Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary:
Normally, on linux we retrieve the process ID from the LinuxProcStatus
stream (which is just the contents of /proc/%d/status pseudo-file).
However, this stream is not strictly required (it's a breakpad
extension), and we are encountering a fair amount of minidumps which do
not have it present. It's not clear whether this is the case with all
these minidumps, but the two known situations where this stream can be
missing are:
- /proc filesystem not mounted (or something to that effect)
- process crashing after exhausting (almost) all file descriptors (so
the minidump writer may not be able to open the /proc file)
Since this is a corner case which will become less and less relevant
(crashpad-generated minidumps should not suffer from this problem), I
work around this problem by hardcoding the PID to 1 in these cases.
The same thing is done by the gdb plugin when talking to a stub which
does not report a process id (e.g. a hardware probe).
Reviewers: jingham, clayborg
Subscribers: markmentovai, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70238
Summary:
Not all minidumps contain information about memory permissions. However,
it is still important to know which regions of memory contain
potentially executable code. This is particularly important for
unwinding on win32, as the default unwind method there relies on
scanning the stack for things which "look like" code pointers.
This patch enables ProcessMinidump to reconstruct the likely permissions
of memory regions using the sections of loaded object files. It only
does this if we don't have a better source (memory info list stream, or
linux /proc/maps) for this information, and only if the information in
the object files does not conflict with the information in the minidump.
Theoretically that last bit could be improved, since the permissions
obtained from the MemoryList streams is also only a very rough guess,
but it did not seem worthwhile to complicate the implementation because
of that because there will generally be no overlap in practice as the
MemoryList will contain the stack contents and not any module data.
The patch adds a test checking that the module section permissions are
entered into the memory region list, and also a test which demonstrate
that now the unwinder is able to correctly find return addresses even in
minidumps without memory info list streams.
There's one TODO left in this patch, which is that the "memory region"
output does not give any indication about the "don't know" values of
memory region permissions (it just prints them as if they permission bit
was set). I address this in a follow up.
Reviewers: amccarth, clayborg
Subscribers: mgrang, lldb-commits
Differential Revision: https://reviews.llvm.org/D69105
The architecture enum contains two kinds of contstants: the "official" ones
defined by Microsoft, and unofficial constants added by breakpad to cover the
architectures not described by the first ones.
Up until now, there was no big need to differentiate between the two. However,
now that Microsoft has defined
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-sysinfoapi-system_info
a constant for ARM64, we have a name clash.
This patch renames all breakpad-defined constants with to include the prefix
"BP_". This frees up the name "ARM64", which I'll re-introduce with the new
"official" value in a follow-up patch.
Reviewers: amccarth, clayborg
Subscribers: lldb-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D69285
The goal of this refactor is to enable ProcessMinidump to take into
account the loaded modules and their sections when computing the
permissions of various ranges of memory, as discussed in D66638.
This patch moves some of the responsibility for computing the ranges
from MinidumpParser into ProcessMinidump. MinidumpParser still does the
parsing, but ProcessMinidump becomes responsible for answering the
actual queries about memory ranges. This will enable it (in a follow-up
patch) to augment the information obtained from the parser with data
obtained from actual object files.
The changes in the actual code are fairly straight-forward and just
involve moving code around. MinidumpParser::GetMemoryRegions is renamed
to BuildMemoryRegions to emphasize that it does no caching. The only new
thing is the additional bool flag returned from this function. This
indicates whether the returned regions describe all memory mapped into
the target process. Data obtained from /proc/maps and the MemoryInfoList
stream is considered to be exhaustive. Data obtained from Memory(64)List
is not. This will be used to determine whether we need to augment the
data or not.
This reshuffle means that it is no longer possible/easy to test some of
this code via unit tests, as constructing a ProcessMinidump instance is
hard. Instead, I update the unit tests to only test the parsing of the
actual data, and test the answering of queries through a lit test using
the "memory region" command. The patch also includes some tweaks to the
MemoryRegion class to make the unit tests easier to write.
Reviewers: amccarth, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D69035
Summary:
The minidump exception stream can report an exception record with
signal 0. If we try to create a stop reason with signal zero, processing
of the stop event won't find anything, and the debugger will hang.
So, simply early-out of RefreshStateAfterStop in this case.
Also set the UnixSignals object in DoLoadCore as is done for
ProcessElfCore.
Reviewers: labath, clayborg, jfb
Reviewed By: labath, clayborg
Subscribers: dexonsmith, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68096
llvm-svn: 375244
Summary: The types defined for it in LLDB are now redundant with core types.
Reviewers: labath, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68658
llvm-svn: 375243
Stack unwinding was sometimes failing when trying to unwind stacks in 32 bit ARM. I discovered this was because the EH frame register numbers were not set. This patch fixes this issue and adds a unit test to verify this doesn't regress.
Differential Revision: https://reviews.llvm.org/D68088
llvm-svn: 374246
Summary: The PlaceholderObjectFile has an assert in SetLoadAddress that fires if "m_base == value" is not true. To avoid this, we create check that the base address matches, and if it doesn't we clear the module that was found using the UUID so that we create a new PlaceholderObjectFile. Added a test to cover this issue.
Reviewers: labath, aadsm, dvlahovski
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68106
llvm-svn: 374242
This recommits r368416, which was reverted in r368838 because of test
failures under ASAN. These have been dealt with by llvm r369370.
The original commit message was:
When opening a minidump, we were failing to find an executable because
we were searching for i386-unknown-windows, whereas we recognize the
pe/coff files as i386-pc-windows. This fixes the triple computation code
in the minidump parser to match pe/coff, and adds an appropriate test.
NB: I'm not sure setting the vendor to "pc" is really correct for
arm(64) windows, but right now that seems to match what we do in the
pe/coff case (ArchSpec.cpp:935).
Reviewers: clayborg, amccarth
Subscribers: javed.absar, kristof.beyls, rnk, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D65955
llvm-svn: 369523
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368933
Although there is nothing wrong with this patch, the test added here
uncovers a problem in other parts of the code which cause the test to
fail when running under asan. Reverting the patch until I can fix the
underlying issue(s).
This reverts commit r368416.
llvm-svn: 368838
Summary:
When opening a minidump, we were failing to find an executable because
we were searching for i386-unknown-windows, whereas we recognize the
pe/coff files as i386-pc-windows. This fixes the triple computation code
in the minidump parser to match pe/coff, and adds an appropriate test.
NB: I'm not sure setting the vendor to "pc" is really correct for
arm(64) windows, but right now that seems to match what we do in the
pe/coff case (ArchSpec.cpp:935).
Reviewers: clayborg, amccarth
Subscribers: javed.absar, kristof.beyls, rnk, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D65955
llvm-svn: 368416
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
This can cause us to return paths to files on the local filesystem even
if we don't end up using that file (for instance because the file is not
a real module).
llvm-svn: 360432
Summary:
According to [C128] "Virtual functions should specify exactly one
of `virtual`, `override`, or `final`", I've added override where a
virtual function is overriden but the explicit `override` keyword
was missing. Whenever both `virtual` and `override` were specified,
I removed `virtual`. As C.128 puts it:
> [...] writing more than one of these three is both redundant and
> a potential source of errors.
I anticipate a discussion about whether or not to add `override` to
destructors but I went for it because of an example in [ISOCPP1000].
Let me repeat the comment for you here:
Consider this code:
```
struct Base {
virtual ~Base(){}
};
struct SubClass : Base {
~SubClass() {
std::cout << "It works!\n";
}
};
int main() {
std::unique_ptr<Base> ptr = std::make_unique<SubClass>();
}
```
If for some odd reason somebody removes the `virtual` keyword from the
`Base` struct, the code will no longer print `It works!`. So adding
`override` to destructors actively protects us from accidentally
breaking our code at runtime.
[C128]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c128-virtual-functions-should-specify-exactly-one-of-virtual-override-or-final
[ISOCPP1000]: https://github.com/isocpp/CppCoreGuidelines/issues/1000#issuecomment-476951555
Reviewers: teemperor, JDevlieghere, davide, shafik
Reviewed By: teemperor
Subscribers: kwk, arphaman, kadircet, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D61440
llvm-svn: 359868
Address an ambiguity between lldb_private::Thread and
llvm::minidump::Thread. Follow-up to llvm r359762 (which introduced the
second type).
llvm-svn: 359765
Summary:
D59433 added code to swap bytes UUIDs coming from minidump files, but
only enabled it for apple platforms. Based on my research, I believe
this is the correct thing to do for windows as well, as the natural way
of printing U(G)UIDs on this platforms is to print the first three
components as (4 or 2)-byte integers printed in natural (big-endian)
order. This makes the UUID string coming out of lldb match the strings
produced by other windows tools.
The decision to byte-swap the age field is somewhat arbitrary, because
the age field is usually printed separately from the file GUID (and
often in decimal). However, for our purposes (telling whether two files
are identical), including it in the UUID is correct, and printing it in
big-endian makes it easier to recognize the age value.
This also makes the UUIDs generated here (almost) match up with the
UUIDs computed for breakpad symbol files
(BreakpadRecords.cpp:parseModuleId), which already implemented the
byte-swapping. The "almost" is here because ObjectFileBreakpad does not
swap the age field, but I'll fix that in a follow-up.
There is no UUID support in ObjectFileCOFF at the moment, but ideally
the algorithms used here and in ObjectFileCOFF should be in sync so that
object file matching works correctly.
Reviewers: clayborg, amccarth, markmentovai, asmith
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D60501
llvm-svn: 358169
In this patch, I just remove the structure definitions for the
ModuleList stream and the associated parsing code. The rest of the code
is converted to work with the definitions in llvm. NFC.
llvm-svn: 358070
Add a flag to control whether the ModulesDidLoad notification is
called when a module is added. If the notifications are disabled,
the caller must call ModulesDidLoad after adding all the new modules,
but postponing this notification until they're all batched up can
allow for better efficiency than notifying one-by-one.
Change the name of the ModuleList notifier functions that a subclass
can implement to start with 'Notify' to make it clear what they are.
Add a NotifyModulesRemoved.
Add header documentation for the changed/updated methods.
Added defaulted-value 'notify' argument to ModuleList Append,
AppendIfNeeded, and Remove because callers working with a local
ModuleList don't have an obvious idea of what notify means in this
context. When the ModuleList is a part of the Target class, the
notify behavior matters.
DynamicLoaderDarwin has been updated so that libraries being
added/removed are correctly batched up before notifications are
sent. Added the TestModuleLoadedNotifys.py test to run on
Darwin to test this.
<rdar://problem/48293064>
Differential Revision: https://reviews.llvm.org/D60172
llvm-svn: 357955
I also update the tests for SystemInfo parsing to use the yaml2minidump
capabilities in llvm instead of relying on checked-in binaries.
llvm-svn: 357896
This patch removes the lower layers of the minidump parsing code from
the MinidumpParser class, and replaces it with the minidump parser in
llvm.
Not all functionality is already avaiable in the llvm class, but it is
enough for us to be able to stop enumerating streams manually, and rely
on the minidump directory parsing code from the llvm class.
This also removes some checked-in binaries which were used to test error
handling in the parser, as the error handling is now done (and tested)
in llvm. Instead I just add one test that ensures we correctly propagate
the errors reported by the llvm parser. The input for this test can be
written in yaml instead of a checked-in binary.
llvm-svn: 357748
Allow partial UUID matching in Minidump core file plug-in
Breakpad had bugs in earlier versions where it would take a 20 byte ELF build ID and put it into the minidump file as a 16 byte PDB70 UUID with an age of zero. This would make it impossible to do postmortem debugging with one of these older minidump files.
This fix allows partial matching of UUIDs. To do this we first try and match with the full UUID value, and then fall back to removing the original directory path from the module specification and we remove the UUID requirement, and then manually do the matching ourselves. This allows scripts to find symbols files using a symbol server, place them all in a directory, use the "setting set target.exec-search-paths" setting to specify the directory, and then load the core file. The Target::GetSharedModule() can then find the correct file without doing any other matching and load it.
Tests were added to cover a partial UUID match where the breakpad file has a 16 byte UUID and the actual file on disk has a 20 byte UUID, both where the first 16 bytes match, and don't match.
Differential Revision: https://reviews.llvm.org/D60001
llvm-svn: 357603
See discussion in https://reviews.llvm.org/D60001.
Revert Clean up windows build bot.
This reverts r357504 (git commit 380c2420ec)
Revert Fix buildbot where paths were not matching up.
This reverts r357491 (git commit 5050586860)
Revert Allow partial UUID matching in Minidump core file plug-in
This reverts r357482 (git commit 838bba9c34)
llvm-svn: 357534
Breakpad had bugs in earlier versions where it would take a 20 byte ELF build ID and put it into the minidump file as a 16 byte PDB70 UUID with an age of zero. This would make it impossible to do postmortem debugging with one of these older minidump files.
This fix allows partial matching of UUIDs. To do this we first try and match with the full UUID value, and then fall back to removing the original directory path from the module specification and we remove the UUID requirement, and then manually do the matching ourselves. This allows scripts to find symbols files using a symbol server, place them all in a directory, use the "setting set target.exec-search-paths" setting to specify the directory, and then load the core file. The Target::GetSharedModule() can then find the correct file without doing any other matching and load it.
Tests were added to cover a partial UUID match where the breakpad file has a 16 byte UUID and the actual file on disk has a 20 byte UUID, both where the first 16 bytes match, and don't match.
Differential Revision: https://reviews.llvm.org/D60001
llvm-svn: 357482
This re-commits r354263, which was because it uncovered with handling of
modules with empty (zero) UUIDs. This would cause us to treat two
modules as intentical even though they were not. This caused an assert
in PlaceholderObjectFile::SetLoadAddress to fire, because we were trying
to load the module twice even though it was designed to be only loaded
at a specific address. (The same problem also existed with the previous
implementation, but it had no asserts to warn us about this.) These
issues have now been fixed in r356896.
windows bot. The issue there was that ObjectFilePECOFF vended its base
address through the incorrect interface. SymbolFilePDB depended on that,
which lead to assertion failures when SymbolFilePDB was attempting to
use the placeholder object files as a base. This has been fixed in
r354258
The original commit message was:
The reason this wasn't working was that ProcessMinidump was creating odd
object-file-less modules, and SymbolFileBreakpad required the module to
have an associated object file because it needed to get its base
address.
This fixes that by introducing a PlaceholderObjectFile to serve as a
dummy object file. The general idea for this is taken from D55142, but
I've reworked it a bit to avoid the need for the PlaceholderModule
class. Now that we have an object file, our modules are sufficiently
similar to regular modules that we can use the regular Module class
almost out of the box -- the only thing I needed to tweak was the
Module::CreateModuleFromObjectFile functon to set the module's FileSpec
in addition to it's architecture. This wasn't needed for ObjectFileJIT
(the other user of CreateModuleFromObjectFile), but it shouldn't hurt it
either, and the change seems like a straightforward extension of this
function.
Reviewers: clayborg, lemo, amccarth
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D57751
llvm-svn: 357060
This is the next step in moving the minidump parsing into llvm. I remove
the minidump structures already defined in the llvm Object library and
convert our parser to use those. NFC.
llvm-svn: 356992
This patch begins the process of migrating the "minidump" plugin to the
minidump parser in llvm. The llvm parser is not fully finished yet, but
even now, a lot of things can be switched over. The gradual migration
process will allow us to easier detect if things break than doing a big
one-step migration. Doing it early will allow us to make sure that the
llvm parser fits the use case that we need in lldb.
In this patch I start with the various minidump constants, which have
their llvm equivalent. It doesn't contain any functional changes. The
diff just reflects the different naming of things in llvm.
llvm-svn: 356898
The changes were reverted due to ubsan errors (unaligned accesses). Here
I fix those errors by first copying the data into aligned storage.
Besides fixing alignment issues, this also fixes reading of minidump
strings on big-endian systems.
llvm-svn: 356896
This reverts the following two commits:
Revert "Extend r356573 (minidump UUID handling) to cover elf build-ids too"
Revert "Fix UUID decoding from minidump files"
Greg's original commit broke the sanitizer bot which has been red for
several days now.
http://green.lab.llvm.org/green/view/LLDB/job/lldb-sanitized/
llvm-svn: 356806
Breakpad (but not crashpad) will insert an empty (all-zero) build-id
record for modules which do not have a build-id. This tells lldb to
treat such records as empty/invalid uuids.
llvm-svn: 356751
This patch fixes:
UUIDs now don't include the age field from a PDB70 when the age is zero. Prior to this they would incorrectly contain the zero age which stopped us from being able to match up the UUID with real files.
UUIDs for Apple targets get the first 32 bit value and next two 16 bit values swapped. Breakpad incorrectly swaps these values when it creates darwin minidump files, so this must be undone so we can match up symbol files with the minidump modules.
UUIDs that are all zeroes are treated as invalid UUIDs. Breakpad will always save out a UUID, even if one wasn't available. This caused all files that have UUID values of zero to be uniqued to the first module that had a zero UUID. We now don't fill in the UUID if it is all zeroes.
Added tests for PDB70 and ELF build ID based CvRecords.
Differential Revision: https://reviews.llvm.org/D59433
llvm-svn: 356573
remove the Initialize function, move the things that can fail into the
static factory function. The factory function now returns
Expected<Parser> instead of Optional<Parser> so that it can give a
reason why creation failed.
llvm-svn: 354668
Facebook creates minidump files that contain specific information about why things crash. Adding ways to dump these allows tools to be made that can auto download symbols based on the information that is contained in the minidump files.
Differential Revision: https://reviews.llvm.org/D58398
llvm-svn: 354385
This reverts r354263, because it uncovered a problem in handling of the
minidumps with conflicting UUIDs. If a minidump contains two files with
the same UUID, we will not create to placeholder modules for them, but
instead reuse the first one for the second instance. This creates a
problem because these modules have their load address hardcoded in them
(and I've added an assert to verify that).
Technically this is not a problem with this patch, as the same issue
existed in the previous implementation, but it did not have the assert
which would diagnose that. Nonetheless, I am reverting this until I
figure out what's the best course of action in this situation.
llvm-svn: 354324
This re-commits r353677, which was reverted due to test failures on the
windows bot. The issue there was that ObjectFilePECOFF vended its base
address through the incorrect interface. SymbolFilePDB depended on that,
which lead to assertion failures when SymbolFilePDB was attempting to
use the placeholder object files as a base. This has been fixed in
r354258
It also fixes one small problem in the original patch. The issue was that the
Module class would attempt to overwrite the object file we created in
CreateModuleFromObjectFile if the file corresponding to the placeholder object
file happened to exist (but we have already disqualified it due to UUID
mismatch. The fix is simple -- we set the m_did_load_objfile flag to properly
record the fact that we have already created an object file for the module.
The original commit message was:
The reason this wasn't working was that ProcessMinidump was creating odd
object-file-less modules, and SymbolFileBreakpad required the module to
have an associated object file because it needed to get its base
address.
This fixes that by introducing a PlaceholderObjectFile to serve as a
dummy object file. The general idea for this is taken from D55142, but
I've reworked it a bit to avoid the need for the PlaceholderModule
class. Now that we have an object file, our modules are sufficiently
similar to regular modules that we can use the regular Module class
almost out of the box -- the only thing I needed to tweak was the
Module::CreateModuleFromObjectFile functon to set the module's FileSpec
in addition to it's architecture. This wasn't needed for ObjectFileJIT
(the other user of CreateModuleFromObjectFile), but it shouldn't hurt it
either, and the change seems like a straightforward extension of this
function.
Reviewers: clayborg, lemo, amccarth
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D57751
llvm-svn: 354263
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
Summary:
The reason this wasn't working was that ProcessMinidump was creating odd
object-file-less modules, and SymbolFileBreakpad required the module to
have an associated object file because it needed to get its base
address.
This fixes that by introducing a PlaceholderObjectFile to serve as a
dummy object file. The general idea for this is taken from D55142, but
I've reworked it a bit to avoid the need for the PlaceholderModule
class. Now that we have an object file, our modules are sufficiently
similar to regular modules that we can use the regular Module class
almost out of the box -- the only thing I needed to tweak was the
Module::CreateModuleFromObjectFile functon to set the module's FileSpec
in addition to it's architecture. This wasn't needed for ObjectFileJIT
(the other user of CreateModuleFromObjectFile), but it shouldn't hurt it
either, and the change seems like a straightforward extension of this
function.
Reviewers: clayborg, lemo, amccarth
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D57751
llvm-svn: 353677
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
LLVM added wrappers to std::sort (r327219) that randomly shuffle the
container before sorting. The goal is to uncover non-determinism due to
undefined sorting order of objects having the same key.
This can be enabled with -DLLVM_ENABLE_EXPENSIVE_CHECKS=ON.
llvm-svn: 350679
Each process plug-in can create its own custom commands. I figured it would be nice to be able to dump things from the minidump file from the lldb command line, so I added the start of the some custom commands.
Currently you can dump:
minidump stream directory
all linux specifc streams, most of which are strings
each linux stream individually if desired, or all with --linux
The idea is we can expand the command set to dump more things, search for data in the core file, and much more. This patch gets us started.
Differential Revision: https://reviews.llvm.org/D55727
llvm-svn: 349429
Breakpad creates minidump files that sometimes have:
- linux maps textual content
- no MemoryInfoList
Right now unless the file has a MemoryInfoList we get no region information.
This patch:
- reads and caches the memory region info one time and sorts it for easy subsequent access
- get the region info from the best source in this order:
- linux maps info (if available)
- MemoryInfoList (if available)
- MemoryList or Memory64List
- returns memory region info for the gaps between regions (before the first and after the last)
Differential Revision: https://reviews.llvm.org/D55522
llvm-svn: 349182
The MinidumpParser::GetFilteredModuleList() code was attempting to iterate through the entire module list and if it found more than one entry for a given module name, it wanted to pick the MinidumpModule with the lowest address. A bug existed where it wasn't doing that due to "exists" variable being inverted. "exists" was set to true if it was inserted, not if it existed. Furthermore, the order of the modules would be modified by sorting all modules from low address to high address (using MinidumpModule::base_of_image). This fix also maintains the original order which means your executable is at index 0 as intended instead of some random shared library.
Tests were added to ensure this functionality doesn't regress.
Differential Revision: https://reviews.llvm.org/D55614
llvm-svn: 349062
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This moves construction of data buffers into the FileSystem class. Like
some of the previous refactorings we don't translate the path yet
because the functionality hasn't been landed in LLVM yet.
Differential revision: https://reviews.llvm.org/D54272
llvm-svn: 346598
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
The CvRecordPdb70 structure looks like:
struct CvRecordPdb70 {
uint8_t Uuid[16];
llvm::support::ulittle32_t Age;
// char PDBFileName[];
};
We were including the "Age" in the UUID for Apple vedors which caused us to not be able to match the UUID to built binaries. The "Age" field is set to zero in breakpad minidump files for Apple targets.
Differential Revision: https://reviews.llvm.org/D51442
llvm-svn: 340966
1. The dynamic loaders should not be needed for loading minidumps
and they may create problems (ex. the macOS loader resets the list of
loaded sections, which for minidumps are already set up during minidump loading)
2. In general, the extra plugins can do extraneous work which hurts performance
(ex. trying to set up implicit symbolic breakpoints, which in turn will trigger
extra debug information loading)
Differential Revision: https://reviews.llvm.org/D51176
llvm-svn: 340578
This change improves the logging for the lldb.module category to note a few interesting cases:
1. Local object file found, but specs not matching
2. Local object file not found, using a placeholder module
The handling and logging for the cases wehre we fail to load compressed dwarf
symbols is also improved.
Differential Revision: https://reviews.llvm.org/D50274
llvm-svn: 339161
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
In this patch I add support for ARM and ARM64 break pad files. There are two flavors of ARM: Apple where FP is R7, and non Apple where FP is R11. Added minimal tests that load up ARM64 and the two flavors or ARM core files with a single thread and known register values in each register. Each register is checked for the exact value.
This is a fixed version of: https://reviews.llvm.org/D49750
The changes from D49750 are:
Don't init the m_arch in the Initialize call as a system info isn't required. This keeps the thread list, module list and other tests from failing
Added -Wextended-offsetof to Xcode project so we catch use extended usages of offsetof before submission
Fixed any extended offset of warnings
Differential Revision: https://reviews.llvm.org/D50336
llvm-svn: 339032
This reverts commit r338734 (and subsequent fixups in r338772 and
r338746), because it breaks some minidump unit tests and introduces a
lot of compiler warnings.
llvm-svn: 338828
In this patch I add support for ARM and ARM64 break pad files. There are two flavors of ARM: Apple where FP is R7, and non Apple where FP is R11. Added minimal tests that load up ARM64 and the two flavors or ARM core files with a single thread and known register values in each register. Each register is checked for the exact value.
Differential Revision: https://reviews.llvm.org/D49750
llvm-svn: 338734
Corrupted minidumps was leading to unpredictable behavior.
This change adds explicit consistency checks for the minidump early on. The
checks are not comprehensive but they should catch obvious structural violations:
streams with type == 0
duplicate streams (same type)
overlapping streams
truncated minidumps
Another early check is to make sure we actually support the minidump architecture
instead of crashing at a random place deep inside LLDB.
Differential Revision: https://reviews.llvm.org/D49202
llvm-svn: 336918
Summary:
During the previous attempt to generalize the UUID class, it was
suggested that we represent invalid UUIDs as length zero (previously, we
used an all-zero UUID for that). This meant that some valid build-ids
could not be represented (it's possible however unlikely that a checksum of
some file would be zero) and complicated adding support for variable
length build-ids (should a 16-byte empty UUID compare equal to a 20-byte
empty UUID?).
This patch resolves these issues by introducing a canonical
representation for an invalid UUID. The slight complication here is that
some clients (MachO) actually use the all-zero notation to mean "no UUID
has been set". To keep this use case working (while making it very
explicit about which construction semantices are wanted), replaced the
UUID constructors and the SetBytes functions with named factory methods.
- "fromData" creates a UUID from the given data, and it treats all bytes
equally.
- "fromOptionalData" first checks the data contents - if all bytes are
zero, it treats this as an invalid/empty UUID.
Reviewers: clayborg, sas, lemo, davide, espindola
Subscribers: emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D48479
llvm-svn: 335612
Most non-local includes of header files living under lldb/sources/
were specified with the full path starting after sources/. However, in
a few instances, other sub-directories were added to include paths, or
Normalize those few instances to follow the style used by the rest of
the codebase, to make it easier to understand.
llvm-svn: 333035
This change adds support for two types of Minidump CodeView records:
PDB70 (reference: https://crashpad.chromium.org/doxygen/structcrashpad_1_1CodeViewRecordPDB70.html)
This is by far the most common record type.
ELF BuildID (found in Breakpad/Crashpad generated minidumps)
This would set a proper UUID for placeholder modules, in turn enabling
an accurate match with local module images.
Differential Revision: https://reviews.llvm.org/D46292
llvm-svn: 331394
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
It was failing because the modules names were coming out as
C:\Windows\System32/MSVCP120D.dll (last separator is a forward slash) on
windows.
There are two issues at play here:
- the first problem is that the paths in minidump were being parsed as a
host path. This meant that on posix systems the whole path was
interpreted as a file name.
- on windows the path was split into a directory-filename pair
correctly, but then when it was reconsituted, the last separator ended
up being a forward slash because SBFileSpec.fullpath was joining them
with '/' unconditionally.
I fix the first issue by parsing the minidump paths according to the
path syntax of the host which produced the dump, which should make the
test behavior on posix&windows identical. The last path will still be a
forward slash because of the second issue. We should probably fix the
"fullpath" property to do something smarter in the future.
llvm-svn: 330314
Normally, LLDB is creating a high-fidelity representation of a live
process, including a list of modules and sections, with the
associated memory address ranges. In order to build the module and
section map LLDB tries to locate the local module image (object file)
and will parse it.
This does not work for postmortem debugging scenarios where the crash
dump (minidump in this case) was captured on a different machine.
Fortunately the minidump format encodes enough information about
each module's memory range to allow us to create placeholder modules.
This enables most LLDB functionality involving address-to-module
translations.
Also, we may want to completly disable the search for matching
local object files if we load minidumps unless we can prove that the
local image matches the one from the crash origin.
(not part of this change, see: llvm.org/pr35193)
Example: Identify the module from a stack frame PC:
Before:
thread #1, stop reason = Exception 0xc0000005 encountered at address 0x164d14
frame #0: 0x00164d14
frame #1: 0x00167c79
frame #2: 0x00167e6d
frame #3: 0x7510336a
frame #4: 0x77759882
frame #5: 0x77759855
After:
thread #1, stop reason = Exception 0xc0000005 encountered at address 0x164d14
frame #0: 0x00164d14 C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
frame #1: 0x00167c79 C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
frame #2: 0x00167e6d C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
frame #3: 0x7510336a C:\Windows\SysWOW64\kernel32.dll
frame #4: 0x77759882 C:\Windows\SysWOW64\ntdll.dll
frame #5: 0x77759855 C:\Windows\SysWOW64\ntdll.dll
Example: target modules list
Before:
error: the target has no associated executable images
After:
[ 0] C:\Windows\System32\MSVCP120D.dll
[ 1] C:\Windows\SysWOW64\kernel32.dll
[ 2] C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
[ 3] C:\Windows\System32\MSVCR120D.dll
[ 4] C:\Windows\SysWOW64\KERNELBASE.dll
[ 5] C:\Windows\SysWOW64\ntdll.dll
NOTE: the minidump format also includes the debug info GUID, so we can
fill-in the module UUID from it, but this part was excluded from this change
to keep the changes simple (the LLDB UUID is hardcoded to be either 16 or
20 bytes, while the CodeView GUIDs are normally 24 bytes)
Differential Revision: https://reviews.llvm.org/D45700
llvm-svn: 330302
Summary:
It's possible to hit an unaligned memory read when reading `source_length` as the `data` array is only aligned with 2 bytes (it's actually a UTF16 array). This patch memcpy's `source_length` into a local variable to prevent this:
```
MinidumpTypes.cpp:49:23: runtime error: load of misaligned address 0x7f0f4792692a for type 'const uint32_t' (aka 'const unsigned int'), which requires 4 byte alignment
```
Reviewers: dvlahovski, zturner, davide
Reviewed By: davide
Subscribers: davide, lldb-commits
Differential Revision: https://reviews.llvm.org/D42348
llvm-svn: 323181
In https://reviews.llvm.org/D39681, we started using a map instead
passing a long list of register sets to the ppc64le register context.
However, existing register contexts were still using the old method.
This converts the remaining register contexts to use this approach.
While doing that, I've had to modify the approach a bit:
- the general purpose register set is still kept as a separate field,
because this one is always present, and it's parsing is somewhat
different than that of other register sets.
- since the same register sets have different IDs on different operating
systems, but we use the same register context class to represent
different register sets, I've needed to add a layer of indirection to
translate os-specific constants (e.g. NETBSD::NT_AMD64_FPREGS) into more
generic terms (e.g. floating point register set).
While slightly more complicated, this setup allows for better separation
of concerns. The parsing code in ProcessElfCore can focus on parsing
OS-specific core file notes, and can completely ignore
architecture-specific register sets (by just storing any unrecognised
notes in a map). These notes will then be passed on to the
architecture-specific register context, which can just deal with
architecture specifics, because the OS-specific note types are hidden in
a register set description map.
This way, adding an register set, which is already supported on other
OSes, to a new OS, should in most cases be as simple as adding a new
entry into the register set description map.
Differential Revision: https://reviews.llvm.org/D40133
llvm-svn: 319162
The rationale here is that ArchSpec is used throughout the codebase,
including in places which should not depend on the rest of the code in
the Core module.
This commit touches many files, but most of it is just renaming of
#include lines. In a couple of cases, I removed the #include ArchSpec
line altogether, as the file was not using it. In one or two places,
this necessitated adding other #includes like lldb-private-defines.h.
llvm-svn: 318048
The main change is to avoid setting the process state as running when
debugging core/minidumps (details in the bug). Also included a few small,
related fixes around how the errors propagate in this case.
Fixed the FreeBSD/Windows break: the intention was to keep
Process::WillResume() and Process::DoResume() "in-sync", but this had the
unfortunate consequence of breaking Process sub-classes which don't override
WillResume().
The safer approach is to keep Process::WillResume() untouched and only
override it in the minidump and core implementations.
patch by lemo
Bug: https://bugs.llvm.org/show_bug.cgi?id=34532
Differential Revision: https://reviews.llvm.org/D37651
llvm-svn: 313655
Even though the content of the minidump does not change in a debugging session,
frames can't be indiscriminately be cached since modules and symbols can be
explicitly added after the minidump is loaded.
The fix is simple, just let the base Thread::ClearStackFrames() do its job.
submitted by amccarth on behalf of lemo
Bug: https://bugs.llvm.org/show_bug.cgi?id=34510
Differential Revision: https://reviews.llvm.org/D37527
llvm-svn: 312735
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This functionality is subsumed by DataBufferLLVM, which is
also more efficient since it will try to mmap. However, we
don't yet support mmaping writable private sections, and in
some cases we were using ReadFileContents and then modifying
the buffer. To address that I've added a flag to the
DataBufferLLVM methods that allow you to map privately, which
disables the mmaping path entirely. Eventually we should teach
DataBufferLLVM to use mmap with writable private, but that is
orthogonal to this effort.
Differential Revision: https://reviews.llvm.org/D30622
llvm-svn: 297095
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
After a series of patches on the LLVM side to get the mmaping
code up to compatibility with LLDB's needs, it is now ready
to go, which means LLDB's custom mmapping code is redundant.
So this patch deletes it all and uses LLVM's code instead.
In the future, we could take this one step further and delete
even the lldb DataBuffer base class and rely entirely on
LLVM's facilities, but this is a job for another day.
Differential Revision: https://reviews.llvm.org/D30054
llvm-svn: 296159
Summary:
The std::call_once implementation in libstdc++ has problems on few systems: NetBSD, OpenBSD and Linux PPC. LLVM ships with a homegrown implementation llvm::call_once to help on these platforms.
This change is required in the NetBSD LLDB port. std::call_once with libstdc++ results with crashing the debugger.
Sponsored by <The NetBSD Foundation>
Reviewers: labath, joerg, emaste, mehdi_amini, clayborg
Reviewed By: labath, clayborg
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D29288
llvm-svn: 294202
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
Summary:
This commit disables the windows-only minidump plugin and enables the new
cross-platform plugin for windows minidump files. Test decorators are adjusted to
reflect that: windows minidump tests can now run on all platforms. The exception
is the tests that create minidump files, as that functionality is not available
yet. I've checked that this works on windows and linux.
Reviewers: amccarth, zturner
Subscribers: dvlahovski, lldb-commits
Differential Revision: https://reviews.llvm.org/D26393
llvm-svn: 286352