Pavel Labath taught me that clang-format sorts headers automatically
using llvm's rules, and it's better not to have spaces between
So in this diff I'm removing those spaces and formatting them as well.
I used `clang-format -i` to format these files.
We want to include events with metadata, like context switches, and this
requires the API to handle events with payloads (e.g. information about
such context switches). Besides this, we want to support multiple
similar events between two consecutive instructions, like multiple
context switches. However, the current implementation is not good for this because
we are defining events as bitmask enums associated with specific
instructions. Thus, we need to decouple instructions from events and
make events actual items in the trace, just like instructions and
errors.
- Add accessors in the TraceCursor to know if an item is an event or not
- Modify from the TraceDumper all the way to DecodedThread to support
- Renamed the paused event to disabled.
- Improved the tsc handling logic. I was using an API for getting the tsc from libipt, but that was an overkill that should be used when not processing events manually, but as we are already processing events, we can more easily get the tscs.
event items. Fortunately this simplified many things
- As part of this refactor, I also fixed and long stating issue, which is that some non decoding errors were being inserted in the decoded thread. I changed this so that TraceIntelPT::Decode returns an error if the decoder couldn't be set up proplerly. Then, errors within a trace are actual anomalies found in between instrutions.
All test pass
Differential Revision: https://reviews.llvm.org/D128576
As discusses offline with @jj10305, we are updating some naming used throughout the code, specially in the json schema
- traceBuffer -> iptTrace
- core -> cpu
Differential Revision: https://reviews.llvm.org/D127817
Some parts of the code have to distinguish between live and postmortem threads
to figure out how to get some data, e.g. thread trace buffers. This makes the
code less generic and more error prone. An example of that is that we have
two different decoders: LiveThreadDecoder and PostMortemThreadDecoder. They
exist because getting the trace bufer is different for each case.
The problem doesn't stop there. Soon we'll have even more kinds of data, like
the context switch trace, whose fetching will be different for live and post-
mortem processes.
As a way to fix this, I'm creating a common API for accessing thread data,
which is able to figure out how to handle the postmortem and live cases on
behalf of the caller. As a result of that, I was able to eliminate the two
decoders and unify them into a simpler one. Not only that, our TraceSave
functionality only worked for live threads, but now it can also work for
postmortem processes, which might be useful now, but it might in the future.
This common API is OnThreadBinaryDataRead. More information in the inline
documentation.
Differential Revision: https://reviews.llvm.org/D123281
As we soon will need to decode multiple raw traces for the same thread,
having a class that encapsulates the decoding of a single raw trace is
a stepping stone that will make the coming features easier to implement.
So, I'm creating a LibiptDecoder class with that purpose. I refactored
the code and it's now much more readable. Besides that, more comments
were added. With this new structure, it's also easier to implement unit
tests.
Differential Revision: https://reviews.llvm.org/D123106