, add -fmemory-profile= which takes a
directory path. This is passed down to LLVM via a new module flag
metadata. LLVM in turn provides this name to the runtime via the new
__memprof_profile_filename variable.
Additionally, always pass a default filename (in $cwd if a directory
name is not specified vi the = form of the option). This is also
consistent with the behavior of the PGO instrumentation. Since the
memory profiles will generally be fairly large, it doesn't make sense to
dump them to stderr. Also, importantly, the memory profiles will
eventually be dumped in a compact binary format, which is another reason
why it does not make sense to send these to stderr by default.
Change the existing memprof tests to specify log_path=stderr when that
was being relied on.
Depends on D89086.
Differential Revision: https://reviews.llvm.org/D89087
From a code size perspective it turns out to be better to use a
callee-saved register to pass the shadow base. For non-leaf functions
it avoids the need to reload the shadow base into x9 after each
function call, at the cost of an additional stack slot to save the
caller's x20. But with x9 there is also a stack size cost, either
as a result of copying x9 to a callee-saved register across calls or
by spilling it to stack, so for the non-leaf functions the change to
stack usage is largely neutral.
It is also code size (and stack size) neutral for many leaf functions.
Although they now need to save/restore x20 this can typically be
combined via LDP/STP into the x30 save/restore. In the case where
the function needs callee-saved registers or stack spills we end up
needing, on average, 8 more bytes of stack and 1 more instruction
but given the improvements to other functions this seems like the
right tradeoff.
Unfortunately we cannot change the register for the v1 (non short
granules) check because the runtime assumes that the shadow base
register is stored in x9, so the v1 check still uses x9.
Aside from that there is no change to the ABI because the choice
of shadow base register is a contract between the caller and the
outlined check function, both of which are compiler generated. We do
need to rename the v2 check functions though because the functions
are deduplicated based on their names, not on their contents, and we
need to make sure that when object files from old and new compilers
are linked together we don't end up with a function that uses x9
calling an outlined check that uses x20 or vice versa.
With this change code size of /system/lib64/*.so in an Android build
with HWASan goes from 200066976 bytes to 194085912 bytes, or a 3%
decrease.
Differential Revision: https://reviews.llvm.org/D90422
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
On aarch64 with kernel 4.12.13 the test sporadically fails with
RSS at start: 1564, after mmap: 103964, after mmap+set label: 308768, \
after fixed map: 206368, after another mmap+set label: 308768, after \
munmap: 206368
release_shadow_space.c.tmp: [...]/release_shadow_space.c:80: int \
main(int, char **): Assertion `after_fixed_mmap <= before + delta' failed.
It seems on some executions the memory is not fully released, even
after munmap. And it also seems that ASLR is hurting it by adding
some fragmentation, by disabling it I could not reproduce the issue
in multiple runs.
I finally see why this test is failing (on now 2 bots). Somehow the path
name is getting messed up, and the "linux" converted to "1". I suspect
there is something in the environment causing the macro expansion in the
test to get messed up:
http://lab.llvm.org:8011/#/builders/112/builds/555/steps/5/logs/FAIL__MemProfiler-x86_64-linux__log_path_test_cpphttp://lab.llvm.org:8011/#/builders/37/builds/275/steps/31/logs/stdio
On the avr bot:
-DPROFILE_NAME_VAR="/home/buildbot/llvm-avr-linux/llvm-avr-linux/stage1/projects/compiler-rt/test/memprof/X86_64LinuxConfig/TestCases/Output/log_path_test.cpp.tmp.log2"
after macros expansions becomes:
/home/buildbot/llvm-avr-1/llvm-avr-1/stage1/projects/compiler-rt/test/memprof/X86_64LinuxConfig/TestCases/Output/log_path_test.cpp.tmp.log2
Similar (s/linux/1/) on the other bot.
Disable it while I investigate
After 81f7b96ed0, I can see that the
reason this test is failing on llvm-avr-linux is that it doesn't think
the directory exists (error comes during file open for write command).
Not sure why since this is the main test Output directory and we created
a different file there earlier in the test from the same file open
invocation. Print directory contents in an attempt to debug.
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
Disable the part of this test that started failing only on the
llvm-avr-linux bot after 5c20d7db9f.
Unfortunately, "XFAIL: avr" does not work. Still in the process of
trying to figure out how to debug.
-print_full_coverage=1 produces a detailed branch coverage dump when run on a single file.
Uses same infrastructure as -print_coverage flag, but prints all branches (regardless of coverage status) in an easy-to-parse format.
Usage: For internal use with machine learning fuzzing models which require detailed coverage information on seed files to generate mutations.
Differential Revision: https://reviews.llvm.org/D85928
Reverts the XFAIL added in b67a2aef8a,
which had no effect.
Adjust the test to make sure all output is dumped to stderr, so that
hopefully I can get a better idea of where/why this is failing.
Remove some redundant checking while here.
For unknown reasons, this test started failing only on the
llvm-avr-linux bot after 5c20d7db9f2791367b9311130eb44afecb16829c:
http://lab.llvm.org:8011/#/builders/112/builds/365
The error message is not helpful, and I have an email out to the bot
owner to help with debugging. XFAIL it on avr for now.
These compiler-rt tests should be UNSUPPORTED instead of XFAIL, which seems to be the real intent of the authors.
Reviewed By: vvereschaka
Differential Revision: https://reviews.llvm.org/D89840
This will allow the output directory to be specified by a build time
option, similar to the directory specified for regular PGO profiles via
-fprofile-generate=. The memory profiling instrumentation pass will
set up the variable. This is the same mechanism used by the PGO
instrumentation and runtime.
Depends on D87120 and D89629.
Differential Revision: https://reviews.llvm.org/D89086
The RISC-V implementations of the `__mulsi3`, `__muldi3` builtins were
conditionally compiling the actual function definitions depending on whether
the M extension was present or not. This caused Compiler-RT testing failures
for RISC-V targets with the M extension, as when these sources were included
the `librt_has_mul*i3` features were still being defined. These `librt_has_*`
definitions are used to conditionally run the respective tests. Since the
actual functions were not being compiled-in, the generic test for `__muldi3`
would fail. This patch makes these implementations follow the normal
Compiler-RT convention of always including the definition, and conditionally
running the respective tests by using the lit conditional
`REQUIRES: librt_has_*`.
Since the `mulsi3_test.c` wasn't actually RISC-V-specific, this patch also
moves it out of the `riscv` directory. It now only depends on
`librt_has_mulsi3` to run.
Differential Revision: https://reviews.llvm.org/D86457
Do not crash when AsanThread::GetStackVariableShadowStart does not find
a variable for a pointer on a shadow stack.
Differential Revision: https://reviews.llvm.org/D89552
It turned out that at dynamic shared library mode, the memory access
pattern can increase memory footprint significantly on OS when transparent
hugepages (THP) are enabled. This could cause >70x memory overhead than
running a static linked binary. For example, a static binary with RSS
overhead 300M can use > 23G RSS if it is built dynamically.
/proc/../smaps shows in 6204552 kB RSS 6141952 kB relates to
AnonHugePages.
Also such a high RSS happens in some rate: around 25% runs may use > 23G RSS, the
rest uses in between 6-23G. I guess this may relate to how user memory
is allocated and distributted across huge pages.
THP is a trade-off between time and space. We have a flag
no_huge_pages_for_shadow for sanitizer. It is true by default but DFSan
did not follow this. Depending on if a target is built statically or
dynamically, maybe Clang can set no_huge_pages_for_shadow accordingly
after this change. But it still seems fine to follow the default setting of
no_huge_pages_for_shadow. If time is an issue, and users are fine with
high RSS, this flag can be set to false selectively.
Adds some simple sanity checks that the support functions for the atomic
builtins do the right thing. This doesn't test concurrency and memory model
issues.
Differential Revision: https://reviews.llvm.org/D86278
See RFC for background:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142744.html
Follow on companion to the clang/llvm instrumentation support in D85948
and committed earlier.
This patch adds the compiler-rt runtime support for the memory
profiling.
Note that much of this support was cloned from asan (and then greatly
simplified and renamed). For example the interactions with the
sanitizer_common allocators, error handling, interception, etc.
The bulk of the memory profiling specific code can be found in the
MemInfoBlock, MemInfoBlockCache, and related classes defined and used
in memprof_allocator.cpp.
For now, the memory profile is dumped to text (stderr by default, but
honors the sanitizer_common log_path flag). It is dumped in either a
default verbose format, or an optional terse format.
This patch also adds a set of tests for the core functionality.
Differential Revision: https://reviews.llvm.org/D87120
Currently the 'emulator' value is fixed at build time. This patch allows changing the emulator
at testing time and enables us to run the tests on different board or simulators without needing
to run CMake again to change the value of emulator.
With this patch in place, the value of 'emulator' can be changed at test time from the command
line like this:
$ llvm-lit --param=emulator="..."
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D84708
ARM thumb/thumb2 frame pointer is inconsistent on GCC and Clang [1]
and fast-unwider is also unreliable when mixing arm and thumb code [2].
The fast unwinder on ARM tries to probe and compare the frame-pointer
at different stack layout positions and it works reliable only on
systems where all the libraries were built in arm mode (either with
gcc or clang) or with clang in thmb mode (which uses the same stack
frame pointer layout in arm and thumb).
However when mixing objects built with different abi modes the
fast unwinder is still problematic as shown by the failures on the
AddressSanitizer.ThreadStackReuseTest. For these failures, the
malloc is called by the loader itself and since it has been built
with a thum enabled gcc, the stack frame is not correctly obtained
and the suppression rule is not applied (resulting in a leak warning).
The check for fast-unwinder-works is also changed: instead of checking
f it is explicit enabled in the compiler flags, it now checks if
compiler defined thumb pre-processor.
This should fix BZ#44158.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92172
[2] https://bugs.llvm.org/show_bug.cgi?id=44158
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D88958
Adds a check to avoid symbolization when printing stack traces if the
stack_trace_format flag does not need it. While there is a symbolize
flag that can be turned off to skip some of the symbolization,
SymbolizePC() still unconditionally looks up the module name and offset.
Avoid invoking SymbolizePC() at all if not needed.
This is an efficiency improvement when dumping all stack traces as part
of the memory profiler in D87120, for large stripped apps where we want
to symbolize as a post pass.
Differential Revision: https://reviews.llvm.org/D88361
After D88686, munmap uses MADV_DONTNEED to ensure zero-out before the
next access. Because the entire shadow space is created by MAP_PRIVATE
and MAP_ANONYMOUS, the first access is also on zero-filled values.
So it is fine to not zero-out data, but use madvise(MADV_DONTNEED) at
mmap. This reduces runtime
overhead.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D88755
[11/11] patch series to port ASAN for riscv64
These changes allow using ASAN on RISCV64 architecture.
The majority of existing tests are passing. With few exceptions (see below).
Tests we run on qemu and on "HiFive Unleashed" board.
Tests run:
```
Asan-riscv64-inline-Test - pass
Asan-riscv64-inline-Noinst-Test - pass
Asan-riscv64-calls-Noinst-Test - pass
Asan-riscv64-calls-Test - pass
```
Lit tests:
```
RISCV64LinuxConfig (282 supported, few failures)
RISCV64LinuxDynamicConfig (289 supported, few failures)
```
Lit failures:
```
TestCases/malloc_context_size.cpp - asan works, but backtrace misses some calls
TestCases/Linux/malloc_delete_mismatch.cpp - asan works, but backtrace misses some calls
TestCases/Linux/static_tls.cpp - "Can't guess glibc version" (under debugging)
TestCases/asan_and_llvm_coverage_test.cpp - missing libclang_rt.profile-riscv64.a
```
These failures are under debugging currently and shall be addressed in a
subsequent commits.
Depends On D87581
Reviewed By: eugenis, vitalybuka
Differential Revision: https://reviews.llvm.org/D87582
When an application does a lot of pairs of mmap and munmap, if we did
not release shadoe memory used by mmap addresses, this would increase
memory usage.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D88686
`Posix/no_asan_gen_globals.c` currently `FAIL`s on Solaris:
$ nm no_asan_gen_globals.c.tmp.exe | grep ___asan_gen_
0809696a r .L___asan_gen_.1
0809a4cd r .L___asan_gen_.2
080908e2 r .L___asan_gen_.4
0809a4cd r .L___asan_gen_.5
0809a529 r .L___asan_gen_.7
0809a4cd r .L___asan_gen_.8
As detailed in Bug 47607, there are two factors here:
- `clang` plays games by emitting some local labels into the symbol
table. When instead one uses `-fno-integrated-as` to have `gas` create
the object files, they don't land in the objects in the first place.
- Unlike GNU `ld`, the Solaris `ld` doesn't support support
`-X`/`--discard-locals` but instead relies on the assembler to follow its
specification and not emit local labels.
Therefore this patch `XFAIL`s the test on Solaris.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D88218
`Posix/unpoison-alternate-stack.cpp` currently `FAIL`s on Solaris/i386.
Some of the problems are generic:
- `clang` warns compiling the testcase:
compiler-rt/test/asan/TestCases/Posix/unpoison-alternate-stack.cpp:83:7: warning: nested designators are a C99 extension [-Wc99-designator]
.sa_sigaction = signalHandler,
^~~~~~~~~~~~~
compiler-rt/test/asan/TestCases/Posix/unpoison-alternate-stack.cpp:84:7: warning: ISO C++ requires field designators to be specified in declaration order; field '_funcptr' will be initialized after field 'sa_flags' [-Wreorder-init-list]
.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
and some more instances. This can all easily be avoided by initializing
each field separately.
- The test `SEGV`s in `__asan_memcpy`. The default Solaris/i386 stack size
is only 4 kB, while `__asan_memcpy` tries to allocate either 5436
(32-bit) or 10688 bytes (64-bit) on the stack. This patch avoids this by
requiring at least 16 kB stack size.
- Even without `-fsanitize=address` I get an assertion failure:
Assertion failed: !isOnSignalStack(), file compiler-rt/test/asan/TestCases/Posix/unpoison-alternate-stack.cpp, line 117
The fundamental problem with this testcase is that `longjmp` from a
signal handler is highly unportable; XPG7 strongly warns against it and
it is thus unspecified which stack is used when `longjmp`ing from a
signal handler running on an alternative stack.
So I'm `XFAIL`ing this testcase on Solaris.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D88501
This commit adds an interceptor for the pthread_detach function,
calling into ThreadRegistry::DetachThread, allowing for thread contexts
to be reused.
Without this change, programs may fail when they create more than 8K
threads.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=47389
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D88184
Add support for expanding the %t filename specifier in LLVM_PROFILE_FILE
to the TMPDIR environment variable. This is supported on all platforms.
On Darwin, TMPDIR is used to specify a temporary application-specific
scratch directory. When testing apps on remote devices, it can be
challenging for the host device to determine the correct TMPDIR, so it's
helpful to have the runtime do this work.
rdar://68524185
Differential Revision: https://reviews.llvm.org/D87332
`TestCases/malloc-no-intercept.c` `FAIL`s on Solaris/x86, e.g. with
`-Dtestfunc=mallinfo`:
/usr/bin/ld: /tmp/malloc-no-intercept-586529.o: in function `main':
/vol/llvm/src/llvm-project/dist/compiler-rt/test/asan/TestCases/malloc-no-intercept.c:30: undefined reference to `nonexistent_function'
clang-12: error: linker command failed with exit code 1 (use -v to see invocation)
This is not surprising, actually:
- `mallinfo` and `mallopt` only exist in `libmalloc`
- `pvalloc` doesn't exist all all
- `cfree` does exist in `libc`, but isn't declared in any public header and
the OpenSolaris sources reveal that it has a different signature than on
Linux
- only `memalign` is a public interface
To avoid this, this patch disables the interceptors for all but `meminfo`.
Additionally, the test is marked `UNSUPPORTED` on Solaris since the
`memalign` and `cfree` variants **do** link on Solaris.
Tested on `amd64-pc-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D87898
Commit https://reviews.llvm.org/rG144e57fc9535 added this test
case that creates message queues but does not remove them. The
message queues subsequently build up on the machine until the
system wide limit is reached. This has caused failures for a
number of bots running on a couple of big PPC machines.
This patch just adds the missing cleanup.
Can be used to disable interceptor to workaround issues of
non-instrumented code.
Reviewed By: morehouse, eugenis
Differential Revision: https://reviews.llvm.org/D87897
The test started to consistently fail after unrelated
2ffaa9a173.
Even before the patch it was possible to fail the test,
e.g. -seed=1660180256 on my workstation.
Also this checks do not look related to strcmp.
X86 can use xmm registers for pointers operations. e.g. for std::swap.
I don't know yet if it's possible on other platforms.
NT_X86_XSTATE includes all registers from NT_FPREGSET so
the latter used only if the former is not available. I am not sure how
reasonable to expect that but LLD has such fallback in
NativeRegisterContextLinux_x86_64::ReadFPR.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87754
On Solaris/x86, several hundred 32-bit tests `FAIL`, all in the same way:
env ASAN_OPTIONS=halt_on_error=false ./halt_on_error_suppress_equal_pcs.cpp.tmp
Segmentation Fault (core dumped)
They segfault during startup:
Thread 2 received signal SIGSEGV, Segmentation fault.
[Switching to Thread 1 (LWP 1)]
0x080f21f0 in __sanitizer::internal_mmap(void*, unsigned long, int, int, int, unsigned long long) () at /vol/llvm/src/llvm-project/dist/compiler-rt/lib/sanitizer_common/sanitizer_solaris.cpp:65
65 int prot, int flags, int fd, OFF_T offset) {
1: x/i $pc
=> 0x80f21f0 <_ZN11__sanitizer13internal_mmapEPvmiiiy+16>: movaps 0x30(%esp),%xmm0
(gdb) p/x $esp
$3 = 0xfeffd488
The problem is that `movaps` expects 16-byte alignment, while 32-bit Solaris/x86
only guarantees 4-byte alignment following the i386 psABI.
This patch updates `X86Subtarget::initSubtargetFeatures` accordingly,
handles Solaris/x86 in the corresponding testcase, and allows for some
variation in address alignment in
`compiler-rt/test/ubsan/TestCases/TypeCheck/vptr.cpp`.
Tested on `amd64-pc-solaris2.11` and `x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D87615
When using a custom mutator (e.g. thrift mutator, similar to LPM)
that calls back into libfuzzer's mutations via `LLVMFuzzerMutate`, the mutation
sequences needed to achieve new coverage can get prohibitively large.
Printing these large sequences has two downsides:
1) It makes the logs hard to understand for a human.
2) The performance cost slows down fuzzing.
In this patch I change the `PrintMutationSequence` function to take a max
number of entries, to achieve this goal. I also update `PrintStatusForNewUnit`
to default to printing only 10 entries, in the default verbosity level (1),
requiring the user to set verbosity to 2 if they want the full mutation
sequence.
For our use case, turning off verbosity is not an option, as that would also
disable `PrintStats()` which is very useful for infrastructure that analyzes
the logs in realtime. I imagine most users of libfuzzer always want those logs
in the default.
I built a fuzzer locally with this patch applied to libfuzzer.
When running with the default verbosity, I see logs like this:
#65 NEW cov: 4799 ft: 10443 corp: 41/1447Kb lim: 64000 exec/s: 1 rss: 575Mb L: 28658/62542 MS: 196 Custom-CrossOver-ChangeBit-EraseBytes-ChangeBit-ChangeBit-ChangeBit-CrossOver-ChangeBit-CrossOver- DE: "\xff\xff\xff\x0e"-"\xfe\xff\xff\x7f"-"\xfe\xff\xff\x7f"-"\x17\x00\x00\x00\x00\x00\x00\x00"-"\x00\x00\x00\xf9"-"\xff\xff\xff\xff"-"\xfa\xff\xff\xff"-"\xf7\xff\xff\xff"-"@\xff\xff\xff\xff\xff\xff\xff"-"E\x00"-
#67 NEW cov: 4810 ft: 10462 corp: 42/1486Kb lim: 64000 exec/s: 1 rss: 577Mb L: 39823/62542 MS: 135 Custom-CopyPart-ShuffleBytes-ShuffleBytes-ChangeBit-ChangeBinInt-EraseBytes-ChangeBit-ChangeBinInt-ChangeBit- DE: "\x01\x00\x00\x00\x00\x00\x01\xf1"-"\x00\x00\x00\x07"-"\x00\x0d"-"\xfd\xff\xff\xff"-"\xfe\xff\xff\xf4"-"\xe3\xff\xff\xff"-"\xff\xff\xff\xf1"-"\xea\xff\xff\xff"-"\x00\x00\x00\xfd"-"\x01\x00\x00\x05"-
Staring hard at the logs it's clear that the cap of 10 is applied.
When running with verbosity level 2, the logs look like the below:
#66 NEW cov: 4700 ft: 10188 corp: 37/1186Kb lim: 64000 exec/s: 2 rss: 509Mb L: 47616/61231 MS: 520 Custom-CopyPart-ChangeBinInt-ChangeBit-ChangeByte-EraseBytes-PersAutoDict-CopyPart-ShuffleBytes-ChangeBit-ShuffleBytes-CopyPart-EraseBytes-CopyPart-ChangeBinInt-CopyPart-ChangeByte-ShuffleBytes-ChangeBinInt-ShuffleBytes-ChangeBit-CMP-ShuffleBytes-ChangeBit-CrossOver-ChangeBinInt-ChangeByte-ShuffleBytes-CrossOver-EraseBytes-ChangeBinInt-InsertRepeatedBytes-PersAutoDict-InsertRepeatedBytes-InsertRepeatedBytes-CrossOver-ChangeByte-ShuffleBytes-CopyPart-ShuffleBytes-CopyPart-CrossOver-ChangeBit-ShuffleBytes-CrossOver-PersAutoDict-ChangeByte-ChangeBit-ShuffleBytes-CrossOver-ChangeByte-EraseBytes-CopyPart-ChangeBinInt-PersAutoDict-CrossOver-ShuffleBytes-CrossOver-CrossOver-EraseBytes-CrossOver-EraseBytes-CrossOver-ChangeBit-ChangeBinInt-ChangeByte-EraseBytes-ShuffleBytes-ShuffleBytes-ChangeBit-EraseBytes-ChangeBinInt-ChangeBit-ChangeBinInt-CopyPart-EraseBytes-PersAutoDict-EraseBytes-CopyPart-ChangeBinInt-ChangeByte-CrossOver-ChangeBinInt-ShuffleBytes-PersAutoDict-PersAutoDict-ChangeBinInt-CopyPart-ChangeBinInt-CrossOver-ChangeBit-ChangeBinInt-CopyPart-ChangeByte-ChangeBit-CopyPart-CrossOver-ChangeByte-ChangeBit-ChangeByte-ShuffleBytes-CMP-ChangeBit-CopyPart-ChangeBit-ChangeByte-ChangeBinInt-PersAutoDict-ChangeBinInt-CrossOver-ChangeBinInt-ChangeBit-ChangeBinInt-ChangeBinInt-PersAutoDict-ChangeBinInt-ChangeBinInt-ChangeByte-CopyPart-ShuffleBytes-ChangeByte-ChangeBit-ChangeByte-ChangeByte-EraseBytes-CrossOver-ChangeByte-ChangeByte-EraseBytes-EraseBytes-InsertRepeatedBytes-ShuffleBytes-CopyPart-CopyPart-ChangeBit-ShuffleBytes-PersAutoDict-ShuffleBytes-ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ChangeByte-ChangeBinInt-CrossOver-ChangeBinInt-ChangeBit-EraseBytes-CopyPart-ChangeByte-CrossOver-EraseBytes-CrossOver-ChangeByte-ShuffleBytes-ChangeByte-ChangeBinInt-CrossOver-ChangeByte-InsertRepeatedBytes-InsertByte-ShuffleBytes-PersAutoDict-ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ShuffleBytes-CopyPart-ShuffleBytes-EraseBytes-ShuffleBytes-ShuffleBytes-CrossOver-ChangeBinInt-CopyPart-CopyPart-CopyPart-EraseBytes-EraseBytes-ChangeByte-ChangeBinInt-ShuffleBytes-CMP-InsertByte-EraseBytes-ShuffleBytes-CopyPart-ChangeBit-CrossOver-CopyPart-CopyPart-ShuffleBytes-ChangeByte-ChangeByte-ChangeBinInt-EraseBytes-ChangeByte-ChangeBinInt-ChangeBit-ChangeBit-ChangeByte-ShuffleBytes-PersAutoDict-PersAutoDict-CMP-ChangeBit-ShuffleBytes-PersAutoDict-ChangeBinInt-EraseBytes-EraseBytes-ShuffleBytes-ChangeByte-ShuffleBytes-ChangeBit-EraseBytes-CMP-ShuffleBytes-ChangeByte-ChangeBinInt-EraseBytes-ChangeBinInt-ChangeByte-EraseBytes-ChangeByte-CrossOver-ShuffleBytes-EraseBytes-EraseBytes-ShuffleBytes-ChangeBit-EraseBytes-CopyPart-ShuffleBytes-ShuffleBytes-CrossOver-CopyPart-ChangeBinInt-ShuffleBytes-CrossOver-InsertByte-InsertByte-ChangeBinInt-ChangeBinInt-CopyPart-EraseBytes-ShuffleBytes-ChangeBit-ChangeBit-EraseBytes-ChangeByte-ChangeByte-ChangeBinInt-CrossOver-ChangeBinInt-ChangeBinInt-ShuffleBytes-ShuffleBytes-ChangeByte-ChangeByte-ChangeBinInt-ShuffleBytes-CrossOver-EraseBytes-CopyPart-CopyPart-CopyPart-ChangeBit-ShuffleBytes-ChangeByte-EraseBytes-ChangeByte-InsertRepeatedBytes-InsertByte-InsertRepeatedBytes-PersAutoDict-EraseBytes-ShuffleBytes-ChangeByte-ShuffleBytes-ChangeBinInt-ShuffleBytes-ChangeBinInt-ChangeBit-CrossOver-CrossOver-ShuffleBytes-CrossOver-CopyPart-CrossOver-CrossOver-CopyPart-ChangeByte-ChangeByte-CrossOver-ChangeBit-ChangeBinInt-EraseBytes-ShuffleBytes-EraseBytes-CMP-PersAutoDict-PersAutoDict-InsertByte-ChangeBit-ChangeByte-CopyPart-CrossOver-ChangeByte-ChangeBit-ChangeByte-CopyPart-ChangeBinInt-EraseBytes-CrossOver-ChangeBit-CrossOver-PersAutoDict-CrossOver-ChangeByte-CrossOver-ChangeByte-ChangeByte-CrossOver-ShuffleBytes-CopyPart-CopyPart-ShuffleBytes-ChangeByte-ChangeByte-ChangeBinInt-ChangeBinInt-ChangeBinInt-ChangeBinInt-ShuffleBytes-CrossOver-ChangeBinInt-ShuffleBytes-ChangeBit-PersAutoDict-ChangeBinInt-ShuffleBytes-ChangeBinInt-ChangeByte-CrossOver-ChangeBit-CopyPart-ChangeBit-ChangeBit-CopyPart-ChangeByte-PersAutoDict-ChangeBit-ShuffleBytes-ChangeByte-ChangeBit-CrossOver-ChangeByte-CrossOver-ChangeByte-CrossOver-ChangeBit-ChangeByte-ChangeBinInt-PersAutoDict-CopyPart-ChangeBinInt-ChangeBit-CrossOver-ChangeBit-PersAutoDict-ShuffleBytes-EraseBytes-CrossOver-ChangeByte-ChangeBinInt-ShuffleBytes-ChangeBinInt-InsertRepeatedBytes-PersAutoDict-CrossOver-ChangeByte-Custom-PersAutoDict-CopyPart-CopyPart-ChangeBinInt-ShuffleBytes-ChangeBinInt-ChangeBit-ShuffleBytes-CrossOver-CMP-ChangeByte-CopyPart-ShuffleBytes-CopyPart-CopyPart-CrossOver-CrossOver-CrossOver-ShuffleBytes-ChangeByte-ChangeBinInt-ChangeBit-ChangeBit-ChangeBit-ChangeByte-EraseBytes-ChangeByte-ChangeBit-ChangeByte-ChangeByte-CopyPart-PersAutoDict-ChangeBinInt-PersAutoDict-PersAutoDict-PersAutoDict-CopyPart-CopyPart-CrossOver-ChangeByte-ChangeBinInt-ShuffleBytes-ChangeBit-CopyPart-EraseBytes-CopyPart-CopyPart-CrossOver-ChangeByte-EraseBytes-ShuffleBytes-ChangeByte-CopyPart-EraseBytes-CopyPart-CrossOver-ChangeBinInt-ChangeBinInt-InsertByte-ChangeBinInt-ChangeBit-ChangeByte-CopyPart-ChangeByte-EraseBytes-ChangeByte-ChangeBit-ChangeByte-ShuffleBytes-CopyPart-ChangeBinInt-EraseBytes-CrossOver-ChangeBit-ChangeBit-CrossOver-EraseBytes-ChangeBinInt-CopyPart-CopyPart-ChangeBinInt-ChangeBit-EraseBytes-InsertRepeatedBytes-EraseBytes-ChangeBit-CrossOver-CrossOver-EraseBytes-EraseBytes-ChangeByte-CopyPart-CopyPart-ShuffleBytes-ChangeByte-ChangeBit-ChangeByte-EraseBytes-ChangeBit-ChangeByte-ChangeByte-CrossOver-CopyPart-EraseBytes-ChangeByte-EraseBytes-ChangeByte-ShuffleBytes-ShuffleBytes-ChangeByte-CopyPart-ChangeByte-ChangeByte-ChangeBit-CopyPart-ChangeBit-ChangeBinInt-CopyPart-ShuffleBytes-ChangeBit-ChangeBinInt-ChangeBit-EraseBytes-CMP-CrossOver-CopyPart-ChangeBinInt-CrossOver-CrossOver-CopyPart-CrossOver-CrossOver-InsertByte-InsertByte-CopyPart-Custom- DE: "warn"-"\x00\x00\x00\x80"-"\xfe\xff\xff\xfb"-"\xff\xff"-"\x10\x00\x00\x00"-"\xfe\xff\xff\xff"-"\xff\xff\xff\xf6"-"U\x01\x00\x00\x00\x00\x00\x00"-"\xd9\xff\xff\xff"-"\xfe\xff\xff\xea"-"\xf0\xff\xff\xff"-"\xfc\xff\xff\xff"-"warn"-"\xff\xff\xff\xff"-"\xfe\xff\xff\xfb"-"\x00\x00\x00\x80"-"\xfe\xff\xff\xf1"-"\xfe\xff\xff\xea"-"\x00\x00\x00\x00\x00\x00\x012"-"\xe2\x00"-"\xfb\xff\xff\xff"-"\x00\x00\x00\x00"-"\xe9\xff\xff\xff"-"\xff\xff"-"\x00\x00\x00\x80"-"\x01\x00\x04\xc9"-"\xf0\xff\xff\xff"-"\xf9\xff\xff\xff"-"\xff\xff\xff\xff\xff\xff\xff\x12"-"\xe2\x00"-"\xfe\xff\xff\xff"-"\xfe\xff\xff\xea"-"\xff\xff\xff\xff"-"\xf4\xff\xff\xff"-"\xe9\xff\xff\xff"-"\xf1\xff\xff\xff"-
#48 NEW cov: 4502 ft: 9151 corp: 27/750Kb lim: 64000 exec/s: 2 rss: 458Mb L: 50772/50772 MS: 259 ChangeByte-ShuffleBytes-ChangeBinInt-ChangeByte-ChangeByte-ChangeByte-ChangeByte-ChangeBit-CopyPart-CrossOver-CopyPart-ChangeByte-CrossOver-CopyPart-ChangeBit-ChangeByte-EraseBytes-ChangeByte-CopyPart-CopyPart-CopyPart-ChangeBit-EraseBytes-ChangeBinInt-CrossOver-CopyPart-CrossOver-CopyPart-ChangeBit-ChangeByte-ChangeBit-InsertByte-CrossOver-InsertRepeatedBytes-InsertRepeatedBytes-InsertRepeatedBytes-ChangeBinInt-EraseBytes-InsertRepeatedBytes-InsertByte-ChangeBit-ShuffleBytes-ChangeBit-ChangeBit-CopyPart-ChangeBit-ChangeByte-CrossOver-ChangeBinInt-ChangeByte-CrossOver-CMP-ChangeByte-CrossOver-ChangeByte-ShuffleBytes-ShuffleBytes-ChangeByte-ChangeBinInt-CopyPart-EraseBytes-CrossOver-ChangeBit-ChangeBinInt-InsertByte-ChangeBit-CopyPart-ChangeBinInt-ChangeByte-CrossOver-ChangeBit-EraseBytes-CopyPart-ChangeBinInt-ChangeBit-ChangeBit-ChangeByte-CopyPart-ChangeBinInt-CrossOver-PersAutoDict-ChangeByte-ChangeBit-ChangeByte-ChangeBinInt-ChangeBinInt-EraseBytes-CopyPart-CopyPart-ChangeByte-ChangeByte-EraseBytes-PersAutoDict-CopyPart-ChangeByte-ChangeByte-EraseBytes-CrossOver-CopyPart-CopyPart-CopyPart-ChangeByte-ChangeBit-CMP-CopyPart-ChangeBinInt-ChangeBinInt-CrossOver-ChangeBit-ChangeBit-EraseBytes-ChangeByte-ShuffleBytes-ChangeBit-ChangeBinInt-CMP-InsertRepeatedBytes-CopyPart-Custom-ChangeByte-CrossOver-EraseBytes-ChangeBit-CopyPart-CrossOver-CMP-ShuffleBytes-EraseBytes-CrossOver-PersAutoDict-ChangeByte-CrossOver-CopyPart-CrossOver-CrossOver-ShuffleBytes-ChangeBinInt-CrossOver-ChangeBinInt-ShuffleBytes-PersAutoDict-ChangeByte-EraseBytes-ChangeBit-CrossOver-EraseBytes-CrossOver-ChangeBit-ChangeBinInt-EraseBytes-InsertByte-InsertRepeatedBytes-InsertByte-InsertByte-ChangeByte-ChangeBinInt-ChangeBit-CrossOver-ChangeByte-CrossOver-EraseBytes-ChangeByte-ShuffleBytes-ChangeBit-ChangeBit-ShuffleBytes-CopyPart-ChangeByte-PersAutoDict-ChangeBit-ChangeByte-InsertRepeatedBytes-CMP-CrossOver-ChangeByte-EraseBytes-ShuffleBytes-CrossOver-ShuffleBytes-ChangeBinInt-ChangeBinInt-CopyPart-PersAutoDict-ShuffleBytes-ChangeBit-CopyPart-ShuffleBytes-CopyPart-EraseBytes-ChangeByte-ChangeBit-ChangeBit-ChangeBinInt-ChangeByte-CopyPart-EraseBytes-ChangeBinInt-EraseBytes-EraseBytes-PersAutoDict-CMP-PersAutoDict-CrossOver-CrossOver-ChangeBit-CrossOver-PersAutoDict-CrossOver-CopyPart-ChangeByte-EraseBytes-ChangeByte-ShuffleBytes-ChangeByte-ChangeByte-CrossOver-ChangeBit-EraseBytes-ChangeByte-EraseBytes-ChangeBinInt-CrossOver-CrossOver-EraseBytes-ChangeBinInt-CrossOver-ChangeBit-ShuffleBytes-ChangeBit-ChangeByte-EraseBytes-ChangeBit-CrossOver-CrossOver-CrossOver-ChangeByte-ChangeBit-ShuffleBytes-ChangeBit-ChangeBit-EraseBytes-CrossOver-CrossOver-CopyPart-ShuffleBytes-ChangeByte-ChangeByte-CopyPart-CrossOver-CopyPart-CrossOver-CrossOver-EraseBytes-EraseBytes-ShuffleBytes-InsertRepeatedBytes-ChangeBit-CopyPart-Custom- DE: "\xfe\xff\xff\xfc"-"\x00\x00\x00\x00"-"F\x00"-"\xf3\xff\xff\xff"-"St9exception"-"_\x00\x00\x00"-"\xf6\xff\xff\xff"-"\xfe\xff\xff\xff"-"\x00\x00\x00\x00"-"p\x02\x00\x00\x00\x00\x00\x00"-"\xfe\xff\xff\xfb"-"\xff\xff"-"\xff\xff\xff\xff"-"\x01\x00\x00\x07"-"\xfe\xff\xff\xfe"-
These are prohibitively large and of limited value in the default case (when
someone is running the fuzzer, not debugging it), in my opinion.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86658
The check that the pointer inside of the user part of the chunk does not
adds any value, but it's the last user of AddrIsInside.
I'd like to simplify AsanChunk in followup patches.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87642
If user thread is in the allocator, the allocator
may have no pointer into future user's part of
the allocated block. AddrIsInside ignores such
pointers and lsan reports a false memory leak.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87552
gcov is an "Edge Profiling with Edge Counters" application according to
Optimally Profiling and Tracing Programs (1994).
The minimum number of counters necessary is |E|-(|V|-1). The unmeasured edges
form a spanning tree. Both GCC --coverage and clang -fprofile-generate leverage
this optimization. This patch implements the optimization for clang --coverage.
The produced .gcda files are much smaller now.
As reported in Bug 42535, `clang` doesn't inline atomic ops on 32-bit
Sparc, unlike `gcc` on Solaris. In a 1-stage build with `gcc`, only two
testcases are affected (currently `XFAIL`ed), while in a 2-stage build more
than 100 tests `FAIL` due to this issue.
The reason for this `gcc`/`clang` difference is that `gcc` on 32-bit
Solaris/SPARC defaults to `-mpcu=v9` where atomic ops are supported, unlike
with `clang`'s default of `-mcpu=v8`. This patch changes `clang` to use
`-mcpu=v9` on 32-bit Solaris/SPARC, too.
Doing so uncovered two bugs:
`clang -m32 -mcpu=v9` chokes with any Solaris system headers included:
/usr/include/sys/isa_defs.h:461:2: error: "Both _ILP32 and _LP64 are defined"
#error "Both _ILP32 and _LP64 are defined"
While `clang` currently defines `__sparcv9` in a 32-bit `-mcpu=v9`
compilation, neither `gcc` nor Studio `cc` do. In fact, the Studio 12.6
`cc(1)` man page clearly states:
These predefinitions are valid in all modes:
[...]
__sparcv8 (SPARC)
__sparcv9 (SPARC -m64)
At the same time, the patch defines `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_[1248]`
for a 32-bit Sparc compilation with any V9 cpu. I've also changed
`MaxAtomicInlineWidth` for V9, matching what `gcc` does and the Oracle
Developer Studio 12.6: C User's Guide documents (Ch. 3, Support for Atomic
Types, 3.1 Size and Alignment of Atomic C Types).
The two testcases that had been `XFAIL`ed for Bug 42535 are un-`XFAIL`ed
again.
Tested on `sparcv9-sun-solaris2.11` and `amd64-pc-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D86621
Update both thread and stack.
Update thread and stack as atomic operation.
Keep all 32bit of TID as now we have enough bits.
Depends on D87135.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87217
This patch adds a new command-line option -mutation_graph_file=FILE for
debugging purposes, which traces how corpus inputs evolve during a fuzzing
run. For each new input that is added to the corpus, a new vertex corresponding
to the added input, as well as a new edge that connects its base input to itself
are written to the given file. Each vertex is labeled with the filename of the
input, and each edge is labeled with the mutation sequence that led to the input
w.r.t. its base input.
The format of the mutation graph file is the dot file format. Once prepended and
appended with "graph {" and "}", respectively, the graph becomes a valid dot
file and can be visualized.
Differential Revision: https://reviews.llvm.org/D86560
For a CFG G=(V,E), Knuth describes that by Kirchoff's circuit law, the minimum
number of counters necessary is |E|-(|V|-1). The emitted edges form a spanning
tree. libgcov emitted .gcda files leverages this optimization while clang
--coverage's doesn't.
Propagate counts by Kirchhoff's circuit law so that llvm-cov gcov can
correctly print line counts of gcc --coverage emitted files and enable
the future improvement of clang --coverage.
Fixes https://github.com/google/sanitizers/issues/1193.
AsanChunk can be uninitialized yet just after return from the secondary
allocator. If lsan starts scan just before metadata assignment it can
fail to find corresponding AsanChunk.
It should be safe to ignore this and let lsan to assume that
AsanChunk is in the beginning of the block. This block is from the
secondary allocator and created with mmap, so it should not contain
any pointers and will make lsan to miss some leaks.
Similar already happens for primary allocator. If it can't find real
AsanChunk it falls back and assume that block starts with AsanChunk.
Then if the block is already returned to allocator we have garbage in
AsanChunk and may scan dead memory hiding some leaks.
I'll fix this in D87135.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86931
LLD supports -Ttext but with the option there is still a PT_LOAD at address zero
and thus the Linux kernel will map it to a different address and the test will fail.
Use --image-base instead.
This patch scales the energy computed by the Entropic schedule based on the
execution time of each input. The input execution time is compared with the
average execution time of inputs in the corpus, and, based on the amount by
which they differ, the energy is scaled from 0.1x (for inputs executing slow) to
3x (for inputs executing fast). Note that the exact scaling criteria and formula
is borrowed from AFL.
On FuzzBench, this gives a sizeable throughput increase, which in turn leads to
more coverage on several benchmarks. For details, see the following report.
https://storage.googleapis.com/fuzzer-test-suite-public/exectime-report/index.html
Differential Revision: https://reviews.llvm.org/D86092
This patch adds an option "cross_over_uniform_dist", which, if 1, considers all
inputs in the corpus for the crossover input selection. More specifically, this
patch uses a uniform distribution of all inputs in the corpus for the CrossOver
input selection. Note that input selection for mutation is still fully
determined by the scheduling policy (i.e., vanilla or Entropic); the uniform
distribution only applies to the secondary input selection, only for the
crossover mutation of the base input chosen by the scheduling policy. This way
the corpus inputs that have useful fragments in them, even though they are
deprioritized by the scheduling policy, have chances of getting mixed with other
inputs that are prioritized and selected as base input for mutation.
Differential Revision: https://reviews.llvm.org/D86954
This patch adds an option "keep_seed" to keep all initial seed inputs in the
corpus. Previously, only the initial seed inputs that find new coverage were
added to the corpus, and all the other initial inputs were discarded. We
observed in some circumstances that useful initial seed inputs are discarded as
they find no new coverage, even though they contain useful fragments in them
(e.g., SQLITE3 FuzzBench benchmark). This newly added option provides a way to
keeping seed inputs in the corpus for those circumstances. With this patch, and
with -keep_seed=1, all initial seed inputs are kept in the corpus regardless of
whether they find new coverage or not. Further, these seed inputs are not
replaced with smaller inputs even if -reduce_inputs=1.
Differential Revision: https://reviews.llvm.org/D86577
Currently, libFuzzer will exit with an error message if a non-existent
directory is provided for any of the appropriate arguments. For cases
where libFuzzer is used in a specialized embedded environment, it would
be much easier to have libFuzzer create the directories for the user.
This patch accommodates for this scenario by allowing the user to provide
the argument `-create_missing_dirs=1` which makes libFuzzer attempt to
create the `artifact_prefix`, `exact_artifact_path`,
`features_dir` and/or corpus directory if they don't already exist rather
than throw an error and exit.
Split off from D84808 as requested [here](https://reviews.llvm.org/D84808#2208546).
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86733
This patch introduces denormal result support to soft-float division
implementation unified by D85031.
Reviewed By: sepavloff
Differential Revision: https://reviews.llvm.org/D85032
Currently, libFuzzer will exit with an error message if a non-existent
directory is provided for any of the appropriate arguments. For cases
where libFuzzer is used in a specialized embedded environment, it would
be much easier to have libFuzzer create the directories for the user.
This patch accommodates for this scenario by allowing the user to provide
the argument `-create_missing_dirs=1` which makes libFuzzer attempt to
create the `artifact_prefix`, `exact_artifact_path`,
`features_dir` and/or corpus directory if they don't already exist rather
than throw an error and exit.
Split off from D84808 as requested [here](https://reviews.llvm.org/D84808#2208546).
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86733
When using a custom mutator (e.g. thrift mutator, similar to LPM)
that calls back into libfuzzer's mutations via `LLVMFuzzerMutate`, the mutation
sequences needed to achieve new coverage can get prohibitively large.
Printing these large sequences has two downsides:
1) It makes the logs hard to understand for a human.
2) The performance cost slows down fuzzing.
In this patch I change the `PrintMutationSequence` function to take a max
number of entries, to achieve this goal. I also update `PrintStatusForNewUnit`
to default to printing only 10 entries, in the default verbosity level (1),
requiring the user to set verbosity to 2 if they want the full mutation
sequence.
For our use case, turning off verbosity is not an option, as that would also
disable `PrintStats()` which is very useful for infrastructure that analyzes
the logs in realtime. I imagine most users of libfuzzer always want those logs
in the default.
I built a fuzzer locally with this patch applied to libfuzzer.
When running with the default verbosity, I see logs like this:
#65 NEW cov: 4799 ft: 10443 corp: 41/1447Kb lim: 64000 exec/s: 1 rss: 575Mb L: 28658/62542 MS: 196 Custom-CrossOver-ChangeBit-EraseBytes-ChangeBit-ChangeBit-ChangeBit-CrossOver-ChangeBit-CrossOver- DE: "\xff\xff\xff\x0e"-"\xfe\xff\xff\x7f"-"\xfe\xff\xff\x7f"-"\x17\x00\x00\x00\x00\x00\x00\x00"-"\x00\x00\x00\xf9"-"\xff\xff\xff\xff"-"\xfa\xff\xff\xff"-"\xf7\xff\xff\xff"-"@\xff\xff\xff\xff\xff\xff\xff"-"E\x00"-
#67 NEW cov: 4810 ft: 10462 corp: 42/1486Kb lim: 64000 exec/s: 1 rss: 577Mb L: 39823/62542 MS: 135 Custom-CopyPart-ShuffleBytes-ShuffleBytes-ChangeBit-ChangeBinInt-EraseBytes-ChangeBit-ChangeBinInt-ChangeBit- DE: "\x01\x00\x00\x00\x00\x00\x01\xf1"-"\x00\x00\x00\x07"-"\x00\x0d"-"\xfd\xff\xff\xff"-"\xfe\xff\xff\xf4"-"\xe3\xff\xff\xff"-"\xff\xff\xff\xf1"-"\xea\xff\xff\xff"-"\x00\x00\x00\xfd"-"\x01\x00\x00\x05"-
Staring hard at the logs it's clear that the cap of 10 is applied.
When running with verbosity level 2, the logs look like the below:
#66 NEW cov: 4700 ft: 10188 corp: 37/1186Kb lim: 64000 exec/s: 2 rss: 509Mb L: 47616/61231 MS: 520 Custom-CopyPart-ChangeBinInt-ChangeBit-ChangeByte-EraseBytes-PersAutoDict-CopyPart-ShuffleBytes-ChangeBit-ShuffleBytes-CopyPart-EraseBytes-CopyPart-ChangeBinInt-CopyPart-ChangeByte-ShuffleBytes-ChangeBinInt-ShuffleBytes-ChangeBit-CMP-ShuffleBytes-ChangeBit-CrossOver-ChangeBinInt-ChangeByte-ShuffleBytes-CrossOver-EraseBytes-ChangeBinInt-InsertRepeatedBytes-PersAutoDict-InsertRepeatedBytes-InsertRepeatedBytes-CrossOver-ChangeByte-ShuffleBytes-CopyPart-ShuffleBytes-CopyPart-CrossOver-ChangeBit-ShuffleBytes-CrossOver-PersAutoDict-ChangeByte-ChangeBit-ShuffleBytes-CrossOver-ChangeByte-EraseBytes-CopyPart-ChangeBinInt-PersAutoDict-CrossOver-ShuffleBytes-CrossOver-CrossOver-EraseBytes-CrossOver-EraseBytes-CrossOver-ChangeBit-ChangeBinInt-ChangeByte-EraseBytes-ShuffleBytes-ShuffleBytes-ChangeBit-EraseBytes-ChangeBinInt-ChangeBit-ChangeBinInt-CopyPart-EraseBytes-PersAutoDict-EraseBytes-CopyPart-ChangeBinInt-ChangeByte-CrossOver-ChangeBinInt-ShuffleBytes-PersAutoDict-PersAutoDict-ChangeBinInt-CopyPart-ChangeBinInt-CrossOver-ChangeBit-ChangeBinInt-CopyPart-ChangeByte-ChangeBit-CopyPart-CrossOver-ChangeByte-ChangeBit-ChangeByte-ShuffleBytes-CMP-ChangeBit-CopyPart-ChangeBit-ChangeByte-ChangeBinInt-PersAutoDict-ChangeBinInt-CrossOver-ChangeBinInt-ChangeBit-ChangeBinInt-ChangeBinInt-PersAutoDict-ChangeBinInt-ChangeBinInt-ChangeByte-CopyPart-ShuffleBytes-ChangeByte-ChangeBit-ChangeByte-ChangeByte-EraseBytes-CrossOver-ChangeByte-ChangeByte-EraseBytes-EraseBytes-InsertRepeatedBytes-ShuffleBytes-CopyPart-CopyPart-ChangeBit-ShuffleBytes-PersAutoDict-ShuffleBytes-ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ChangeByte-ChangeBinInt-CrossOver-ChangeBinInt-ChangeBit-EraseBytes-CopyPart-ChangeByte-CrossOver-EraseBytes-CrossOver-ChangeByte-ShuffleBytes-ChangeByte-ChangeBinInt-CrossOver-ChangeByte-InsertRepeatedBytes-InsertByte-ShuffleBytes-PersAutoDict-ChangeBit-ChangeByte-ChangeBit-ShuffleBytes-ShuffleBytes-CopyPart-ShuffleBytes-EraseBytes-ShuffleBytes-ShuffleBytes-CrossOver-ChangeBinInt-CopyPart-CopyPart-CopyPart-EraseBytes-EraseBytes-ChangeByte-ChangeBinInt-ShuffleBytes-CMP-InsertByte-EraseBytes-ShuffleBytes-CopyPart-ChangeBit-CrossOver-CopyPart-CopyPart-ShuffleBytes-ChangeByte-ChangeByte-ChangeBinInt-EraseBytes-ChangeByte-ChangeBinInt-ChangeBit-ChangeBit-ChangeByte-ShuffleBytes-PersAutoDict-PersAutoDict-CMP-ChangeBit-ShuffleBytes-PersAutoDict-ChangeBinInt-EraseBytes-EraseBytes-ShuffleBytes-ChangeByte-ShuffleBytes-ChangeBit-EraseBytes-CMP-ShuffleBytes-ChangeByte-ChangeBinInt-EraseBytes-ChangeBinInt-ChangeByte-EraseBytes-ChangeByte-CrossOver-ShuffleBytes-EraseBytes-EraseBytes-ShuffleBytes-ChangeBit-EraseBytes-CopyPart-ShuffleBytes-ShuffleBytes-CrossOver-CopyPart-ChangeBinInt-ShuffleBytes-CrossOver-InsertByte-InsertByte-ChangeBinInt-ChangeBinInt-CopyPart-EraseBytes-ShuffleBytes-ChangeBit-ChangeBit-EraseBytes-ChangeByte-ChangeByte-ChangeBinInt-CrossOver-ChangeBinInt-ChangeBinInt-ShuffleBytes-ShuffleBytes-ChangeByte-ChangeByte-ChangeBinInt-ShuffleBytes-CrossOver-EraseBytes-CopyPart-CopyPart-CopyPart-ChangeBit-ShuffleBytes-ChangeByte-EraseBytes-ChangeByte-InsertRepeatedBytes-InsertByte-InsertRepeatedBytes-PersAutoDict-EraseBytes-ShuffleBytes-ChangeByte-ShuffleBytes-ChangeBinInt-ShuffleBytes-ChangeBinInt-ChangeBit-CrossOver-CrossOver-ShuffleBytes-CrossOver-CopyPart-CrossOver-CrossOver-CopyPart-ChangeByte-ChangeByte-CrossOver-ChangeBit-ChangeBinInt-EraseBytes-ShuffleBytes-EraseBytes-CMP-PersAutoDict-PersAutoDict-InsertByte-ChangeBit-ChangeByte-CopyPart-CrossOver-ChangeByte-ChangeBit-ChangeByte-CopyPart-ChangeBinInt-EraseBytes-CrossOver-ChangeBit-CrossOver-PersAutoDict-CrossOver-ChangeByte-CrossOver-ChangeByte-ChangeByte-CrossOver-ShuffleBytes-CopyPart-CopyPart-ShuffleBytes-ChangeByte-ChangeByte-ChangeBinInt-ChangeBinInt-ChangeBinInt-ChangeBinInt-ShuffleBytes-CrossOver-ChangeBinInt-ShuffleBytes-ChangeBit-PersAutoDict-ChangeBinInt-ShuffleBytes-ChangeBinInt-ChangeByte-CrossOver-ChangeBit-CopyPart-ChangeBit-ChangeBit-CopyPart-ChangeByte-PersAutoDict-ChangeBit-ShuffleBytes-ChangeByte-ChangeBit-CrossOver-ChangeByte-CrossOver-ChangeByte-CrossOver-ChangeBit-ChangeByte-ChangeBinInt-PersAutoDict-CopyPart-ChangeBinInt-ChangeBit-CrossOver-ChangeBit-PersAutoDict-ShuffleBytes-EraseBytes-CrossOver-ChangeByte-ChangeBinInt-ShuffleBytes-ChangeBinInt-InsertRepeatedBytes-PersAutoDict-CrossOver-ChangeByte-Custom-PersAutoDict-CopyPart-CopyPart-ChangeBinInt-ShuffleBytes-ChangeBinInt-ChangeBit-ShuffleBytes-CrossOver-CMP-ChangeByte-CopyPart-ShuffleBytes-CopyPart-CopyPart-CrossOver-CrossOver-CrossOver-ShuffleBytes-ChangeByte-ChangeBinInt-ChangeBit-ChangeBit-ChangeBit-ChangeByte-EraseBytes-ChangeByte-ChangeBit-ChangeByte-ChangeByte-CopyPart-PersAutoDict-ChangeBinInt-PersAutoDict-PersAutoDict-PersAutoDict-CopyPart-CopyPart-CrossOver-ChangeByte-ChangeBinInt-ShuffleBytes-ChangeBit-CopyPart-EraseBytes-CopyPart-CopyPart-CrossOver-ChangeByte-EraseBytes-ShuffleBytes-ChangeByte-CopyPart-EraseBytes-CopyPart-CrossOver-ChangeBinInt-ChangeBinInt-InsertByte-ChangeBinInt-ChangeBit-ChangeByte-CopyPart-ChangeByte-EraseBytes-ChangeByte-ChangeBit-ChangeByte-ShuffleBytes-CopyPart-ChangeBinInt-EraseBytes-CrossOver-ChangeBit-ChangeBit-CrossOver-EraseBytes-ChangeBinInt-CopyPart-CopyPart-ChangeBinInt-ChangeBit-EraseBytes-InsertRepeatedBytes-EraseBytes-ChangeBit-CrossOver-CrossOver-EraseBytes-EraseBytes-ChangeByte-CopyPart-CopyPart-ShuffleBytes-ChangeByte-ChangeBit-ChangeByte-EraseBytes-ChangeBit-ChangeByte-ChangeByte-CrossOver-CopyPart-EraseBytes-ChangeByte-EraseBytes-ChangeByte-ShuffleBytes-ShuffleBytes-ChangeByte-CopyPart-ChangeByte-ChangeByte-ChangeBit-CopyPart-ChangeBit-ChangeBinInt-CopyPart-ShuffleBytes-ChangeBit-ChangeBinInt-ChangeBit-EraseBytes-CMP-CrossOver-CopyPart-ChangeBinInt-CrossOver-CrossOver-CopyPart-CrossOver-CrossOver-InsertByte-InsertByte-CopyPart-Custom- DE: "warn"-"\x00\x00\x00\x80"-"\xfe\xff\xff\xfb"-"\xff\xff"-"\x10\x00\x00\x00"-"\xfe\xff\xff\xff"-"\xff\xff\xff\xf6"-"U\x01\x00\x00\x00\x00\x00\x00"-"\xd9\xff\xff\xff"-"\xfe\xff\xff\xea"-"\xf0\xff\xff\xff"-"\xfc\xff\xff\xff"-"warn"-"\xff\xff\xff\xff"-"\xfe\xff\xff\xfb"-"\x00\x00\x00\x80"-"\xfe\xff\xff\xf1"-"\xfe\xff\xff\xea"-"\x00\x00\x00\x00\x00\x00\x012"-"\xe2\x00"-"\xfb\xff\xff\xff"-"\x00\x00\x00\x00"-"\xe9\xff\xff\xff"-"\xff\xff"-"\x00\x00\x00\x80"-"\x01\x00\x04\xc9"-"\xf0\xff\xff\xff"-"\xf9\xff\xff\xff"-"\xff\xff\xff\xff\xff\xff\xff\x12"-"\xe2\x00"-"\xfe\xff\xff\xff"-"\xfe\xff\xff\xea"-"\xff\xff\xff\xff"-"\xf4\xff\xff\xff"-"\xe9\xff\xff\xff"-"\xf1\xff\xff\xff"-
#48 NEW cov: 4502 ft: 9151 corp: 27/750Kb lim: 64000 exec/s: 2 rss: 458Mb L: 50772/50772 MS: 259 ChangeByte-ShuffleBytes-ChangeBinInt-ChangeByte-ChangeByte-ChangeByte-ChangeByte-ChangeBit-CopyPart-CrossOver-CopyPart-ChangeByte-CrossOver-CopyPart-ChangeBit-ChangeByte-EraseBytes-ChangeByte-CopyPart-CopyPart-CopyPart-ChangeBit-EraseBytes-ChangeBinInt-CrossOver-CopyPart-CrossOver-CopyPart-ChangeBit-ChangeByte-ChangeBit-InsertByte-CrossOver-InsertRepeatedBytes-InsertRepeatedBytes-InsertRepeatedBytes-ChangeBinInt-EraseBytes-InsertRepeatedBytes-InsertByte-ChangeBit-ShuffleBytes-ChangeBit-ChangeBit-CopyPart-ChangeBit-ChangeByte-CrossOver-ChangeBinInt-ChangeByte-CrossOver-CMP-ChangeByte-CrossOver-ChangeByte-ShuffleBytes-ShuffleBytes-ChangeByte-ChangeBinInt-CopyPart-EraseBytes-CrossOver-ChangeBit-ChangeBinInt-InsertByte-ChangeBit-CopyPart-ChangeBinInt-ChangeByte-CrossOver-ChangeBit-EraseBytes-CopyPart-ChangeBinInt-ChangeBit-ChangeBit-ChangeByte-CopyPart-ChangeBinInt-CrossOver-PersAutoDict-ChangeByte-ChangeBit-ChangeByte-ChangeBinInt-ChangeBinInt-EraseBytes-CopyPart-CopyPart-ChangeByte-ChangeByte-EraseBytes-PersAutoDict-CopyPart-ChangeByte-ChangeByte-EraseBytes-CrossOver-CopyPart-CopyPart-CopyPart-ChangeByte-ChangeBit-CMP-CopyPart-ChangeBinInt-ChangeBinInt-CrossOver-ChangeBit-ChangeBit-EraseBytes-ChangeByte-ShuffleBytes-ChangeBit-ChangeBinInt-CMP-InsertRepeatedBytes-CopyPart-Custom-ChangeByte-CrossOver-EraseBytes-ChangeBit-CopyPart-CrossOver-CMP-ShuffleBytes-EraseBytes-CrossOver-PersAutoDict-ChangeByte-CrossOver-CopyPart-CrossOver-CrossOver-ShuffleBytes-ChangeBinInt-CrossOver-ChangeBinInt-ShuffleBytes-PersAutoDict-ChangeByte-EraseBytes-ChangeBit-CrossOver-EraseBytes-CrossOver-ChangeBit-ChangeBinInt-EraseBytes-InsertByte-InsertRepeatedBytes-InsertByte-InsertByte-ChangeByte-ChangeBinInt-ChangeBit-CrossOver-ChangeByte-CrossOver-EraseBytes-ChangeByte-ShuffleBytes-ChangeBit-ChangeBit-ShuffleBytes-CopyPart-ChangeByte-PersAutoDict-ChangeBit-ChangeByte-InsertRepeatedBytes-CMP-CrossOver-ChangeByte-EraseBytes-ShuffleBytes-CrossOver-ShuffleBytes-ChangeBinInt-ChangeBinInt-CopyPart-PersAutoDict-ShuffleBytes-ChangeBit-CopyPart-ShuffleBytes-CopyPart-EraseBytes-ChangeByte-ChangeBit-ChangeBit-ChangeBinInt-ChangeByte-CopyPart-EraseBytes-ChangeBinInt-EraseBytes-EraseBytes-PersAutoDict-CMP-PersAutoDict-CrossOver-CrossOver-ChangeBit-CrossOver-PersAutoDict-CrossOver-CopyPart-ChangeByte-EraseBytes-ChangeByte-ShuffleBytes-ChangeByte-ChangeByte-CrossOver-ChangeBit-EraseBytes-ChangeByte-EraseBytes-ChangeBinInt-CrossOver-CrossOver-EraseBytes-ChangeBinInt-CrossOver-ChangeBit-ShuffleBytes-ChangeBit-ChangeByte-EraseBytes-ChangeBit-CrossOver-CrossOver-CrossOver-ChangeByte-ChangeBit-ShuffleBytes-ChangeBit-ChangeBit-EraseBytes-CrossOver-CrossOver-CopyPart-ShuffleBytes-ChangeByte-ChangeByte-CopyPart-CrossOver-CopyPart-CrossOver-CrossOver-EraseBytes-EraseBytes-ShuffleBytes-InsertRepeatedBytes-ChangeBit-CopyPart-Custom- DE: "\xfe\xff\xff\xfc"-"\x00\x00\x00\x00"-"F\x00"-"\xf3\xff\xff\xff"-"St9exception"-"_\x00\x00\x00"-"\xf6\xff\xff\xff"-"\xfe\xff\xff\xff"-"\x00\x00\x00\x00"-"p\x02\x00\x00\x00\x00\x00\x00"-"\xfe\xff\xff\xfb"-"\xff\xff"-"\xff\xff\xff\xff"-"\x01\x00\x00\x07"-"\xfe\xff\xff\xfe"-
These are prohibitively large and of limited value in the default case (when
someone is running the fuzzer, not debugging it), in my opinion.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86658
This patch replaces three different pre-existing implementations of
__div[sdt]f3 LibCalls with a generic one - like it is already done for
many other LibCalls.
Reviewed By: sepavloff
Differential Revision: https://reviews.llvm.org/D85031
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
Add functions exposed via the MSAN interface to enable MSAN within
binaries that perform manual stack switching (e.g. through using fibers
or coroutines).
This functionality is analogous to the fiber APIs available for ASAN and TSAN.
Fixesgoogle/sanitizers#1232
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D86471
The CrossOver mutator is meant to cross over two given buffers (referred to as
the first/second buffer henceforth). Previously InsertPartOf/CopyPartOf calls
used in the CrossOver mutator incorrectly inserted/copied part of the second
buffer into a "scratch buffer" (MutateInPlaceHere of the size
CurrentMaxMutationLen), rather than the first buffer. This is not intended
behavior, because the scratch buffer does not always (i) contain the content of
the first buffer, and (ii) have the same size as the first buffer;
CurrentMaxMutationLen is typically a lot larger than the size of the first
buffer. This patch fixes the issue by using the first buffer instead of the
scratch buffer in InsertPartOf/CopyPartOf calls.
A FuzzBench experiment was run to make sure that this change does not
inadvertently degrade the performance. The performance is largely the same; more
details can be found at:
https://storage.googleapis.com/fuzzer-test-suite-public/fixcrossover-report/index.html
This patch also adds two new tests, namely "cross_over_insert" and
"cross_over_copy", which specifically target InsertPartOf and CopyPartOf,
respectively.
- cross_over_insert.test checks if the fuzzer can use InsertPartOf to trigger
the crash.
- cross_over_copy.test checks if the fuzzer can use CopyPartOf to trigger the
crash.
These newly added tests were designed to pass with the current patch, but not
without the it (with 790878f291 these tests do not
pass). To achieve this, -max_len was intentionally given a high value. Without
this patch, InsertPartOf/CopyPartOf will generate larger inputs, possibly with
unpredictable data in it, thereby failing to trigger the crash.
The test pass condition for these new tests is narrowed down by (i) limiting
mutation depth to 1 (i.e., a single CrossOver mutation should be able to trigger
the crash) and (ii) checking whether the mutation sequence of "CrossOver-" leads
to the crash.
Also note that these newly added tests and an existing test (cross_over.test)
all use "-reduce_inputs=0" flags to prevent reducing inputs; it's easier to
force the fuzzer to keep original input string this way than tweaking
cov-instrumented basic blocks in the source code of the fuzzer executable.
Differential Revision: https://reviews.llvm.org/D85554
value-profile-load.test needs adjustment with a mutator change in
bb54bcf849, which reverted as of now, but will be
recommitted after landing this patch.
This patch makes value-profile-load.test more friendly to (and aware of) the
current value profiling strategy, which is based on the hamming as well as the
absolute distance. To this end, this patch adjusts the set of input values that
trigger an expected crash. More specifically, this patch now uses a single value
0x01effffe as a crashing input, because this value is close to values like
{0x1ffffff, 0xffffff, ...}, which are very likely to be added to the corpus per
the current hamming- and absolute-distance-based value profiling strategy. Note
that previously the crashing input values were {1234567 * {1, 2, ...}, s.t. <
INT_MAX}.
Every byte in the chosen value 0x01effeef is intentionally different; this was
to make it harder to find the value without the intermediate inputs added to the
corpus by the value profiling strategy.
Also note that LoadTest.cpp now uses a narrower condition (Size != 8) for
initial pruning of inputs, effectively preventing libFuzzer from generating
inputs longer than necessary and spending time on mutating such long inputs in
the corpus - a functionality not meant to be tested by this specific test.
Differential Revision: https://reviews.llvm.org/D86247
Currently, libFuzzer will exit with an error message if a non-existent
corpus directory is provided. However, if a user provides a non-existent
directory for the `artifact_prefix`, `exact_artifact_path`, or
`features_dir`, libFuzzer will continue execution but silently fail to
write artifacts/features.
To improve the user experience, this PR adds validation for the existence of
all user supplied directories before executing the main fuzzing loop. If they
don't exist, libFuzzer will exit with an error message.
Patch By: dgg5503
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D84808
* Make the three tests look more uniformly
* Explicitly specify types of integer and floating point literals
* Add more test cases (mostly inspired by divtf3_test.c)
- tests are added for obviously special cases such as +/-Inf, +/-0.0 and some
more implementation-specific cases such as divisor being almost 1.0
* Make NaN in the second test case of `divtf3` to be `sNaN` instead of
testing for `qNaN` again
Reviewed By: sepavloff
Differential Revision: https://reviews.llvm.org/D84932
FreeBSD doesn't provide a crypt.h header but instead defines the functions
in unistd.h. Use __has_include() to handle that case.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D85406
FreeBSD delivers a SIGBUS signal for bad addresses rather than SIGSEGV.
Reviewed By: #sanitizers, vitalybuka, yln
Differential Revision: https://reviews.llvm.org/D85409
The dynamically linked ASan tests rely on `LD_LIBRARY_PATH` to find
`libclang_rt.asan-*.so` at runtime.
However, the Solaris runtime linker `ld.so.1` also supports more specific
variables: `LD_LIBRARY_PATH_32` and `LD_LIBRARY_PATH_64` respectively. If
those happen to be set, `LD_LIBRARY_PATH` is ignored. In such a case, all
dynamically linked ASan tests `FAIL`. For i386 alone, this affects about
200 tests.
The following patch fixes that by also setting `LD_LIBRARY_PATH_{32,64}` on
Solaris.
Tested on `amd64-pc-solaris2.11` both with only `LD_LIBRARY_PATH` set and
with `LD_LIBRARY_PATH_{32,64}` set too.
Differential Revision: https://reviews.llvm.org/D86333
Handle NULL address argument in the `mach_vm_[de]allocate()`
interceptors and fix test: `Assignment 2` is not valid if we weren't
able to re-allocate memory.
rdar://67680613
Currently SimpleCmpTest passes after 9,831,994 trials on x86_64/Linux
when the number of given trials is 10,000,000, just a little bigger than
that. This patch modifies SimpleCmpTest.cpp so that the test passes with less
trials, reducing its chances of future failures as libFuzzer evolves. More
specifically, this patch changes a 32-bit equality check to a 8-bit equality
check, making this test pass at 4,635,303 trials.
Differential Revision: https://reviews.llvm.org/D86382
We are now using a properly-substituted minimal deployment target
compiler flag (`%min_macos_deployment_target=10.11`). Enable test on
iOS and watchOS plus simulators. We are also not testing on very old
platforms anymore, so we can remove some obsolete lit infrastructure.
* Support macOS 11+ version scheme
* Standardize substitution name `%min_deployment_target=x.y`
* Remove unneeded error cases (the input version is hard-coded)
* Specify version as tuple instead of string; no need to parse it
These changes should also facilitate a future addition of a substitution
that expands to "set deployment target to current target version"
(https://reviews.llvm.org/D70151).
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D85925
We don't test on very old versions of Apple platforms anymore. The
following lit substitution concerning the minimum deployment target for
ARC support can be removed.
```
%darwin_min_target_with_full_runtime_arc_support -> 10.11
```
Differential Revision: https://reviews.llvm.org/D85803
After removing the unnecessary `-mmacosx-version-min=10.12` compiler
flag this test can run on all platforms. I confirmed that this test is
green for iOS, iOS simulator, and watchOS simulator.
Differential Revision: https://reviews.llvm.org/D85952
The behavior of the CrossOver mutator has changed with
bb54bcf849. This seems to affect the
value-profile-load test on Darwin. This patch provides a wider margin for
determining success of the value-profile-load test, by testing the targeted
functionality (i.e., GEP index value profile) more directly and faster. To this
end, LoadTest.cpp now uses a narrower condition (Size != 8) for initial pruning
of inputs, effectively preventing libFuzzer from generating inputs longer than
necessary and spending time on mutating such long inputs in the corpus - a
functionality not meant to be tested by this specific test.
Previously, on x86/Linux, it required 6,597,751 execs with -use_value_profile=1
and 19,605,575 execs with -use_value_profile=0 to hit the crash. With this
patch, the test passes with 174,493 execs, providing a wider margin from the
given trials of 10,000,000. Note that, without the value profile (i.e.,
-use_value_profile=0), the test wouldn't pass as it still requires 19,605,575
execs to hit the crash.
Differential Revision: https://reviews.llvm.org/D86247
InitializeInterceptors() calls dlsym(), which calls calloc(). Depending
on the allocator implementation, calloc() may invoke mmap(), which
results in a segfault since REAL(mmap) is still being resolved.
We fix this by doing a direct syscall if interceptors haven't been fully
resolved yet.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D86168
`dispatch_async_and_wait()` was introduced in macOS 10.14. Let's
forward declare it to ensure we can compile the test with older SDKs and
guard execution by checking if the symbol is available. (We can't use
`__builtin_available()`, because that itself requires a higher minimum
deployment target.) We also need to specify the `-undefined
dynamic_lookup` compiler flag.
Differential Revision: https://reviews.llvm.org/D85995
The linker errors caused by this revision have been addressed.
Add interceptors for `dispatch_async_and_wait[_f]()` which was added in
macOS 10.14. This pair of functions is similar to `dispatch_sync()`,
but does not force a context switch of the queue onto the caller thread
when the queue is active (and hence is more efficient). For TSan, we
can apply the same semantics as for `dispatch_sync()`.
From the header docs:
> Differences with dispatch_sync()
>
> When the runtime has brought up a thread to invoke the asynchronous
> workitems already submitted to the specified queue, that servicing
> thread will also be used to execute synchronous work submitted to the
> queue with dispatch_async_and_wait().
>
> However, if the runtime has not brought up a thread to service the
> specified queue (because it has no workitems enqueued, or only
> synchronous workitems), then dispatch_async_and_wait() will invoke the
> workitem on the calling thread, similar to the behaviour of functions
> in the dispatch_sync family.
Additional context:
> The guidance is to use `dispatch_async_and_wait()` instead of
> `dispatch_sync()` when it is necessary to mix async and sync calls on
> the same queue. `dispatch_async_and_wait()` does not guarantee
> execution on the caller thread which allows to reduce context switches
> when the target queue is active.
> https://gist.github.com/tclementdev/6af616354912b0347cdf6db159c37057
rdar://35757961
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D85854
The CrossOver mutator is meant to cross over two given buffers (referred to as
the first/second buffer henceforth). Previously InsertPartOf/CopyPartOf calls
used in the CrossOver mutator incorrectly inserted/copied part of the second
buffer into a "scratch buffer" (MutateInPlaceHere of the size
CurrentMaxMutationLen), rather than the first buffer. This is not intended
behavior, because the scratch buffer does not always (i) contain the content of
the first buffer, and (ii) have the same size as the first buffer;
CurrentMaxMutationLen is typically a lot larger than the size of the first
buffer. This patch fixes the issue by using the first buffer instead of the
scratch buffer in InsertPartOf/CopyPartOf calls.
A FuzzBench experiment was run to make sure that this change does not
inadvertently degrade the performance. The performance is largely the same; more
details can be found at:
https://storage.googleapis.com/fuzzer-test-suite-public/fixcrossover-report/index.html
This patch also adds two new tests, namely "cross_over_insert" and
"cross_over_copy", which specifically target InsertPartOf and CopyPartOf,
respectively.
- cross_over_insert.test checks if the fuzzer can use InsertPartOf to trigger
the crash.
- cross_over_copy.test checks if the fuzzer can use CopyPartOf to trigger the
crash.
These newly added tests were designed to pass with the current patch, but not
without the it (with 790878f291 these tests do not
pass). To achieve this, -max_len was intentionally given a high value. Without
this patch, InsertPartOf/CopyPartOf will generate larger inputs, possibly with
unpredictable data in it, thereby failing to trigger the crash.
The test pass condition for these new tests is narrowed down by (i) limiting
mutation depth to 1 (i.e., a single CrossOver mutation should be able to trigger
the crash) and (ii) checking whether the mutation sequence of "CrossOver-" leads
to the crash.
Also note that these newly added tests and an existing test (cross_over.test)
all use "-reduce_inputs=0" flags to prevent reducing inputs; it's easier to
force the fuzzer to keep original input string this way than tweaking
cov-instrumented basic blocks in the source code of the fuzzer executable.
Differential Revision: https://reviews.llvm.org/D85554
Two tests `FAIL` on 32-bit sparc:
Profile-sparc :: Posix/instrprof-gcov-parallel.test
UBSan-Standalone-sparc :: TestCases/Float/cast-overflow.cpp
The failure mode is similar:
Undefined first referenced
symbol in file
__atomic_store_4 /var/tmp/instrprof-gcov-parallel-6afe8d.o
__atomic_load_4 /var/tmp/instrprof-gcov-parallel-6afe8d.o
Undefined first referenced
symbol in file
__atomic_load_1 /var/tmp/cast-overflow-72a808.o
This is a known bug: `clang` doesn't inline atomics on 32-bit sparc, unlike
`gcc`.
The patch therefore `XFAIL`s the tests.
Tested on `sparcv9-sun-solaris2.11` and `amd64-pc-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D85346
While the instrumentation never calls dfsan_union in fast16labels mode,
the custom wrappers do. We detect fast16labels mode by checking whether
any labels have been created. If not, we must be using fast16labels
mode.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D86012
This sets some config parameters so we can run the asan tests with
llvm-lit,
e.g. `./bin/llvm-lit [...]/compiler-rt/test/asan`
Differential Revision: https://reviews.llvm.org/D83821
Otherwise, lots of these tests fail with a CHECK error similar to:
==12345==AddressSanitizer CHECK failed: compiler-rt/lib/asan/asan_posix.cpp:120 "((0)) == ((pthread_key_create(&tsd_key, destructor)))" (0x0, 0x4e)
This is because the default pthread stubs in FreeBSD's libc always
return failures (such as ENOSYS for pthread_key_create) in case the
pthread library is not linked in.
Reviewed By: arichardson
Differential Revision: https://reviews.llvm.org/D85082
Have the front-end use the `nounwind` attribute on atomic libcalls.
This prevents us from seeing `invoke __atomic_load` in MSAN, which
is problematic as it has no successor for instrumentation to be added.
Unmapping and remapping is dangerous since another thread could touch
the shadow memory while it is unmapped. But there is really no need to
unmap anyway, since mmap(MAP_FIXED) will happily clobber the existing
mapping with zeroes. This is thread-safe since the mmap() is done under
the same kernel lock as page faults are done.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D85947
Add interceptors for `dispatch_async_and_wait[_f]()` which was added in
macOS 10.14. This pair of functions is similar to `dispatch_sync()`,
but does not force a context switch of the queue onto the caller thread
when the queue is active (and hence is more efficient). For TSan, we
can apply the same semantics as for `dispatch_sync()`.
From the header docs:
> Differences with dispatch_sync()
>
> When the runtime has brought up a thread to invoke the asynchronous
> workitems already submitted to the specified queue, that servicing
> thread will also be used to execute synchronous work submitted to the
> queue with dispatch_async_and_wait().
>
> However, if the runtime has not brought up a thread to service the
> specified queue (because it has no workitems enqueued, or only
> synchronous workitems), then dispatch_async_and_wait() will invoke the
> workitem on the calling thread, similar to the behaviour of functions
> in the dispatch_sync family.
Additional context:
> The guidance is to use `dispatch_async_and_wait()` instead of
> `dispatch_sync()` when it is necessary to mix async and sync calls on
> the same queue. `dispatch_async_and_wait()` does not guarantee
> execution on the caller thread which allows to reduce context switches
> when the target queue is active.
> https://gist.github.com/tclementdev/6af616354912b0347cdf6db159c37057
rdar://35757961
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D85854
base and nptr_label were swapped, which meant we were passing nptr's
shadow as the base to the operation. Usually, the shadow is 0, which
causes strtoull to guess the correct base from the string prefix (e.g.,
0x means base-16 and 0 means base-8), hiding this bug. Adjust the test
case to expose the bug.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D85935
Similarly as for pointers, even for integers a == b is usually false.
GCC also uses this heuristic.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D85781
When building on `sparc64-unknown-linux-gnu`, I found that a large number
of `SanitizerCommon-asan-sparc*-Linux` tests were `FAIL`ing, like
SanitizerCommon-asan-sparc-Linux :: Linux/aligned_alloc-alignment.cpp
[...]
SanitizerCommon-asan-sparcv9-Linux :: Linux/aligned_alloc-alignment.cpp
[...]
many of them due to
fatal error: error in backend: Function "_Z14User_OnSIGSEGViP9siginfo_tPv": over-aligned dynamic alloca not supported.
which breaks ASan on Sparc. Currently ASan is only built for the benefit
of `gcc` where it does work. However, when enabling the compilation in
`compiler-rt` to make certain it continues to build, I missed
`compiler-rt/test/sanitizer_common` when disabling ASan testing on Sparc
(it's not yet enabled on Solaris).
This patch fixes the issue.
Tested on `sparcv9-sun-solaris2.11` with the `sanitizer_comon` testsuite enabled.
Differential Revision: https://reviews.llvm.org/D85732
This fixes https://bugs.llvm.org/show_bug.cgi?id=47118. Before this change, when the sigaction interceptor prevented a signal from being changed, it also prevented the oldact output parameter from being written to. This resulted in a use-of-uninitialized-variable by any program that used sigaction for the purpose of reading signals.
This change fixes this: the regular sigaction implementation is still called, but with the act parameter nullified, preventing any changes.
Patch By: IanPudney
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85797
Commit 9385aaa848 ("[sancov] Fix PR33732") added zeroext to
__sanitizer_cov_trace(_const)?_cmp[1248] parameters for x86_64 only,
however, it is useful on other targets, in particular, on SystemZ: it
fixes swap-cmp.test.
Therefore, use it on all targets. This is safe: if target ABI does not
require zero extension for a particular parameter, zeroext is simply
ignored. A similar change has been implemeted as part of commit
3bc439bdff ("[MSan] Add instrumentation for SystemZ"), and there were
no problems with it.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85689
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
When one tries to minimize timeouts using -minimize_crash=1,
minimization immediately fails. The following sequence of events is
responsible for this:
[parent] SIGALRM occurs
[parent] read() returns -EINTR (or -ERESTARTSYS according to strace)
[parent] fgets() returns NULL
[parent] ExecuteCommand() closes child's stdout and returns
[child ] SIGALRM occurs
[child ] AlarmCallback() attempts to write "ALARM: ..." to stdout
[child ] Dies with SIGPIPE without calling DumpCurrentUnit()
[parent] Does not see -exact_artifact_path and exits
When minimizing, the timer in parent is not necessary, so fix by not
setting it in this case.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D85359
On iOS, when we `longjmp()` out of the signal handler, a subsequent call
to `sigaltstack()` still reports that we are executing on the signal
handler stack.
Tracking rdar://66789814
Differential Revision: https://reviews.llvm.org/D85677
Two tests currently `XPASS` on sparcv9:
Unexpectedly Passed Tests (2):
Builtins-sparcv9-sunos :: compiler_rt_logbl_test.c
Builtins-sparcv9-sunos :: divtc3_test.c
The following patch fixes this.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D85119
Two ubsan tests FAIL on Sparc:
UBSan-Standalone-sparc :: TestCases/TypeCheck/misaligned.cpp
UBSan-Standalone-sparcv9 :: TestCases/TypeCheck/misaligned.cpp
I've reported the details in Bug 47015, but it boils down to the fact that
the `s1` subtest actually incurs a fault on strict-alignment targets like
Sparc which UBSan doesn't expect.
This can be fixed like the `w1` subtest by compiling with
`-fno-sanitize-recover=alignment`.
Tested on `sparcv9-sun-solaris2.11`, `amd64-pc-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D85433
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
When the FreeBSD qsort() implementation recurses, it does so using an
interposable function call, so we end up calling the interceptor again
and set the saved comparator to wrapped_qsort_compar. This results in an
infinite loop and a eventually a stack overflow since wrapped_qsort_compar
ends up calling itself. This means that ASAN is completely broken on
FreeBSD for programs that call qsort(). I found this while running
check-all on a FreeBSD system a ASAN-instrumented LLVM.
Fix this by checking whether we are recursing inside qsort before writing
to qsort_compar. The same bug exists in the qsort_r interceptor, so use the
same approach there. I did not test the latter since the qsort_r function
signature does not match and therefore it's not intercepted on FreeBSD/macOS.
Fixes https://llvm.org/PR46832
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D84509
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
This quietly disabled use of zlib on Windows even when building with
-DLLVM_ENABLE_ZLIB=FORCE_ON.
> Rather than handling zlib handling manually, use find_package from CMake
> to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
> HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
> set to YES, which requires the distributor to explicitly select whether
> zlib is enabled or not. This simplifies the CMake handling and usage in
> the rest of the tooling.
>
> This is a reland of abb0075 with all followup changes and fixes that
> should address issues that were reported in PR44780.
>
> Differential Revision: https://reviews.llvm.org/D79219
This reverts commit 10b1b4a231 and follow-ups
64d99cc6ab and
f9fec0447e.
* Add SystemZ to the list of supported architectures.
* XFAIL a few tests.
Coverage reporting is broken, and is not easy to fix (see comment in
coverage.test). Interaction with sanitizers needs to be investigated
more thoroughly, since they appear to reduce coverage in certain cases.
These UBSan tests assert the absence of runtime errors via `count 0`,
which means "expect no output". This fails the test unnecessarily in
some environments (e.g., iOS simulator in our case). Alter the test to
be a bit more specific and "expect no error" instead of "expect no
output".
rdar://65503408
Differential Revision: https://reviews.llvm.org/D85155
GlobalISel is the default ISel for aarch64 at -O0. Prior to D78465, GlobalISel
didn't have support for dealing with address-of-global lowerings, so it fell
back to SelectionDAGISel.
HWASan Globals require special handling, as they contain the pointer tag in the
top 16-bits, and are thus outside the code model. We need to generate a `movk`
in the instruction sequence with a G3 relocation to ensure the bits are
relocated properly. This is implemented in SelectionDAGISel, this patch does
the same for GlobalISel.
GlobalISel and SelectionDAGISel differ in their lowering sequence, so there are
differences in the final instruction sequence, explained in
`tagged-globals.ll`. Both of these implementations are correct, but GlobalISel
is slightly larger code size / slightly slower (by a couple of arithmetic
instructions). I don't see this as a problem for now as GlobalISel is only on
by default at `-O0`.
Reviewed By: aemerson, arsenm
Differential Revision: https://reviews.llvm.org/D82615
Otherwise we end up compiling in C++ mode and on FreeBSD
/usr/include/stdatomic.h is not compatible with C++ since it uses _Bool.
Reviewed By: guiand, eugenis, vitalybuka, emaste
Differential Revision: https://reviews.llvm.org/D84510
See https://llvm.org/PR46862. This does not fix the underlying issue but at
least it allows me to run check-all again without having to disable
building compiler-rt.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D84650
InstrProfilingBuffer.c.o is generic code that must support compilation
into freestanding projects. This gets rid of its dependence on the
_getpagesize symbol from libc, shifting it to InstrProfilingFile.c.o.
This fixes a build failure seen in a firmware project.
rdar://66249701
Not matching the (real) variadic declaration makes the interceptor take garbage inputs on Darwin/AArch64.
Differential Revision: https://reviews.llvm.org/D84570
Adds the -fast-16-labels flag, which enables efficient instrumentation
for DFSan when the user needs <=16 labels. The instrumentation
eliminates most branches and most calls to __dfsan_union or
__dfsan_union_load.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D84371
...which is set based on HAVE_RPC_XDR_H. At least Fedora 32 does not have a
/usr/include/rpc/xdr.h, so failed this test introduced with
<https://reviews.llvm.org/D83358> "[Sanitizers] Add interceptor for
xdrrec_create".
Differential Revision: https://reviews.llvm.org/D84740
This patch marks compiler-rt/test/asan/TestCases/Linux/allocator_oom_test.cpp
unsupported on PowerPC 64bit-LE architecture since this test fails when run
on a machine with larger system memory.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D84786
The commit 8372d50508 has been reverted
(eafeb8af34) because it broke asan
tests on green dragon buildbots.
The underlying issue has been fixed in 4dd5c2bee3.
Summary: This patch disables implicit builtin knowledge about memcmp-like functions when compiling the program for fuzzing, i.e., when -fsanitize=fuzzer(-no-link) is given. This allows libFuzzer to always intercept memcmp-like functions as it effectively disables optimizing calls to such functions into different forms. This is done by adding a set of flags (-fno-builtin-memcmp and others) in the clang driver. Individual -fno-builtin-* flags previously used in several libFuzzer tests are now removed, as it is now done automatically in the clang driver.
The patch was once reverted in 8ef9e2bf35, as this patch was dependent on a reverted commit f78d9fceea. This reverted commit was recommitted in 831ae45e3d, so relanding this dependent patch too.
Reviewers: morehouse, hctim
Subscribers: cfe-commits, #sanitizers
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83987
Summary: This patch disables (i) noasan-memcmp64.test on Windows as libFuzzer's interceptors are only supported on Linux for now, and (ii) bcmp.test as on Windows bcmp is not available in strings.h.
Reviewers: morehouse, hctim, kcc
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84536
If we define memcmp in an archive, bcmp should be defined as well (many libc
define bcmp/memcmp in one object file). Otherwise if the application calls bcmp
or strcmp which gets optimized to bcmp (SimplifyLibCalls), the undefined
reference may pull in an optimized bcmp/strcmp implementation (libc replacement)
later on the linker command line. If both libFuzzer's memcmp and the optimized
memcmp are strong => there will be a multiple definition error.
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
Support fast16labels in `dfsan_has_label`, and print an error for all
other API functions. For `dfsan_dump_labels` we return silently rather
than crashing since it is also called from the atexit handler where it
is undefined behavior to call exit() again.
Reviewed By: kcc
Differential Revision: https://reviews.llvm.org/D84215
Summary: libFuzzer's interceptor support added in 831ae45e3d currently only works on Linux. This patch disables the test cases added as part of that commit on non-Linux platforms.
Reviewers: morehouse, hctim
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84434
Summary: libFuzzer intercepts certain library functions such as memcmp/strcmp by defining weak hooks. Weak hooks, however, are called only when other runtimes such as ASan is linked. This patch defines libFuzzer's own interceptors, which is linked into the libFuzzer executable when other runtimes are not linked, i.e., when -fsanitize=fuzzer is given, but not others.
The patch once landed but was reverted in 8ef9e2bf35 due to an assertion failure caused by calling an intercepted function, strncmp, while initializing the interceptors in fuzzerInit(). This issue is now fixed by calling libFuzzer's own implementation of library functions (i.e., internal_*) when the fuzzer has not been initialized yet, instead of recursively calling fuzzerInit() again.
Reviewers: kcc, morehouse, hctim
Subscribers: #sanitizers, krytarowski, mgorny, cfe-commits
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83494
Summary:
Support fast16labels in `dfsan_has_label`, and print an error for all
other API functions.
Reviewers: kcc, vitalybuka, pcc
Reviewed By: kcc
Subscribers: jfb, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84215
For now, xdrrec_create is only intercepted Linux as its signature
is different on Solaris.
The method of intercepting xdrrec_create isn't super ideal but I
couldn't think of a way around it: Using an AddrHashMap combined
with wrapping the userdata field.
We can't just allocate a handle on the heap in xdrrec_create and leave
it at that, since there'd be no way to free it later. This is because it
doesn't seem to be possible to access handle from the XDR struct, which
is the only argument to xdr_destroy.
On the other hand, the callbacks don't have a way to get at the
x_private field of XDR, which is what I chose for the HashMap key. So we
need to wrap the handle parameter of the callbacks. But we can't just
pass x_private as handle (as it hasn't been set yet). We can't put the
wrapper struct into the HashMap and pass its pointer as handle, as the
key we need (x_private again) hasn't been set yet.
So I allocate the wrapper struct on the heap, pass its pointer as
handle, and put it into the HashMap so xdr_destroy can find it later and
destroy it.
Differential Revision: https://reviews.llvm.org/D83358
Otherwise if 'ld' is an older system LLD (FreeBSD; or if someone adds 'ld' to
point to an LLD from a different installation) which does not support the
current ModuleSummaryIndex::BitCodeSummaryVersion, the test will fail.
Add lit feature 'binutils_lto'. GNU ld is more common than GNU gold, so
we can just require 'is_binutils_lto_supported' to additionally support GNU ld.
Reviewed By: myhsu
Differential Revision: https://reviews.llvm.org/D84133
These calls are neither intercepted by compiler-rt nor is libatomic.a
naturally instrumented.
This patch uses the existing libcall mechanism to detect a call
to atomic_load or atomic_store, and instruments them much like
the preexisting instrumentation for atomics.
Calls to _load are modified to have at least Acquire ordering, and
calls to _store at least Release ordering. Because this needs to be
converted at runtime, msan injects a LUT (implemented as a vector
with extractelement).
Differential Revision: https://reviews.llvm.org/D83337
Summary:
It turns out the `CHECK(addr >= reinterpret_cast<upt>(info.dli_saddr)`
can fail because on armv7s on iOS 9.3 `dladdr()` returns
`info.dli_saddr` with an address larger than the address we provided.
We should avoid crashing here because crashing in the middle of reporting
an issue is very unhelpful. Instead we now try to compute a function offset
if the value we get back from `dladdr()` looks sane, otherwise we don't
set the function offset.
A test case is included. It's basically a slightly modified version of
the existing `test/sanitizer_common/TestCases/Darwin/symbolizer-function-offset-dladdr.cpp`
test case that doesn't run on iOS devices right now.
More details:
In the concrete scenario on armv7s `addr` is `0x2195c870` and the returned
`info.dli_saddr` is `0x2195c871`.
This what LLDB says when disassembling the code.
```
(lldb) dis -a 0x2195c870
libdyld.dylib`<redacted>:
0x2195c870 <+0>: nop
0x2195c872 <+2>: blx 0x2195c91c ; symbol stub for: exit
0x2195c876 <+6>: trap
```
The value returned by `dladdr()` doesn't make sense because it points
into the middle of a instruction.
There might also be other bugs lurking here because I noticed that the PCs we
gather during stackunwinding (before changing them with
`StackTrace::GetPreviousInstructionPc()`) look a little suspicious (e.g. the
PC stored for the frame with fail to symbolicate is 0x2195c873) as they don't
look properly aligned. This probably warrants further investigation in the future.
rdar://problem/65621511
Reviewers: kubamracek, yln
Subscribers: kristof.beyls, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84262
... on systems where wait() isn't one of the declarations transitively included
via unistd.h (i.e. Darwin).
Differential Revision: https://reviews.llvm.org/D84207
Note: Resubmission with frame pointers force-enabled to fix builds with
-DCOMPILER_RT_BUILD_BUILTINS=False
Summary:
Splits the unwinder into a non-segv (for allocation/deallocation traces) and a
segv unwinder. This ensures that implementations can select an accurate, slower
unwinder in the segv handler (if they choose to use the GWP-ASan provided one).
This is important as fast frame-pointer unwinders (like the sanitizer unwinder)
don't like unwinding through signal handlers.
Reviewers: morehouse, cryptoad
Reviewed By: morehouse, cryptoad
Subscribers: cryptoad, mgorny, eugenis, pcc, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83994
It was causing tests to fail in -DCOMPILER_RT_BUILD_BUILTINS=OFF builds:
GwpAsan-Unittest :: ./GwpAsan-x86_64-Test/BacktraceGuardedPoolAllocator.DoubleFree
GwpAsan-Unittest :: ./GwpAsan-x86_64-Test/BacktraceGuardedPoolAllocator.UseAfterFree
see comment on the code review.
> Summary:
> Splits the unwinder into a non-segv (for allocation/deallocation traces) and a
> segv unwinder. This ensures that implementations can select an accurate, slower
> unwinder in the segv handler (if they choose to use the GWP-ASan provided one).
> This is important as fast frame-pointer unwinders (like the sanitizer unwinder)
> don't like unwinding through signal handlers.
>
> Reviewers: morehouse, cryptoad
>
> Reviewed By: morehouse, cryptoad
>
> Subscribers: cryptoad, mgorny, eugenis, pcc, #sanitizers
>
> Tags: #sanitizers
>
> Differential Revision: https://reviews.llvm.org/D83994
This reverts commit 502f0cc0e3.
GCC r187297 (2012-05) introduced `__gcov_dump` and `__gcov_reset`.
`__gcov_flush = __gcov_dump + __gcov_reset`
The resolution to https://gcc.gnu.org/PR93623 ("No need to dump gcdas when forking" target GCC 11.0) removed the unuseful and undocumented __gcov_flush.
Close PR38064.
Reviewed By: calixte, serge-sans-paille
Differential Revision: https://reviews.llvm.org/D83149
Summary:
Splits the unwinder into a non-segv (for allocation/deallocation traces) and a
segv unwinder. This ensures that implementations can select an accurate, slower
unwinder in the segv handler (if they choose to use the GWP-ASan provided one).
This is important as fast frame-pointer unwinders (like the sanitizer unwinder)
don't like unwinding through signal handlers.
Reviewers: morehouse, cryptoad
Reviewed By: morehouse, cryptoad
Subscribers: cryptoad, mgorny, eugenis, pcc, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83994
This causes binaries linked with this runtime to crash on startup if
dlsym uses any of the intercepted functions. (For example, that happens
when using tcmalloc as the allocator: dlsym attempts to allocate memory
with malloc, and tcmalloc uses strncmp within its implementation.)
Also revert dependent commit "[libFuzzer] Disable implicit builtin knowledge about memcmp-like functions when -fsanitize=fuzzer-no-link is given."
This reverts commit f78d9fceea and 12d1124c49.
Similar to the reason behind moving __llvm_profile_filename into a
separate file[1]. When users try to use Full LTO with BFD linker to
generate IR level PGO profile, the __llvm_profile_raw_version variable,
which is used for marking instrumentation level, generated by frontend
would somehow conflict with the weak symbol provided by profiling
runtime.
In most of the cases, BFD linkers will pick profiling runtime's weak symbol
as the real definition and thus generate the incorrect instrumentation
level metadata in the final executables.
Moving __llvm_profile_raw_version into a separate file would make
linkers not seeing the weak symbol in the archive unless the frontend
doesn't generate one.
[1] https://reviews.llvm.org/D34797
Differential Revision: https://reviews.llvm.org/D83967
Summary: This patch disables implicit builtin knowledge about memcmp-like functions when compiling the program for fuzzing, i.e., when -fsanitize=fuzzer(-no-link) is given. This allows libFuzzer to always intercept memcmp-like functions as it effectively disables optimizing calls to such functions into different forms. This is done by adding a set of flags (-fno-builtin-memcmp and others) in the clang driver. Individual -fno-builtin-* flags previously used in several libFuzzer tests are now removed, as it is now done automatically in the clang driver.
Reviewers: morehouse, hctim
Subscribers: cfe-commits, #sanitizers
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83987
Summary: libFuzzer intercepts certain library functions such as memcmp/strcmp by defining weak hooks. Weak hooks, however, are called only when other runtimes such as ASan is linked. This patch defines libFuzzer's own interceptors, which is linked into the libFuzzer executable when other runtimes are not linked, i.e., when -fsanitize=fuzzer is given, but not others.
Reviewers: kcc, morehouse, hctim
Reviewed By: morehouse, hctim
Subscribers: krytarowski, mgorny, cfe-commits, #sanitizers
Tags: #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D83494
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
The %arm_call_apsr expansion doesn't work when config.clang is a clang
driver defaulting to a non-ARM arch. Rather than fix it, replace
call_apsr.S with inline asm in call_apsr.h, which also resolves the
FIXME added in D31259.
Maybe the `__attribute__((noinline,pcs("aapcs")))` attributes are
unnecessary on the static functions, but I was unsure what liberty the
compiler had to insert instructions that modified the condition codes,
so it seemed helpful.
Differential Revision: https://reviews.llvm.org/D82147
Summary: Fixed an implicit definition warning by including <string.h>. Also fixed run-time assertions that the return value of strxfrm_l calls is less than the buffer size by increasing the size of the referenced buffer.
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83593
This is exposed by https://reviews.llvm.org/D83486.
When the host is UTF8, we may get n >10, causing assert failure.
Increase the buffersize to support UTF-8 to C conversion.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D83719
Check that the implicit cast from `id` used to construct the element
variable in an ObjC for-in statement is valid.
This check is included as part of a new `objc-cast` sanitizer, outside
of the main 'undefined' group, as (IIUC) the behavior it's checking for
is not technically UB.
The check can be extended to cover other kinds of invalid casts in ObjC.
Partially addresses: rdar://12903059, rdar://9542496
Differential Revision: https://reviews.llvm.org/D71491
Summary:
This allows using lit substitutions in the `COMPILER_RT_EMULATOR` variable.
(For reference, the ability to expand substitutions recursively has been introduced in https://reviews.llvm.org/D76178.)
Reviewers: phosek, compnerd
Reviewed By: compnerd
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83489
Summary:
Right now the lit config builds up an environment that the tests will be run in. However, it does it from scratch instead of adding new variables to the parent process environment. This may (and does) result in strange behavior when running tests with an executor (i. e. with the `COMPILER_RT_EMULATOR` CMake variable set to something), since the executor may need some of the parent process's environment variables.
Here this is fixed.
Reviewers: compnerd, phosek
Reviewed By: compnerd
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83486
Summary:
These changes are necessary to support remote running compiler-rt tests
that were compiled on Windows.
Most of the code here has been copy-pasted from other lit configs.
Why do we remove the conversions to ASCII in the crt config?
We set the `universal_newlines` argument to `True` in `Popen` instead.
This is supported in both Python 2.7 and 3, is easier
(no need to do the `str(dir.decode('ascii'))` dance) and less
error prone.
Also, this is necessary because if the config is executed on Windows,
and `execute_external` is `True`, we take the branch
`if sys.platform in ['win32'] and execute_external`,
and if we use Python 3, then the `dir` variable is a byte-like object,
not str, but the ``replace method on byte-like objects requires its
arguments to also be byte-like objects, which is incompatible with
Python 2 etc etc.
It is a lot simpler to just work with strings in the first place, which
is achieved by setting `universal_newlines` to `True`. As far as
I understand, this way wasn't taken because of the need to support
Python <2.7, but this is not the case now.
Reviewers: compnerd, phosek, weimingz
Reviewed By: compnerd
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83485
This also allows intercepting these getprotoent functions on Linux as
well, since Linux exposes them.
Differential Revision: https://reviews.llvm.org/D82424
This test spawns 32 child processes which race to update counters on
shared memory pages. On some Apple-internal machines, two processes race
to perform an update in approximately 0.5% of the test runs, leading to
dropped counter updates. Deflake the test by using atomic increments.
Tested with:
```
$ for I in $(seq 1 1000); do echo ":: Test run $I..."; ./bin/llvm-lit projects/compiler-rt/test/profile/Profile-x86_64h/ContinuousSyncMode/online-merging.c -av || break; done
```
rdar://64956774
atexit registered functions run earlier so `__attribute__((destructor))`
annotated functions cannot be tracked.
Set a priority of 100 (compatible with GCC 7 onwards) to track
destructors and destructors whose priorities are greater than 100.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=7970
Reviewed By: calixte, marco-c
Differential Revision: https://reviews.llvm.org/D82253
The builtins library name is special on Android:
* There is an "-android" suffix.
* For the compiler-rt i386 architecture, Android targets i686 (in the
triple and in the builtins library filename)
With this change, check-builtins works with Android.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D82149
This patch changes types of some integer function arguments or return values from `si_int` to the default `int` type to make it more compatible with `libgcc`.
The compiler-rt/lib/builtins/README.txt has a link to the [libgcc specification](http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc). This specification has an explicit note on `int`, `float` and other such types being just illustrations in some cases while the actual types are expressed with machine modes.
Such usage of always-32-bit-wide integer type may lead to issues on 16-bit platforms such as MSP430. Provided [libgcc2.h](https://gcc.gnu.org/git/?p=gcc.git;a=blob_plain;f=libgcc/libgcc2.h;hb=HEAD) can be used as a reference for all targets supported by the libgcc, this patch fixes some existing differences in helper declarations.
This patch is expected to not change behavior at all for targets with 32-bit `int` type.
Differential Revision: https://reviews.llvm.org/D81285
Summary: As the parent process would return 0 independent of whether the child succeeded, assertions in the child would be ignored.
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D82400
Keep deprecated -fsanitize-coverage-{white,black}list as aliases for compatibility for now.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D82244
Summary:
Add a flag to omit the xray_fn_idx to cut size overhead and relocations
roughly in half at the cost of reduced performance for single function
patching. Minor additions to compiler-rt support per-function patching
without the index.
Reviewers: dberris, MaskRay, johnislarry
Subscribers: hiraditya, arphaman, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D81995
Summary:
Before unwinding the stack, `__asan_handle_no_return` is supposed to
unpoison the entire stack - that is, remove the entries in the shadow
memory corresponding to stack (e.g. redzone markers around variables).
This does not work correctly if `__asan_handle_no_return` is called from
the alternate stack used in signal handlers, because the stack top is
read from a cache, which yields the default stack top instead of the
signal alternate stack top.
It is also possible to jump between the default stack and the signal
alternate stack. Therefore, __asan_handle_no_return needs to unpoison
both.
Reviewers: vitalybuka, kubamracek, kcc, eugenis
Reviewed By: vitalybuka
Subscribers: phosek, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D76986
Summary:
The `execute_external` global variable is defined in [`lit.common.cfg.py`](fcfb3170a7/compiler-rt/test/lit.common.cfg.py (L18-L27)) and used here (on lines 23 and 39). However, this variable is not visible in configs that are loaded independently.
Explicitly assign it to the correct value to avoid `NameError`.
Reviewers: compnerd, phosek
Reviewed By: compnerd, phosek
Subscribers: dberris, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79892
Summary: Refactor the current global header iteration to be callback-based, and add a feature that reports the size of the global variable during reporting. This allows binaries without symbols to still report the size of the global variable, which is always available in the HWASan globals PT_NOTE metadata.
Reviewers: eugenis, pcc
Reviewed By: pcc
Subscribers: mgorny, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D80599
Having the input dumped on failure seems like a better
default: I debugged FileCheck tests for a while without knowing
about this option, which really helps to understand failures.
Remove `-dump-input-on-failure` and the environment variable
FILECHECK_DUMP_INPUT_ON_FAILURE which are now obsolete.
Differential Revision: https://reviews.llvm.org/D81422
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object. This
metadata prevents discarding of the global object in linker GC unless
the referenced object is also discarded.
Furthermore, when a function symbol is discarded by the linker, setting
up !associated metadata allows linker to discard counters, data and
values associated with that function symbol. This is not possible today
because there's metadata to guide the linker. This approach is also used
by other instrumentations like sanitizers.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
The !associated metadata may be attached to a global object declaration
with a single argument that references another global object. This
metadata prevents discarding of the global object in linker GC unless
the referenced object is also discarded.
Furthermore, when a function symbol is discarded by the linker, setting
up !associated metadata allows linker to discard counters, data and
values associated with that function symbol. This is not possible today
because there's metadata to guide the linker. This approach is also used
by other instrumentations like sanitizers.
Note that !associated metadata is only supported by ELF, it does not have
any effect on non-ELF targets.
Differential Revision: https://reviews.llvm.org/D76802
This flag suppresses TSan FPs on Darwin. I removed this flag
prematurely and have been dealing with the fallout ever since.
This commit puts back the flag, reverting 7d1085cb [1].
[1] https://reviews.llvm.org/D55075
It seems that after dc52ce424b, all big-endian problems have been fixed.
01899bb4e4 seems to have fixed XFAIL: * of
profile/instrprof-gcov-__gcov_flush-terminate.test
This essentially reverts commit 5a9b792d72 and
93d5ae3af1.
global-ctor.ll no longer checks what it intended to check
(@_GLOBAL__sub_I_global-ctor.ll needs a !dbg to work).
Rewrite it.
gcov 3.4 and gcov 4.2 use the same format, thus we can lower the version
requirement to 3.4
Summary: Non-zero malloc fill is causing way too many hard to debug issues.
Reviewers: kcc, pcc, hctim
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D81284
Summary:
As explained in https://bugs.llvm.org/show_bug.cgi?id=46208,
symbolization on Windows after inlining and around
lambdas/std::functions doesn't work very well. Under the new pass
manager, there is inlining at -O1.
use-after-scope-capture.cpp checks that the symbolization points to the
line containing "return x;", but the combination of
Windows/inlining/lambdas makes the symbolization point to the line
"f = [&x]() {".
Mark the lambda as noinline since this test is not a test for
symbolization.
Reviewers: hans, dblaikie, vitalybuka
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D81193
Summary:
This patch moves the setting of `LD_PRELOAD` "inwards" to avoid issues
where the built library needs to be loaded with the dynamic linker that
was configured with the build (and cannot, for example, be loaded by the
dynamic linker associated with the `env` utility).
Reviewed By: vitalybuka, nemanjai, jsji
Differential Revision: https://reviews.llvm.org/D79695
The test read from an uninitialized buffer which could cause the output
to be unpredictable.
The test is currently disabled so this won't actually change anything
until the test is re-enabled.
Add ThreadClock:: global_acquire_ which is the last time another thread
has done a global acquire of this thread's clock.
It helps to avoid problem described in:
https://github.com/golang/go/issues/39186
See test/tsan/java_finalizer2.cpp for a regression test.
Note the failuire is _extremely_ hard to hit, so if you are trying
to reproduce it, you may want to run something like:
$ go get golang.org/x/tools/cmd/stress
$ stress -p=64 ./a.out
The crux of the problem is roughly as follows.
A number of O(1) optimizations in the clocks algorithm assume proper
transitive cumulative propagation of clock values. The AcquireGlobal
operation may produce an inconsistent non-linearazable view of
thread clocks. Namely, it may acquire a later value from a thread
with a higher ID, but fail to acquire an earlier value from a thread
with a lower ID. If a thread that executed AcquireGlobal then releases
to a sync clock, it will spoil the sync clock with the inconsistent
values. If another thread later releases to the sync clock, the optimized
algorithm may break.
The exact sequence of events that leads to the failure.
- thread 1 executes AcquireGlobal
- thread 1 acquires value 1 for thread 2
- thread 2 increments clock to 2
- thread 2 releases to sync object 1
- thread 3 at time 1
- thread 3 acquires from sync object 1
- thread 1 acquires value 1 for thread 3
- thread 1 releases to sync object 2
- sync object 2 clock has 1 for thread 2 and 1 for thread 3
- thread 3 releases to sync object 2
- thread 3 sees value 1 in the clock for itself
and decides that it has already released to the clock
and did not acquire anything from other threads after that
(the last_acquire_ check in release operation)
- thread 3 does not update the value for thread 2 in the clock from 1 to 2
- thread 4 acquires from sync object 2
- thread 4 detects a false race with thread 2
as it should have been synchronized with thread 2 up to time 2,
but because of the broken clock it is now synchronized only up to time 1
The global_acquire_ value helps to prevent this scenario.
Namely, thread 3 will not trust any own clock values up to global_acquire_
for the purposes of the last_acquire_ optimization.
Reviewed-in: https://reviews.llvm.org/D80474
Reported-by: nvanbenschoten (Nathan VanBenschoten)
Some testcases are unexpectedly passing with NPM.
This is because the target functions are inlined in NPM.
I think we should add noinline attribute to keep these test points.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79648
A few testcases are still using deprecated options.
warning: argument '-fsanitize-coverage=[func|bb|edge]' is deprecated,
use '-fsanitize-coverage=[func|bb|edge],[trace-pc-guard|trace-pc]'
instead [-Wdeprecated]
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79741
Per target runtime dir may change the suffix of shared libs.
We can not assume we are always building with per_target_runtime_dir on.
Reviewed By: cryptoad
Differential Revision: https://reviews.llvm.org/D80243
Summary:
The previous code tries to strip out parentheses and anything in between
them. I'm guessing the idea here was to try to drop any listed arguments
for the function being symbolized. Unfortunately this approach is broken
in several ways.
* Templated functions may contain parentheses. The existing approach
messes up these names.
* In C++ argument types are part of a function's signature for the
purposes of overloading so removing them could be confusing.
Fix this simply by not trying to adjust the function name that comes
from `atos`.
A test case is included.
Without the change the test case produced output like:
```
WRITE of size 4 at 0x6060000001a0 thread T0
#0 0x10b96614d in IntWrapper<void >::operator=> const&) asan-symbolize-templated-cxx.cpp:10
#1 0x10b960b0e in void writeToA<IntWrapper<void > >>) asan-symbolize-templated-cxx.cpp:30
#2 0x10b96bf27 in decltype>)>> >)) std::__1::__invoke<void >), IntWrapper<void > >>), IntWrapper<void >&&) type_traits:4425
#3 0x10b96bdc1 in void std::__1::__invoke_void_return_wrapper<void>::__call<void >), IntWrapper<void > >>), IntWrapper<void >&&) __functional_base:348
#4 0x10b96bd71 in std::__1::__function::__alloc_func<void >), std::__1::allocator<void >)>, void >)>::operator>&&) functional:1533
#5 0x10b9684e2 in std::__1::__function::__func<void >), std::__1::allocator<void >)>, void >)>::operator>&&) functional:1707
#6 0x10b96cd7b in std::__1::__function::__value_func<void >)>::operator>&&) const functional:1860
#7 0x10b96cc17 in std::__1::function<void >)>::operator>) const functional:2419
#8 0x10b960ca6 in Foo<void >), IntWrapper<void > >::doCall>) asan-symbolize-templated-cxx.cpp:44
#9 0x10b96088b in main asan-symbolize-templated-cxx.cpp:54
#10 0x7fff6ffdfcc8 in start (in libdyld.dylib) + 0
```
Note how the symbol names for the frames are messed up (e.g. #8, #1).
With the patch the output looks like:
```
WRITE of size 4 at 0x6060000001a0 thread T0
#0 0x10005214d in IntWrapper<void (int)>::operator=(IntWrapper<void (int)> const&) asan-symbolize-templated-cxx.cpp:10
#1 0x10004cb0e in void writeToA<IntWrapper<void (int)> >(IntWrapper<void (int)>) asan-symbolize-templated-cxx.cpp:30
#2 0x100057f27 in decltype(std::__1::forward<void (*&)(IntWrapper<void (int)>)>(fp)(std::__1::forward<IntWrapper<void (int)> >(fp0))) std::__1::__invoke<void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)> >(void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)>&&) type_traits:4425
#3 0x100057dc1 in void std::__1::__invoke_void_return_wrapper<void>::__call<void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)> >(void (*&)(IntWrapper<void (int)>), IntWrapper<void (int)>&&) __functional_base:348
#4 0x100057d71 in std::__1::__function::__alloc_func<void (*)(IntWrapper<void (int)>), std::__1::allocator<void (*)(IntWrapper<void (int)>)>, void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) functional:1533
#5 0x1000544e2 in std::__1::__function::__func<void (*)(IntWrapper<void (int)>), std::__1::allocator<void (*)(IntWrapper<void (int)>)>, void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) functional:1707
#6 0x100058d7b in std::__1::__function::__value_func<void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>&&) const functional:1860
#7 0x100058c17 in std::__1::function<void (IntWrapper<void (int)>)>::operator()(IntWrapper<void (int)>) const functional:2419
#8 0x10004cca6 in Foo<void (IntWrapper<void (int)>), IntWrapper<void (int)> >::doCall(IntWrapper<void (int)>) asan-symbolize-templated-cxx.cpp:44
#9 0x10004c88b in main asan-symbolize-templated-cxx.cpp:54
#10 0x7fff6ffdfcc8 in start (in libdyld.dylib) + 0
```
rdar://problem/58887175
Reviewers: kubamracek, yln
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79597
Fixes PR45673
The commit 9180c14fe4 (D76206) resolved only a part of the problem
of concurrent .gcda file creation. It ensured that only one process
creates the file but did not ensure that the process locks the
file first. If not, the process which created the file may clobber
the contents written by a process which locked the file first.
This is the cause of PR45673.
This commit prevents the clobbering by revising the assumption
that a process which creates the file locks the file first.
Regardless of file creation, a process which locked the file first
uses fwrite (new_file==1) and other processes use mmap (new_file==0).
I also tried to keep the creation/first-lock process same by using
mkstemp/link/unlink but the code gets long. This commit is more
simple.
Note: You may be confused with other changes which try to resolve
concurrent file access. My understanding is (may not be correct):
D76206: Resolve race of .gcda file creation (but not lock)
This one: Resolve race of .gcda file creation and lock
D54599: Same as D76206 but abandoned?
D70910: Resolve race of multi-threaded counter flushing
D74953: Resolve counter sharing between parent/children processes
D78477: Revision of D74953
Differential Revision: https://reviews.llvm.org/D79556
Summary:
Fix hwasan allocator not respecting the requested alignment when it is
higher than a page, but still within primary (i.e. [2048, 65536]).
Reviewers: pcc, hctim, cryptoad
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79656
https://reviews.llvm.org/D63616 added `-fsanitize-coverage-whitelist`
and `-fsanitize-coverage-blacklist` for clang.
However, it was done only for legacy pass manager.
This patch enable it for new pass manager as well.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D79653
Summary:
This is necessary to handle calls to free() after __hwasan_thread_exit,
which is possible in glibc.
Also, add a null check to GetCurrentThread, otherwise the logic in
GetThreadByBufferAddress turns it into a non-null value. This means that
all of the checks for GetCurrentThread() != nullptr do not have any
effect at all right now!
Reviewers: pcc, hctim
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79608
Summary: The new pass manager symbolizes the location as ~Simple instead of Simple::~Simple.
Reviewers: rnk, leonardchan, vitalybuka
Subscribers: #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D79594
Summary:
When forking in several threads, the counters were written out in using the same global static variables (see GCDAProfiling.c): that leads to crashes.
So when there is a fork, the counters are resetted in the child process and they will be dumped at exit using the interprocess file locking.
When there is an exec, the counters are written out and in case of failures they're resetted.
Reviewers: jfb, vsk, marco-c, serge-sans-paille
Reviewed By: marco-c, serge-sans-paille
Subscribers: llvm-commits, serge-sans-paille, dmajor, cfe-commits, hiraditya, dexonsmith, #sanitizers, marco-c, sylvestre.ledru
Tags: #sanitizers, #clang, #llvm
Differential Revision: https://reviews.llvm.org/D78477
It looks like some bots are failing with os log not giving any
output. This might be due to the system under test being heavy
load so the 2 minute window might not be large enough. This
patch makes the window larger in the hope that this test will
be more reliable.
rdar://problem/62141527