Currently a FileSpecList::FindFileIndex(...) will only match the specified FileSpec if:
- it has filename and directory and both match exactly
- if has a filename only and any filename in the list matches
Because of this, we modify our breakpoint resolving so it can handle relative paths by doing some extra code that removes the directory from the FileSpec when searching if the path is relative.
This patch is intended to fix breakpoints so they work as users expect them to by adding the following features:
- allow matches to relative paths in the file list to match as long as the relative path is at the end of the specified path at valid directory delimiters
- allow matches to paths to match if the specified path is relative and shorter than the file paths in the list
This allows us to remove the extra logic from BreakpointResolverFileLine.cpp that added support for setting breakpoints with relative paths.
This means we can still set breakpoints with relative paths when the debug info contains full paths. We add the ability to set breakpoints with full paths when the debug info contains relative paths.
Debug info contains "./a/b/c/main.cpp", the following will set breakpoints successfully:
- /build/a/b/c/main.cpp
- a/b/c/main.cpp
- b/c/main.cpp
- c/main.cpp
- main.cpp
- ./c/main.cpp
- ./a/b/c/main.cpp
- ./b/c/main.cpp
- ./main.cpp
This also ensures that we won't match partial directory names, if a relative path is in the list or is used for the match, things must match at the directory level.
The breakpoint resolving code will now use the new FileSpecList::FindCompatibleIndex(...) function to allow this fuzzy matching to work for breakpoints.
Differential Revision: https://reviews.llvm.org/D130401
This reverts commit 967df65a36.
This fixes test/Shell/SymbolFile/NativePDB/find-functions.cpp. When
looking up functions with the PDB plugins, if we are looking for a
full function name, we should use `GetName` to populate the `name`
field instead of `GetLookupName` since `GetName` has the more
complete information.
Context:
When setting a breakpoint by name, we invoke Module::FindFunctions to
find the function(s) in question. However, we use a Module::LookupInfo
to first process the user-provided name and figure out exactly what
we're looking for. When we actually perform the function lookup, we
search for the basename. After performing the search, we then filter out
the results using Module::LookupInfo::Prune. For example, given
a:🅱️:foo we would first search for all instances of foo and then filter
out the results to just names that have a:🅱️:foo in them. As one can
imagine, this involves a lot of debug info processing that we do not
necessarily need to be doing. Instead of doing one large post-processing
step after finding each instance of `foo`, we can filter them as we go
to save time.
Some numbers:
Debugging LLDB and placing a breakpoint on
llvm::itanium_demangle::StringView::begin without this change takes
approximately 70 seconds and resolves 31,920 DIEs. With this change,
placing the breakpoint takes around 30 seconds and resolves 8 DIEs.
Differential Revision: https://reviews.llvm.org/D129682
Resubmission of https://reviews.llvm.org/D130309 with the 2 patches that fixed the linux buildbot, and new windows fixes.
The FileSpec APIs allow users to modify instance variables directly by getting a non const reference to the directory and filename instance variables. This makes it impossible to control all of the times the FileSpec object is modified so we can clear cached member variables like m_resolved and with an upcoming patch caching if the file is relative or absolute. This patch modifies the APIs of FileSpec so no one can modify the directory or filename instance variables directly by adding set accessors and by removing the get accessors that are non const.
Many clients were using FileSpec::GetCString(...) which returned a unique C string from a ConstString'ified version of the result of GetPath() which returned a std::string. This caused many locations to use this convenient function incorrectly and could cause many strings to be added to the constant string pool that didn't need to. Most clients were converted to using FileSpec::GetPath().c_str() when possible. Other clients were modified to use the newly renamed version of this function which returns an actualy ConstString:
ConstString FileSpec::GetPathAsConstString(bool denormalize = true) const;
This avoids the issue where people were getting an already uniqued "const char *" that came from a ConstString only to put the "const char *" back into a "ConstString" object. By returning the ConstString instead of a "const char *" clients can be more efficient with the result.
The patch:
- Removes the non const GetDirectory() and GetFilename() get accessors
- Adds set accessors to replace the above functions: SetDirectory() and SetFilename().
- Adds ClearDirectory() and ClearFilename() to replace usage of the FileSpec::GetDirectory().Clear()/FileSpec::GetFilename().Clear() call sites
- Fixed all incorrect usage of FileSpec::GetCString() to use FileSpec::GetPath().c_str() where appropriate, and updated other call sites that wanted a ConstString to use the newly returned ConstString appropriately and efficiently.
Differential Revision: https://reviews.llvm.org/D130549
The FileSpect APIs allow users to modify instance variables directly by getting a non const reference to the directory and filename instance variables. This makes it impossibly to control all of the times the FileSpec object is modified so we can clear the cache. This patch modifies the APIs of FileSpec so no one can modify the directory or filename directly by adding set accessors and by removing the get accessors that are non const.
Many clients were using FileSpec::GetCString(...) which returned a unique C string from a ConstString'ified version of the result of GetPath() which returned a std::string. This caused many locations to use this convenient function incorrectly and could cause many strings to be added to the constant string pool that didn't need to. Most clients were converted to using FileSpec::GetPath().c_str() when possible. Other clients were modified to use the newly renamed version of this function which returns an actualy ConstString:
ConstString FileSpec::GetPathAsConstString(bool denormalize = true) const;
This avoids the issue where people were getting an already uniqued "const char *" that came from a ConstString only to put the "const char *" back into a "ConstString" object. By returning the ConstString instead of a "const char *" clients can be more efficient with the result.
The patch:
- Removes the non const GetDirectory() and GetFilename() get accessors
- Adds set accessors to replace the above functions: SetDirectory() and SetFilename().
- Adds ClearDirectory() and ClearFilename() to replace usage of the FileSpec::GetDirectory().Clear()/FileSpec::GetFilename().Clear() call sites
- Fixed all incorrect usage of FileSpec::GetCString() to use FileSpec::GetPath().c_str() where appropriate, and updated other call sites that wanted a ConstString to use the newly returned ConstString appropriately and efficiently.
Differential Revision: https://reviews.llvm.org/D130309
When setting an address breakpoint using a non-section address in lldb
before having ever run the program, the binary itself is not considered
a module. As a result, the breakpoint is unresolved (and never gets
resolved subsequently).
This patch changes that behavior: as a last resort, the binary is
considered as a module when resolving a non-section address breakpoint.
Differential revision: https://reviews.llvm.org/D124731
This silences warnings like this:
lldb/source/Core/DebuggerEvents.cpp: In member function ‘llvm::StringRef lldb_private::DiagnosticEventData::GetPrefix() const’:
lldb/source/Core/DebuggerEvents.cpp:55:1: warning: control reaches end of non-void function [-Wreturn-type]
55 | }
Differential Revision: https://reviews.llvm.org/D123203
1) Make the BreakpointEventData::Dump actually do something useful.
2) Make the Breakpoint events print when the break log channel is on
without having to turn on the events channel.
Differential Revision: https://reviews.llvm.org/D120917
- Use an early return.
- Check for error.Fail() instead of !error.Success().
- Check the resolver pointer before using instead of relying on the
error being set.
This way if you have a long stack, you can issue "thread backtrace --count 10"
and then subsequent <Return>-s will page you through the stack.
This took a little more effort than just adding the repeat command, since
the GetRepeatCommand API was returning a "const char *". That meant the command
had to keep the repeat string alive, which is inconvenient. The original
API returned either a nullptr, or a const char *, so I changed the private API to
return an llvm::Optional<std::string>. Most of the patch is propagating that change.
Also, there was a little thinko in fetching the repeat command. We don't
fetch repeat commands for commands that aren't being added to history, which
is in general reasonable. And we don't add repeat commands to the history -
also reasonable. But we do want the repeat command to be able to generate
the NEXT repeat command. So I adjusted the logic in HandleCommand to work
that way.
Differential Revision: https://reviews.llvm.org/D119046
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
std::chrono::duration types are not thread-safe, and they cannot be
concurrently updated from multiple threads. Currently, we were doing
such a thing (only) in the DWARF indexing code
(DWARFUnit::ExtractDIEsRWLocked), but I think it can easily happen that
someone else tries to update another statistic like this without
bothering to check for thread safety.
This patch changes the StatsDuration type from a simple typedef into a
class in its own right. The class stores the duration internally as
std::atomic<uint64_t> (so it can be updated atomically), but presents it
to its users as the usual chrono type (duration<float>).
Differential Revision: https://reviews.llvm.org/D117474
StructuredDataImpl ownership semantics is unclear at best. Various
structures were holding a non-owning pointer to it, with a comment that
the object is owned somewhere else. From what I was able to gather that
"somewhere else" was the SBStructuredData object, but I am not sure that
all created object eventually made its way there. (It wouldn't matter
even if they did, as we are leaking most of our SBStructuredData
objects.)
Since StructuredDataImpl is just a collection of two (shared) pointers,
there's really no point in elaborate lifetime management, so this patch
replaces all StructuredDataImpl pointers with actual objects or
unique_ptrs to it. This makes it much easier to resolve SBStructuredData
leaks in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D114791
This patch adds breakpoints to each target's statistics so we can track how long it takes to resolve each breakpoint. It also includes the structured data for each breakpoint so the exact breakpoint details are logged to allow for reproduction of slow resolving breakpoints. Each target gets a new "breakpoints" array that contains breakpoint details. Each breakpoint has "details" which is the JSON representation of a serialized breakpoint resolver and filter, "id" which is the breakpoint ID, and "resolveTime" which is the time in seconds it took to resolve the breakpoint. A snippet of the new data is shown here:
"targets": [
{
"breakpoints": [
{
"details": {...},
"id": 1,
"resolveTime": 0.00039291599999999999
},
{
"details": {...},
"id": 2,
"resolveTime": 0.00022679199999999999
}
],
"totalBreakpointResolveTime": 0.00061970799999999996
}
]
This provides full details on exactly how breakpoints were set and how long it took to resolve them.
Differential Revision: https://reviews.llvm.org/D112587
.. and reduce the scope of others. They don't follow llvm coding
standards (which say they should be used only when the same effect
cannot be achieved with the static keyword), and they set a bad example.
Rather than passing two booleans around, which is especially error prone
with them being next to each other, use a struct with named fields
instead.
Differential revision: https://reviews.llvm.org/D107295
https://reviews.llvm.org/D45592 added a nice feature to be able to specify a breakpoint by a relative path. E.g. passing foo.cpp or bar/foo.cpp or zaz/bar/foo.cpp is fine. However, https://reviews.llvm.org/D68671 by mistake disabled the test that ensured this functionality works. With time, someone made a small mistake and fully broke the functionality.
So, I'm making a very simple fix and the test passes.
Differential Revision: https://reviews.llvm.org/D107126
We can extend/modify `GetMethodNameVariants` to suit our purposes here.
What symtab is looking for is alternate names we may want to use to
search for a specific symbol, and asking for variants of a name makes
the most sense here.
Differential Revision: https://reviews.llvm.org/D104067
Since https://reviews.llvm.org/D103701 AppendError<...>
sets this for you.
This change includes all of the non-command uses.
Some uses remain where it's either tricky to reason about
the logic, or they aren't paired with AppendError calls.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D104379
This is an NFC cleanup.
Many of the API's that returned BreakpointOptions always returned valid ones.
Internally the BreakpointLocations usually have null BreakpointOptions, since they
use their owner's options until an option is set specifically on the location.
So the original code used pointers & unique_ptr everywhere for consistency.
But that made the code hard to reason about from the outside.
This patch changes the code so that everywhere an API is guaranteed to
return a non-null BreakpointOption, it returns it as a reference to make
that clear.
It also changes the Breakpoint to hold a BreakpointOption
member where it previously had a UP. Since we were always filling the UP
in the Breakpoint constructor, having the UP wasn't helping anything.
Differential Revision: https://reviews.llvm.org/D104162
This converts a default constructor's member initializers into C++11
default member initializers. This patch was automatically generated with
clang-tidy and the modernize-use-default-member-init check.
$ run-clang-tidy.py -header-filter='lldb' -checks='-*,modernize-use-default-member-init' -fix
This is a mass-refactoring patch and this commit will be added to
.git-blame-ignore-revs.
Differential revision: https://reviews.llvm.org/D103483
Previously ignore counts were checked when we stopped to do the sync callback in Breakpoint::ShouldStop. That meant we would do all the ignore count work even when
there is also a condition says the breakpoint should not stop.
That's wrong, lldb treats breakpoint hits that fail the thread or condition checks as "not having hit the breakpoint". So the ignore count check should happen after
the condition and thread checks in StopInfoBreakpoint::PerformAction.
The one side-effect of doing this is that if you have a breakpoint with a synchronous callback, it will run the synchronous callback before checking the ignore count.
That is probably a good thing, since this was already true of the condition and thread checks, so this removes an odd asymmetry. And breakpoints with sync callbacks
are all internal lldb breakpoints and there's not a really good reason why you would want one of these to use an ignore count (but not a condition or thread check...)
Differential Revision https://reviews.llvm.org/D103217
The C headers are deprecated so as requested in D102845, this is replacing them
all with their (not deprecated) C++ equivalent.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D103084
A long time ago LLDB wanted to start using StringRef instead of
C-Strings/ConstString but was blocked by the fact that the StringRef constructor
that takes a C-string was asserting that the C-string isn't a nullptr. To
workaround this, D24697 introduced a special function called `withNullAsEmpty`
and that's what LLDB (and only LLDB) started to use to build StringRefs from
C-strings.
A bit later it seems that `withNullAsEmpty` was declared too awkward to use and
instead the assert in the StringRef constructor got removed (see D24904). The
rest of LLDB was then converted to StringRef by just calling the now perfectly
usable implicit constructor.
However, all the calls to `withNullAsEmpty` just remained and are now just
strange artefacts in the code base that just look out of place. It's also
curiously a LLDB-exclusive function and no other project ever called it since
it's introduction half a decade ago.
This patch removes all uses of `withNullAsEmpty`. The follow up will be to
remove the function from StringRef.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D102597
This patch fixes the column symbol resolution when creating a breakpoint
with the `move_to_nearest_code` flag set.
In order to achieve this, the patch adds column information handling in
the `LineTable`'s `LineEntry` finder. After experimenting a little, it
turns out the most natural approach in case of an inaccurate column match,
is to move backward and match the previous `LineEntry` rather than going
forward like we do with simple line breakpoints.
The patch also reflows the function to reduce code duplication.
Finally, it updates the `BreakpointResolver` heuristic to align it with
the `LineTable` method.
rdar://73218201
Differential Revision: https://reviews.llvm.org/D101221
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The StopInfoBreakpoint::PerformAction was overriding the synchronous
breakpoint's ShouldStop report. Fix that and add a test.
This fixes two bugs in the original submission:
1) Actually generate both dylibs by including the second one in the Makefile
2) Don't ask synchronous callbacks for their opinion on whether to stop
in the async context, that info is taken care of by recording the m_should_stop
on entry to PerformAction.
Differential Revision: https://reviews.llvm.org/D98914
This reverts commit 9406d43138.
I messed up a test, and when I got it right it was failing. The changed logic
doesn't work quite right (now the async callback called at sync time is
forcing us to stop. I need to be a little more careful about that.
We weren't taking into account the "m_should_stop" setting that the
synchronous breakpoint callback had already set when we did PerformAction
in the StopInfoBreakpoint. So we didn't obey its instructions when it
told us to stop. Fixed that and added some tests both for when we
just have the setting, and when we have the setting AND other breakpoints
at the shared library load notification breakpoint address.
Differential Revision: https://reviews.llvm.org/D98914
If they occurred before the constructor that used them, we would refuse to
set the breakpoint because we thought they were crossing function boundaries.
Differential Revision: https://reviews.llvm.org/D94846
Replace uses of GetModuleAtIndexUnlocked and
GetModulePointerAtIndexUnlocked with the ModuleIterable and
ModuleIterableNoLocking where applicable.
Differential revision: https://reviews.llvm.org/D94271
This reverts commit a01b26fb51, because it
breaks the "finish" command in some way -- the command does not
terminate after it steps out, but continues running the target. The
exact blast radius is not clear, but it at least affects the usage of
the "finish" command in TestGuiBasicDebug.py. The error is *not*
gui-related, as the same issue can be reproduced by running the same
steps outside of the gui.
There is some kind of a race going on, as the test fails only 20% of the
time on the buildbot.