Making VectorIndex an `int` instead of `unsigned`, silences the warning:
comparison of unsigned expression in ‘>= 0’ is always true
in:
template <int Min, int Max>
DiagnosticPredicate isVectorIndex() const {
...
if (VectorIndex.Val >= Min && VectorIndex.Val <= Max)
return DiagnosticPredicateTy::Match;
...
}
when Min is 0.
Add the aarch64[_be]-*-gnu_ilp32 targets to support the GNU ILP32 ABI for AArch64.
The needed codegen changes were mostly already implemented in D61259, which added support for the watchOS ILP32 ABI. The main changes are:
- Wiring up the new target to enable ILP32 codegen and MC.
- ILP32 va_list support.
- ILP32 TLSDESC relocation support.
There was existing MC support for ELF ILP32 relocations from D25159 which could be enabled by passing "-target-abi ilp32" to llvm-mc. This was changed to check for "gnu_ilp32" in the target triple instead. This shouldn't cause any issues since the existing support was slightly broken: it was generating ELF64 objects instead of the ELF32 object files expected by the GNU ILP32 toolchain.
This target has been tested by running the full rustc testsuite on a big-endian ILP32 system based on the GCC ILP32 toolchain.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D94143
BRB IALL: Invalidate the Branch Record Buffer
BRB INJ: Branch Record Injection into the Branch Record Buffer
Parser changes based on work by Simon Tatham.
These are two-word mnemonics. The assembly parser works by special-casing
the mnemonic in order to parse the second word as a plain identifier token.
Reviewed by: MarkMurrayARM
Differential Revision: https://reviews.llvm.org/D93899
This adds support for the 'ls64' AArch64 extension to the `.arch_extension`
asm directive.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D92574
This introduces command-line support for the 'armv8.7-a' architecture name
(and an alias without the '-', as usual), and for the 'ls64' extension name.
Based on patches written by Simon Tatham.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D91776
This adds a GPR64x8 register class that will be needed as the data
operand to the LD64B/ST64B family of instructions in the v8.7-A
Accelerator Extension, which load or store a contiguous range of eight
x-regs. It has to be its own register class so that register allocation
will have visibility of the full set of registers actually read/written
by the instructions, which will be needed when we add intrinsics and/or
inline asm access to this piece of architecture.
Patch written by Simon Tatham.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D91774
This introduces support for the v8.7-A architecture through a new
subtarget feature called "v8.7a". It adds two new "WFET" and "WFIT"
instructions, the nXS limited-TLB-maintenance qualifier for DSB and TLBI
instructions, a new CPU id register, ID_AA64ISAR2_EL1, and the new
HCRX_EL2 system register.
Based on patches written by Simon Tatham and Victor Campos.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D91772
This enables the capturing of multiple required features in the AArch64
AsmParser's SysAlias error messages.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D92388
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Only the aliases 'xzr' and 'sp' exist for the physical register x31.
The reason for wanting to remove the alias 'x31' is because it allows users
to write invalid asm that is not accepted by the GNU assembler.
Is there any objection to removing this alias? Or do we want to keep
this for compatibility with existing code that uses w31/x31?
Differential Revision: https://reviews.llvm.org/D90153
A dynamic linker with lazy binding support may need to handle variant
PCS function symbols specially, so an ELF symbol table marking
STO_AARCH64_VARIANT_PCS [1] was added to address this.
Function symbols that follow the vector PCS are marked via the
.variant_pcs assembler directive, which takes a single parameter
specifying the symbol name and sets the STO_AARCH64_VARIANT_PCS st_other
flag in the object file.
[1] https://github.com/ARM-software/abi-aa/blob/master/aaelf64/aaelf64.rst#st-other-values
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D89138
This adds support for -mcpu=cortex-r82. Some more information about this
core can be found here:
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r82
One note about the system register: that is a bit of a refactoring because of
small differences between v8.4-A AArch64 and v8-R AArch64.
This is based on patches from Mark Murray and Mikhail Maltsev.
Differential Revision: https://reviews.llvm.org/D88660
Convert 2-byte opcodes to equivalent 1-byte ones.
Adjust the existing exhaustive testcase to avoid being altered by
the simplification rules (to keep that test exercising all individual
opcodes).
Fix the assembler parser limits for register pairs; for .seh_save_regp
and .seh_save_regp_x, we can allow up to x29, for a x29+x30 pair
(which gets remapped to the UOP_SaveFPLR(X) opcodes), for .seh_save_fregp
and .seh_save_fregpx, allow up to d14+d15.
Not creating .seh_save_next for float register pairs, as the
actual unwinder implementation in current versions of Windows is buggy
for that case.
This gives a minimal but measurable size reduction. (For a 6.5 MB
DLL with 300 KB .xdata, the .xdata shrinks by 48 bytes. The opcode
sequences are padded to a 4 byte boundary, so very small improvements
might not end up mattering directly.)
Differential Revision: https://reviews.llvm.org/D87367
Add support in llvm-readobj for displaying them and support in the
asm parsser, AArch64TargetStreamer and MCWin64EH for emitting them.
The directives for the remaining basic opcodes have names that
match the opcode in the documentation.
The directives for custom stack cases, that are named
MSFT_OP_TRAP_FRAME, MSFT_OP_MACHINE_FRAME, MSFT_OP_CONTEXT
and MSFT_OP_CLEAR_UNWOUND_TO_CALL, are given matching assembler
directive names that fit into the rest of the opcode naming;
.seh_trap_frame, .seh_context, .seh_clear_unwound_to_call
The opcode MSFT_OP_MACHINE_FRAME is mapped to the existing
opecode enum UOP_PushMachFrame that is used on x86_64, and also
uses the corresponding existing x86_64 directive name
.seh_pushframe.
Differential Revision: https://reviews.llvm.org/D86889
This ensures that you get the same output regardless if generating
code directly to an object file or if generating assembly and
assembling that.
Add implementations of the EmitARM64WinCFI*() methods in
AArch64TargetAsmStreamer, and fill in one blank in MCAsmStreamer.
Add corresponding directive handlers in AArch64AsmParser and
COFFAsmParser.
Some SEH directive names have been picked to match the prior art
for SEH assembly directives for x86_64, e.g. the spelling of
".seh_startepilogue" matching the preexisting ".seh_endprologue".
For the directives for saving registers, the exact spelling
from the arm64 documentation is picked, e.g. ".seh_save_reg" (to follow
that naming for all the other ones, e.g. ".seh_save_fregp_x"), while
the corresponding one for x86_64 is plain ".seh_savereg" without the
second underscore.
Directives in the epilogues have the same names as in prologues,
e.g. .seh_savereg, even though the registers are restored, not
saved, at that point.
Differential Revision: https://reviews.llvm.org/D86529
A couple of AArch64 tests were failing on Solaris, both sparc and x86:
LLVM :: MC/AArch64/SVE/add-diagnostics.s
LLVM :: MC/AArch64/SVE/cpy-diagnostics.s
LLVM :: MC/AArch64/SVE/cpy.s
LLVM :: MC/AArch64/SVE/dup-diagnostics.s
LLVM :: MC/AArch64/SVE/dup.s
LLVM :: MC/AArch64/SVE/mov-diagnostics.s
LLVM :: MC/AArch64/SVE/mov.s
LLVM :: MC/AArch64/SVE/sqadd-diagnostics.s
LLVM :: MC/AArch64/SVE/sqsub-diagnostics.s
LLVM :: MC/AArch64/SVE/sub-diagnostics.s
LLVM :: MC/AArch64/SVE/subr-diagnostics.s
LLVM :: MC/AArch64/SVE/uqadd-diagnostics.s
LLVM :: MC/AArch64/SVE/uqsub-diagnostics.s
For example, reduced from `MC/AArch64/SVE/add-diagnostics.s`:
add z0.b, z0.b, #0, lsl #8
missed the expected diagnostics
$ ./bin/llvm-mc -triple=aarch64 -show-encoding -mattr=+sve add.s
add.s:1:21: error: immediate must be an integer in range [0, 255] with a shift amount of 0
add z0.b, z0.b, #0, lsl #8
^
The message is `Match_InvalidSVEAddSubImm8`, emitted in the generated
`lib/Target/AArch64/AArch64GenAsmMatcher.inc` for `MCK_SVEAddSubImm8`.
When comparing the call to `::AArch64Operand::isSVEAddSubImm<char>` on both
Linux/x86_64 and Solaris, I find
875 bool IsByte = std::is_same<int8_t, std::make_signed_t<T>>::value;
is `false` on Solaris, unlike Linux.
The problem boils down to the fact that `int8_t` is plain `char` on
Solaris: both the sparc and i386 psABIs have `char` as signed. However,
with
9887 DiagnosticPredicate DP(Operand.isSVEAddSubImm<int8_t>());
in `lib/Target/AArch64/AArch64GenAsmMatcher.inc`, `std::make_signed_t<int8_t>`
above yieds `signed char`, so `std::is_same<int8_t, signed char>` is `false`.
This can easily be fixed by also allowing for `int8_t` here and in a few
similar places.
Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D85225
The switch in AArch64Operand::print was changed in D45688 so the shift
can be printed after printing the register. This is implemented with
LLVM_FALLTHROUGH and was broken in D52485 when BTIHint was put between
the register and shift operands.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D86535
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
AArch64 does not support enabling rcpc via .arch_extension in assembly.
GCC, on the other hand, does.
This patch adds 'rcpc' as a valid value to .arch_extension handling.
Differential Revision: https://reviews.llvm.org/D83685
Summary:
In the parsing of BTIHint, PSBHint and Prefetch the identifier token
should be lexed after creating the operand, otherwise the StringRef is
moved before being copied and the debug output is incorrect.
Prefetch example:
$ echo "prfm pldl1keep, [x2]" | ./bin/llvm-mc \
-triple aarch64-none-linux-gnu -show-encoding -debug
Before:
Matching formal operand class MCK_Prefetch against actual operand at
index 1 (<prfop ,>): match success using generic matcher
After:
Matching formal operand class MCK_Prefetch against actual operand at
index 1 (<prfop pldl1keep>): match success using generic matcher
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D80620
Summary:
This patch adds support of using the result of an expression as an
immediate value. For example,
0:
.skip 4
1:
mov x0, 1b - 0b
is assembled to
mov x0, #4
Currently it does not support expressions requiring relocation unless
explicitly specified. This fixes PR#45781.
Reviewers: peter.smith, ostannard, efriedma
Reviewed By: efriedma
Subscribers: nickdesaulniers, llozano, manojgupta, efriedma, ostannard, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80028
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
This patch includes:
- Assembly support for AArch64 Scalable Vector Instructions (in line
with the Scalable Vector Extension - SVE)
This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)
Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman
Reviewers: t.p.northover, rengolin, c-rhodes
Reviewed By: c-rhodes
Subscribers: c-rhodes, ostannard, tschuett, kristof.beyls, hiraditya,
danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77873
So that constant expressions like the following are permitted:
and w0, w0, #~(0xfe<<24)
and w1, w1, #~(0xff<<24)
The behavior matches GNU as (opcodes/aarch64-opc.c:aarch64_logical_immediate_p).
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D75885
Summary:
This patch introduces command-line support for the Armv8.6-a architecture and assembly support for BFloat16. Details can be found
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
in addition to the GCC patch for the 8..6-a CLI:
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-11/msg02647.html
In detail this patch
- march options for armv8.6-a
- BFloat16 assembly
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
Based on work by:
- labrinea
- MarkMurrayARM
- Luke Cheeseman
- Javed Asbar
- Mikhail Maltsev
- Luke Geeson
Reviewers: SjoerdMeijer, craig.topper, rjmccall, jfb, LukeGeeson
Reviewed By: SjoerdMeijer
Subscribers: stuij, kristof.beyls, hiraditya, dexonsmith, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D76062
Summary:
Add a new method (tryParseRegister) that attempts to parse a register specification.
MASM allows the use of IFDEF <register>, as well as IFDEF <symbol>. To accommodate this, we make it possible to check whether a register specification can be parsed at the current location, without failing the entire parse if it can't.
Reviewers: thakis
Reviewed By: thakis
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73486
Summary:
Currently, sqdmulh_lane and friends from the ACLE (implemented in arm_neon.h),
are represented in LLVM IR as a (by vector) sqdmulh and a vector of (repeated)
indices, like so:
%shuffle = shufflevector <4 x i16> %v, <4 x i16> undef, <4 x i32> <i32 3, i32 3, i32 3, i32 3>
%vqdmulh2.i = tail call <4 x i16> @llvm.aarch64.neon.sqdmulh.v4i16(<4 x i16> %a, <4 x i16> %shuffle)
When %v's values are known, the shufflevector is optimized away and we are no
longer able to select the lane variant of sqdmulh in the backend.
This defeats a (hand-coded) optimization that packs several constants into a
single vector and uses the lane intrinsics to reduce register pressure and
trade-off materialising several constants for a single vector load from the
constant pool, like so:
int16x8_t v = {2,3,4,5,6,7,8,9};
a = vqdmulh_laneq_s16(a, v, 0);
b = vqdmulh_laneq_s16(b, v, 1);
c = vqdmulh_laneq_s16(c, v, 2);
d = vqdmulh_laneq_s16(d, v, 3);
[...]
In one microbenchmark from libjpeg-turbo this accounts for a 2.5% to 4%
performance difference.
We could teach the compiler to recover the lane variants, but this would likely
require its own pass. (Alternatively, "volatile" could be used on the constants
vector, but this is a bit ugly.)
This patch instead implements the following LLVM IR intrinsics for AArch64 to
maintain the original structure through IR optmization and into instruction
selection:
- sqdmulh_lane
- sqdmulh_laneq
- sqrdmulh_lane
- sqrdmulh_laneq.
These 'lane' variants need an additional register class. The second argument
must be in the lower half of the 64-bit NEON register file, but only when
operating on i16 elements.
Note that the existing patterns for shufflevector and sqdmulh into sqdmulh_lane
(etc.) remain, so code that does not rely on NEON intrinsics to generate these
instructions is not affected.
This patch also changes clang to emit these IR intrinsics for the corresponding
NEON intrinsics (AArch64 only).
Reviewers: SjoerdMeijer, dmgreen, t.p.northover, rovka, rengolin, efriedma
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, jdoerfert, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71469
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
`APFLoat::convertFromString` returns `Expected` result, which must be
"checked" if the LLVM_ENABLE_ABI_BREAKING_CHECKS preprocessor flag is
set.
To mark an `Expected` result as "checked" we must consume the `Error`
within.
In many cases, we are only interested in knowing if an error occured,
without the need to examine the error info. This is achieved, easily,
with the `errorToBool()` API.
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Summary:
The bitperm feature flag is now prefixed with SVE2, as it is for all other SVE2
extensions
Patch by Maciej Gabka.
Reviewers: sdesmalen, rovka, chill, SjoerdMeijer, rengolin
Reviewed By: SjoerdMeijer, rengolin
Differential Revision: https://reviews.llvm.org/D65327
llvm-svn: 367124
There doesn't seem to be a practical reason for these instructions to have
different restrictions on the types of relocations that they may be used
with, notwithstanding the language in the ELF AArch64 spec that implies that
specific relocations are meant to be used with specific instructions.
For example, we currently forbid the first instruction in the following
sequence, despite it currently being used by clang to generate a global
reference under -mcmodel=large:
movz x0, #:abs_g0_nc:foo
movk x0, #:abs_g1_nc:foo
movk x0, #:abs_g2_nc:foo
movk x0, #:abs_g3:foo
Therefore, allow MOVK/MOVN/MOVZ to accept the union of the set of relocations
that they currently accept individually.
Differential Revision: https://reviews.llvm.org/D64466
llvm-svn: 366461
This reverts r362990 (git commit 374571301d)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
Summary:
This patch fixes a bug in the assembler that permitted a type suffix on
predicate registers when not expected. For instance, the following was
previously valid:
faddv h0, p0.q, z1.h
This bug was present in all SVE instructions containing predicates with
no type suffix and no predication form qualifier, i.e. /z or /m. The
latter instructions are already caught with an appropiate error message
by the assembler, e.g.:
.text
<stdin>:1:13: error: not expecting size suffix
cmpne p1.s, p0.b/z, z2.s, 0
^
A similar issue for SVE vector registers was fixed in:
https://reviews.llvm.org/D59636
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62942
llvm-svn: 362780
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360709
This adds support for the arm64_32 watchOS ABI to LLVM's low level tools,
teaching them about the specific MachO choices and constants needed to
disassemble things.
llvm-svn: 360663
Summary:
This patch adds the following features defined by Arm SVE2 architecture
extension:
sve2, sve2-aes, sve2-sm4, sve2-sha3, bitperm
For existing CPUs these features are declared as unsupported to prevent
scheduler errors.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewers: SjoerdMeijer, sdesmalen, ostannard, rovka
Reviewed By: SjoerdMeijer, rovka
Subscribers: rovka, javed.absar, tschuett, kristof.beyls, kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61513
llvm-svn: 360573
Summary:
The ".dword" directive is a synonym for ".xword" and is used used
by klibc, a minimalistic libc subset for initramfs.
Reviewers: t.p.northover, nickdesaulniers
Reviewed By: nickdesaulniers
Subscribers: nickdesaulniers, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61719
llvm-svn: 360381
This patch fixes .arch_extension directive parsing to handle a wider
range of architecture extension options. The existing parser was parsing
extensions as an identifier which breaks for extensions containing a
"-", such as the "tlb-rmi" extension.
The extension is now parsed as a string. This is consistent with the
extension parsing in the .arch and .cpu directive parsing.
Patch by Cullen Rhodes (c-rhodes)
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D60118
llvm-svn: 357677
The STGV/LDGV instructions were replaced with
STGM/LDGM. The encodings remain the same but there
is no longer writeback so there are no unpredictable
encodings to check for.
The specfication can be found here:
https://developer.arm.com/docs/ddi0596/c
Differential Revision: https://reviews.llvm.org/D60064
llvm-svn: 357395
This patch fixes an assembler bug that allowed SVE vector registers to contain a
type suffix when not expected. The SVE unpredicated movprfx instruction is the
only instruction affected.
The following are examples of what was previously valid:
movprfx z0.b, z0.b
movprfx z0.b, z0.s
movprfx z0, z0.s
These instructions are now erroneous.
Patch by Cullen Rhodes (c-rhodes)
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D59636
llvm-svn: 357094
AMDGPU target run out of Subtarget feature flags hitting the limit of 64.
AssemblerPredicates uses at most uint64_t for their representation.
At the same time CodeGen has exhausted this a long time ago and switched
to a FeatureBitset with the current limit of 192 bits.
This patch completes transition to the bitset for feature bits extending
it to asm matcher and MC code emitter.
Differential Revision: https://reviews.llvm.org/D59002
llvm-svn: 355839
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Follow up patch of rL350385, for adding predres
command line option. This patch renames the
feature as to keep it aligned with the option
passed by/to clang
Differential Revision: https://reviews.llvm.org/D56484
llvm-svn: 350702
- When signing return addresses with -msign-return-address=<scope>{+<key>},
either the A key instructions or the B key instructions can be used. To
correctly authenticate the return address, the unwinder/debugger must know
which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
unwind the stack. To accomplish this, the unwinder/debugger must be able to
first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
inclusion of a 'B' character. Functions that are signed using the B key
variant of the instructions should have and FDE whose associated CIE has a 'B'
in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
high level language into assembly and then, as a second step, into an object
file. To achieve this, I have introduced a new assembly directive
'.cfi_b_key_frame ', that tells the assembler the current frame uses return
address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
augmentation string.
Differential Revision: https://reviews.llvm.org/D51798
llvm-svn: 349895
We have to treat constructs like this as if they were "symbolic", to use
the correct codepath to resolve them. This mostly only affects movz
etc. because the other uses of classifySymbolRef conservatively treat
everything that isn't a constant as if it were a symbol.
Differential Revision: https://reviews.llvm.org/D55906
llvm-svn: 349800
- Reapply changes intially introduced in r343089
- The archtecture info is no longer loaded whenever a DWARFContext is created
- The runtimes libraries (santiziers) make use of the dwarf context classes but
do not intialise the target info
- The architecture of the object can be obtained without loading the target info
- Adding a method to the dwarf context to get this information and multiplex the
string printing later on
Differential Revision: https://reviews.llvm.org/D55774
llvm-svn: 349472
This patch splits backend features currently
hidden behind architecture versions.
For example, currently the only way to activate
complex numbers extension is targeting an v8.3
architecture, where after the patch this extension
can be added separately.
This refactoring is required by the new command lines proposal:
http://lists.llvm.org/pipermail/llvm-dev/2018-September/126346.html
Reviewers: DavidSpickett, olista01, t.p.northover
Subscribers: kristof.beyls, bryanpkc, javed.absar, pbarrio
Differential revision: https://reviews.llvm.org/D54633
--
It was reverted in rL348249 due a build bot failure in one of the
regression tests:
http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/14386
The problem seems to be that FileCheck behaves
different in windows and linux. This new patch
splits the test file in multiple,
and does more exact pattern matching attempting
to circumvent the issue.
llvm-svn: 348493
This patch splits backend features currently
hidden behind architecture versions.
For example, currently the only way to activate
complex numbers extension is targeting an v8.3
architecture, where after the patch this extension
can be added separately.
This refactoring is required by the new command lines proposal:
http://lists.llvm.org/pipermail/llvm-dev/2018-September/126346.html
Reviewers: DavidSpickett, olista01, t.p.northover
Subscribers: kristof.beyls, bryanpkc, javed.absar, pbarrio
Differential revision: https://reviews.llvm.org/D54633
llvm-svn: 348121
This adds new instructions to manipluate tagged pointers, and to load
and store the tags associated with memory.
Patch by Pablo Barrio, David Spickett and Oliver Stannard!
Differential revision: https://reviews.llvm.org/D52490
llvm-svn: 343572
The Memory Tagging Extension adds system instructions for data cache
maintenance, implemented as new operands to the DC instruction.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52487
llvm-svn: 343570
- Add fix so that all code paths that create DWARFContext
with an ObjectFile initialise the target architecture in the context
- Add an assert that the Arch is known in the Dwarf CallFrameString method
llvm-svn: 343317
This adds new instructions used by the Branch Target Identification
feature. When this is enabled, these are the only instructions which can
be targeted by indirect branch instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52485
llvm-svn: 343225
This adds some new system registers which can be used to restrict
certain types of speculative execution.
Patch by Pablo Barrio and David Spickett!
Differential revision: https://reviews.llvm.org/D52482
llvm-svn: 343218
This adds a new variant of the DC system instruction for persistent
memory.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52480
llvm-svn: 343216
This adds new system instructions which act as barriers to speculative
execution based on earlier execution within a particular execution
context.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52479
llvm-svn: 343214
Parsing of the system instructions (IC, DC, AT and TLBI) uses this
function to show the required architecture when the operand is valid,
but the architecture is not enabled. Armv8.5A adds a few different
system instructions as part of optional features, so we need to extend
it to show individual features, not just base architectures.
This is NFC for now, but will be used by three different features added
in v8.5A, and will be tested by them.
Patch by David Spickett!
Differential revision: https://reviews.llvm.org/D52478
llvm-svn: 343109
This caused the DebugInfo/Sparc/gnu-window-save.ll test to fail.
> Functions that have signed return addresses need additional dwarf support:
> - After signing the LR, and before authenticating it, the LR register is in a
> state the is unusable by a debugger or unwinder
> - To account for this a new directive, .cfi_negate_ra_state, is added
> - This directive says the signed state of the LR register has now changed,
> i.e. unsigned -> signed or signed -> unsigned
> - This directive has the same CFA code as the SPARC directive GNU_window_save
> (0x2d), adding a macro to account for multiply defined codes
> - This patch matches the gcc implementation of this support:
> https://patchwork.ozlabs.org/patch/800271/
>
> Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343103
This patch allows targeting Armv8.5-A, adding the architecture to
tablegen and setting the options to be identical to Armv8.4-A for the
time being. Subsequent patches will add support for the different
features included in the Armv8.5-A Reference Manual.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52470
llvm-svn: 343102
Functions that have signed return addresses need additional dwarf support:
- After signing the LR, and before authenticating it, the LR register is in a
state the is unusable by a debugger or unwinder
- To account for this a new directive, .cfi_negate_ra_state, is added
- This directive says the signed state of the LR register has now changed,
i.e. unsigned -> signed or signed -> unsigned
- This directive has the same CFA code as the SPARC directive GNU_window_save
(0x2d), adding a macro to account for multiply defined codes
- This patch matches the gcc implementation of this support:
https://patchwork.ozlabs.org/patch/800271/
Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343089
This tries to make use of evaluateAsRelocatable in AArch64AsmParser::classifySymbolRef
to parse more complex expressions as relocatable operands. It is hopefully better than
the existing code which only handles Symbol +- Constant.
This allows us to parse more complex adr/adrp, mov, ldr/str and add operands. It also
loosens the requirements on parsing addends in ld/st and mov's and adds a number of
tests.
Differential Revision: https://reviews.llvm.org/D51792
llvm-svn: 342455
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
Contrary to ELF, we don't add any markers that distinguish data generated
with .long from normal instructions, so the .inst directive only adds
compatibility with assembly that uses it.
Differential Revision: https://reviews.llvm.org/D49935
llvm-svn: 338355
This patch adds predicated and unpredicated MOVPRFX instructions, which
can be prepended to SVE instructions that are destructive on their first
source operand, to make them a constructive operation, e.g.
add z1.s, p0/m, z1.s, z2.s <=> z1 = z1 + z2
can be made constructive:
movprfx z0, z1
add z0.s, p0/m, z0.s, z2.s <=> z0 = z1 + z2
The predicated MOVPRFX instruction can additionally be used to zero
inactive elements, e.g.
movprfx z0.s, p0/z, z1.s
add z0.s, p0/m, z0.s, z2.s
Not all instructions can be prefixed with the MOVPRFX instruction
which is why this patch also adds a mechanism to validate prefixed
instructions. The exact rules when a MOVPRFX applies is detailed in
the SVE supplement of the Architectural Reference Manual.
This is patch [1/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49592
llvm-svn: 338258
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010