This was stored in LiveIntervals, but not actually used for anything
related to LiveIntervals. It was only used in one check for if a load
instruction is rematerializable. I also don't think this was entirely
correct, since it was implicitly assuming constant loads are also
dereferenceable.
Remove this and rely only on the invariant+dereferenceable flags in
the memory operand. Set the flag based on the AA query upfront. This
should have the same net benefit, but has the possible disadvantage of
making this AA query nonlazy.
Preserve the behavior of assuming pointsToConstantMemory implying
dereferenceable for now, but maybe this should be changed.
Skip inserting regular CFI instructions if using WinCFI.
This is based a fair amount on the corresponding ARM64 implementation,
but instead of trying to insert the SEH opcodes one by one where
we generate other prolog/epilog instructions, we try to walk over the
whole prolog/epilog range and insert them. This is done because in
many cases, the exact number of instructions inserted is abstracted
away deeper.
For some cases, we manually insert specific SEH opcodes directly where
instructions are generated, where the automatic mapping of instructions
to SEH opcodes doesn't hold up (e.g. for __chkstk stack probes).
Skip Thumb2SizeReduction for SEH prologs/epilogs, and force
tail calls to wide instructions (just like on MachO), to make sure
that the unwind info actually matches the width of the final
instructions, without heuristics about what later passes will do.
Mark SEH instructions as scheduling boundaries, to make sure that they
aren't reordered away from the instruction they describe by
PostRAScheduler.
Mark the SEH instructions with the NoMerge flag, to avoid doing
tail merging of functions that have multiple epilogs that all end
with the same sequence of "b <other>; .seh_nop_w, .seh_endepilogue".
Differential Revision: https://reviews.llvm.org/D125648
Fixed "private field is not used" warning when compiled
with clang.
original commit: 28d09bbbc3
reverted in: fa49021c68
------
This patch permits Swing Modulo Scheduling for ARM targets
turns it on by default for the Cortex-M7. The t2Bcc
instruction is recognized as a loop-ending branch.
MachinePipeliner is extended by adding support for
"unpipelineable" instructions. These instructions are
those which contribute to the loop exit test; in the SMS
papers they are removed before creating the dependence graph
and then inserted into the final schedule of the kernel and
prologues. Support for these instructions was not previously
necessary because current targets supporting SMS have only
supported it for hardware loop branches, which have no
loop-exit-contributing instructions in the loop body.
The current structure of the MachinePipeliner makes it difficult
to remove/exclude these instructions from the dependence graph.
Therefore, this patch leaves them in the graph, but adds a
"normalization" method which moves them in the schedule to
stage 0, which causes them to appear properly in kernel and
prologues.
It was also necessary to be more careful about boundary nodes
when iterating across successors in the dependence graph because
the loop exit branch is now a non-artificial successor to
instructions in the graph. In additional, schedules with physical
use/def pairs in the same cycle should be treated as creating an
invalid schedule because the scheduling logic doesn't respect
physical register dependence once scheduled to the same cycle.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D122672
This patch permits Swing Modulo Scheduling for ARM targets
turns it on by default for the Cortex-M7. The t2Bcc
instruction is recognized as a loop-ending branch.
MachinePipeliner is extended by adding support for
"unpipelineable" instructions. These instructions are
those which contribute to the loop exit test; in the SMS
papers they are removed before creating the dependence graph
and then inserted into the final schedule of the kernel and
prologues. Support for these instructions was not previously
necessary because current targets supporting SMS have only
supported it for hardware loop branches, which have no
loop-exit-contributing instructions in the loop body.
The current structure of the MachinePipeliner makes it difficult
to remove/exclude these instructions from the dependence graph.
Therefore, this patch leaves them in the graph, but adds a
"normalization" method which moves them in the schedule to
stage 0, which causes them to appear properly in kernel and
prologues.
It was also necessary to be more careful about boundary nodes
when iterating across successors in the dependence graph because
the loop exit branch is now a non-artificial successor to
instructions in the graph. In additional, schedules with physical
use/def pairs in the same cycle should be treated as creating an
invalid schedule because the scheduling logic doesn't respect
physical register dependence once scheduled to the same cycle.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D122672
It's not particularly user-friendly to have to call `initLRU` everywhere. Also,
it wasn't particularly great that the LRU for registers used in a sequence was
also initialized by `initLRU`.
This patch hides this stuff behind some helper functions:
* `isAvailableAcrossAndOutOfSeq`
* `isAnyUnavailableAcrossOrOutOfSeq`
* `isAvailableInsideSeq`
This allows the user to avoid calling `initLRU` explicitly. Also, it allows
us to separate initializing the used-in-sequence LRU from the main LRU.
Since both ARM and AArch64 check LR liveness in `insertOutlinedCall`, this
refactor requires that we de-const the Candidate there.
Some other quality-of-code improvements:
* LRUs in outliner::Candidate now have more descriptive names
* Use `Register` instead of `unsigned` in some places
* Improve readability in some places by using ranges rather than `std::for_each`
This is a preparatory commit for a larger compile time related change for the
AArch64 outliner.
This patch implements PAC return address signing for armv8-m. This patch roughly
accomplishes the following things:
- PAC and AUT instructions are generated.
- They're part of the stack frame setup, so that shrink-wrapping can move them
inwards to cover only part of a function
- The auth code generated by PAC is saved across subroutine calls so that AUT
can find it again to check
- PAC is emitted before stacking registers (so that the SP it signs is the one
on function entry).
- The new pseudo-register ra_auth_code is mentioned in the DWARF frame data
- With CMSE also in use: PAC is emitted before stacking FPCXTNS, and AUT
validates the corresponding value of SP
- Emit correct unwind information when PAC is replaced by PACBTI
- Handle tail calls correctly
Some notes:
We make the assembler accept the `.save {ra_auth_code}` directive that is
emitted by the compiler when it saves a register that contains a
return address authentication code.
For EHABI we need to have the `FrameSetup` flag on the instruction and
handle the `t2PACBTI` opcode (identically to `t2PAC`), so we can emit
`.save {ra_auth_code}`, instead of `.save {r12}`.
For PACBTI-M, the instruction which computes return address PAC should use SP
value before adjustment for the argument registers save are (used for variadic
functions and when a parameter is is split between stack and register), but at
the same it should be after the instruction that saves FPCXT when compiling a
CMSE entry function.
This patch moves the varargs SP adjustment after the FPCXT save (they are never
enabled at the same time), so in a following patch handling of the `PAC`
instruction can be placed between them.
Epilogue emission code adjusted in a similar manner.
PACBTI-M code generation should not emit any instructions for architectures
v6-m, v8-m.base, and for A- and R-class cores. Diagnostic message for such cases
is handled separately by a future ticket.
note on tail calls:
If the called function has four arguments that occupy registers `r0`-`r3`, the
only option for holding the function pointer itself is `r12`, but this register
is used to keep the PAC during function/prologue epilogue and clobbers the
function pointer.
When we do the tail call we need the five registers (`r0`-`r3` and `r12`) to
keep six values - the four function arguments, the function pointer and the PAC,
which is obviously impossible.
One option would be to authenticate the return address before all callee-saved
registers are restored, so we have a scratch register to temporarily keep the
value of `r12`. The issue with this approach is that it violates a fundamental
invariant that PAC is computed using CFA as a modifier. It would also mean using
separate instructions to pop `lr` and the rest of the callee-saved registers,
which would offset the advantages of doing a tail call.
Instead, this patch disables indirect tail calls when the called function take
four or more arguments and the return address sign and authentication is enabled
for the caller function, conservatively assuming the caller function would spill
LR.
This patch is part of a series that adds support for the PACBTI-M extension of
the Armv8.1-M architecture, as detailed here:
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
The PACBTI-M specification can be found in the Armv8-M Architecture Reference
Manual:
https://developer.arm.com/documentation/ddi0553/latest
The following people contributed to this patch:
- Momchil Velikov
- Ties Stuij
Reviewed By: danielkiss
Differential Revision: https://reviews.llvm.org/D112429
Some instructions with i8 immediate ranges can only hold negative values
(like t2LDRHi8), only hold positive values (like t2STRT) or hold +/-
depending on the U bit (like the pre/post inc instructions. e.g
t2LDRH_POST). This patch splits the AddrModeT2_i8 into AddrModeT2_i8,
AddrModeT2_i8pos and AddrModeT2_i8neg to make this clear.
This allows us to get the offset ranges of t2LDRHi8 correct in the
load/store optimizer, fixing issues where we could end up creating
instructions with positive offsets (which may then be encoded as ldrht).
Differential Revision: https://reviews.llvm.org/D114638
The ranges in isLegalAddressImm were off by one, not allowing the
maximum values for unscaled offsets.
Differential Revision: https://reviews.llvm.org/D114636
This patch implements a new MachineFunction in the ARM backend for
placing BTI instructions. It is similar to the existing AArch64
aarch64-branch-targets pass.
BTI instructions are inserted into basic blocks that:
- Have their address taken
- Are the entry block of a function, if the function has external
linkage or has its address taken
- Are mentioned in jump tables
- Are exception/cleanup landing pads
Each BTI instructions is placed in the beginning of a BB after the
so-called meta instructions (e.g. exception handler labels).
Each outlining candidate and the outlined function need to be in agreement about
whether BTI placement is enabled or not. If branch target enforcement is
disabled for a function, the outliner should not covertly enable it by emitting
a call to an outlined function, which begins with BTI.
The cost mode of the outliner is adjusted to account for the extra BTI
instructions in the outlined function.
The ARM Constant Islands pass will maintain the count of the jump tables, which
reference a block. A `BTI` instruction is removed from a block only if the
reference count reaches zero.
PAC instructions in entry blocks are replaced with PACBTI instructions (tests
for this case will be added in a later patch because the compiler currently does
not generate PAC instructions).
The ARM Constant Island pass is adjusted to handle BTI
instructions correctly.
Functions with static linkage that don't have their address taken can
still be called indirectly by linker-generated veneers and thus their
entry points need be marked with BTI or PACBTI.
The changes are tested using "LLVM IR -> assembly" tests, jump tables
also have a MIR test. Unfortunately it is not possible add MIR tests
for exception handling and computed gotos because of MIR parser
limitations.
This patch is part of a series that adds support for the PACBTI-M extension of
the Armv8.1-M architecture, as detailed here:
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
The PACBTI-M specification can be found in the Armv8-M Architecture Reference
Manual:
https://developer.arm.com/documentation/ddi0553/latest
The following people contributed to this patch:
- Mikhail Maltsev
- Momchil Velikov
- Ties Stuij
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D112426
Delegate updating of LiveIntervals to each target's
convertToThreeAddress implementation, instead of repairing LiveIntervals
after the fact in TwoAddressInstruction::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D113493
This simplifies the API and addresses a FIXME in
TwoAddressInstructionPass::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D110229
The backend generally uses 64-bit immediates (e.g. what
MachineOperand::getImm() returns), so use that for analyzeCompare()
and optimizeCompareInst() as well. This avoids truncation for
targets that support immediates larger 32-bit. In particular, we
can avoid the bugprone value normalization hack in the AArch64
target.
This is a followup to D108076.
Differential Revision: https://reviews.llvm.org/D108875
This adds t2WhileLoopStartTP, similar to the t2DoLoopStartTP added in
D90591. It keeps a reference to both the tripcount register and the
element count register, so that the ARMLowOverheadLoops pass in the
backend can pick the correct one without having to search for it from
the operand of a VCTP.
Differential Revision: https://reviews.llvm.org/D103236
This patch prevents phi-node-elimination from generating a COPY
operation for the register defined by t2WhileLoopStartLR, as it is a
terminator that defines a value.
This happens because of the presence of phi-nodes in the loop body (the
Preheader of which is the block containing the t2WhileLoopStartLR). If
this is not done, the COPY is generated above/before the terminator
(t2WhileLoopStartLR here), and since it uses the value defined by
t2WhileLoopStartLR, MachineVerifier throws a 'use before define' error.
This essentially adds on to the change in differential D91887/D97729.
Differential Revision: https://reviews.llvm.org/D100376
Recently we improved the lowering of low overhead loops and tail
predicated loops, but concentrated first on the DLS do style loops. This
extends those improvements over to the WLS while loops, improving the
chance of lowering them successfully. To do this the lowering has to
change a little as the instructions are terminators that produce a value
- something that needs to be treated carefully.
Lowering starts at the Hardware Loop pass, inserting a new
llvm.test.start.loop.iterations that produces both an i1 to control the
loop entry and an i32 similar to the llvm.start.loop.iterations
intrinsic added for do loops. This feeds into the loop phi, properly
gluing the values together:
%wls = call { i32, i1 } @llvm.test.start.loop.iterations.i32(i32 %div)
%wls0 = extractvalue { i32, i1 } %wls, 0
%wls1 = extractvalue { i32, i1 } %wls, 1
br i1 %wls1, label %loop.ph, label %loop.exit
...
loop:
%lsr.iv = phi i32 [ %wls0, %loop.ph ], [ %iv.next, %loop ]
..
%iv.next = call i32 @llvm.loop.decrement.reg.i32(i32 %lsr.iv, i32 1)
%cmp = icmp ne i32 %iv.next, 0
br i1 %cmp, label %loop, label %loop.exit
The llvm.test.start.loop.iterations need to be lowered through ISel
lowering as a pair of WLS and WLSSETUP nodes, which each get converted
to t2WhileLoopSetup and t2WhileLoopStart Pseudos. This helps prevent
t2WhileLoopStart from being a terminator that produces a value,
something difficult to control at that stage in the pipeline. Instead
the t2WhileLoopSetup produces the value of LR (essentially acting as a
lr = subs rn, 0), t2WhileLoopStart consumes that lr value (the Bcc).
These are then converted into a single t2WhileLoopStartLR at the same
point as t2DoLoopStartTP and t2LoopEndDec. Otherwise we revert the loop
to prevent them from progressing further in the pipeline. The
t2WhileLoopStartLR is a single instruction that takes a GPR and produces
LR, similar to the WLS instruction.
%1:gprlr = t2WhileLoopStartLR %0:rgpr, %bb.3
t2B %bb.1
...
bb.2.loop:
%2:gprlr = PHI %1:gprlr, %bb.1, %3:gprlr, %bb.2
...
%3:gprlr = t2LoopEndDec %2:gprlr, %bb.2
t2B %bb.3
The t2WhileLoopStartLR can then be treated similar to the other low
overhead loop pseudos, eventually being lowered to a WLS providing the
branches are within range.
Differential Revision: https://reviews.llvm.org/D97729
Currently the load/store optimizer will only fold in increments of the
same size as the load/store. This patch expands that to any legal
immediate for the post-inc instruction.
This is a recommit of 3b34b06fc5 with correctness fixes and extra
tests.
Differential Revision: https://reviews.llvm.org/D95885
Currently the load/store optimizer will only fold in increments of the
same size as the load/store. This patch expands that to any legal
immediate for the post-inc instruction.
Differential Revision: https://reviews.llvm.org/D95885
This patch handles cases where we have to save/restore the link register
into the stack and and load/store instruction which use the stack are
part of the outlined region. It checks that there will be no overflow
introduced by the new offset and fixup these instructions accordingly.
Differential Revision: https://reviews.llvm.org/D92934
This treats low overhead loop branches the same as jump tables and
indirect branches in analyzeBranch - they cannot be analyzed but the
direct branches on the end of the block may be removed. This helps
remove the unnecessary branches earlier, which can help produce better
codegen (and change block layout in a number of cases).
Differential Revision: https://reviews.llvm.org/D94392
Adds ARMBankConflictHazardRecognizer. This hazard recognizer
looks for a few situations where the same base pointer is used and
then checks whether the offsets lead to a bank conflict. Two
parameters are also added to permit overriding of the target
assumptions:
arm-data-bank-mask=<int> - Mask of bits which are to be checked for
conflicts. If all these bits are equal in the offsets, there is a
conflict.
arm-assume-itcm-bankconflict=<bool> - Assume that there will be bank
conflicts on any loads to a constant pool.
This hazard recognizer is enabled for Cortex-M7, where the Technical
Reference Manual states that there are two DTCM banks banked using bit
2 and one ITCM bank.
Differential Revision: https://reviews.llvm.org/D93054
As a linker is allowed to clobber r12 on function calls, the code
transformation that hardens indirect calls is not correct in case a
linker does so. Similarly, the transformation is not correct when
register lr is used.
This patch makes sure that r12 or lr are not used for indirect calls
when harden-sls-blr is enabled.
Differential Revision: https://reviews.llvm.org/D92469
To make sure that no barrier gets placed on the architectural execution
path, each indirect call calling the function in register rN, it gets
transformed to a direct call to __llvm_slsblr_thunk_mode_rN. mode is
either arm or thumb, depending on the mode of where the indirect call
happens.
The llvm_slsblr_thunk_mode_rN thunk contains:
bx rN
<speculation barrier>
Therefore, the indirect call gets split into 2; one direct call and one
indirect jump.
This transformation results in not inserting a speculation barrier on
the architectural execution path.
The mitigation is off by default and can be enabled by the
harden-sls-blr subtarget feature.
As a linker is allowed to clobber r12 on function calls, the
above code transformation is not correct in case a linker does so.
Similarly, the transformation is not correct when register lr is used.
Avoiding r12/lr being used is done in a follow-on patch to make
reviewing this code easier.
Differential Revision: https://reviews.llvm.org/D92468
The only non-trivial consideration in this patch is that the formation
of TBB/TBH instructions, which is done in the constant island pass, does
not understand the speculation barriers inserted by the SLSHardening
pass. As such, when harden-sls-retbr is enabled for a function, the
formation of TBB/TBH instructions in the constant island pass is
disabled.
Differential Revision: https://reviews.llvm.org/D92396
Some processors may speculatively execute the instructions immediately
following indirect control flow, such as returns, indirect jumps and
indirect function calls.
To avoid a potential miss-speculatively executed gadget after these
instructions leaking secrets through side channels, this pass places a
speculation barrier immediately after every indirect control flow where
control flow doesn't return to the next instruction, such as returns and
indirect jumps, but not indirect function calls.
Hardening of indirect function calls will be done in a later,
independent patch.
This patch is implementing the same functionality as the AArch64 counter
part implemented in https://reviews.llvm.org/D81400.
For AArch64, returns and indirect jumps only occur on RET and BR
instructions and hence the function attribute to control the hardening
is called "harden-sls-retbr" there. On AArch32, there is a much wider
variety of instructions that can trigger an indirect unconditional
control flow change. I've decided to stick with the name
"harden-sls-retbr" as introduced for the corresponding AArch64
mitigation.
This patch implements this for ARM mode. A future patch will extend this
to also support Thumb mode.
The inserted barriers are never on the correct, architectural execution
path, and therefore performance overhead of this is expected to be low.
To ensure these barriers are never on an architecturally executed path,
when the harden-sls-retbr function attribute is present, indirect
control flow is never conditionalized/predicated.
On targets that implement that Armv8.0-SB Speculation Barrier extension,
a single SB instruction is emitted that acts as a speculation barrier.
On other targets, a DSB SYS followed by a ISB is emitted to act as a
speculation barrier.
These speculation barriers are implemented as pseudo instructions to
avoid later passes to analyze them and potentially remove them.
The mitigation is off by default and can be enabled by the
harden-sls-retbr subtarget feature.
Differential Revision: https://reviews.llvm.org/D92395
Although this was something that I was hoping we would not have to do,
this patch makes t2DoLoopStartTP a terminator in order to keep it at the
end of it's block, so not allowing extra MVE instruction between it and
the end. With t2DoLoopStartTP's also starting tail predication regions,
it also marks them as having side effects. The t2DoLoopStart is still
not a terminator, giving it the extra scheduling freedom that can be
helpful, but now that we have a TP version they can be treated
differently.
Differential Revision: https://reviews.llvm.org/D91887
We currently have problems with the way that low overhead loops are
specified, with LR being spilled between the t2LoopDec and the t2LoopEnd
forcing the entire loop to be reverted late in the backend. As they will
eventually become a single instruction, this patch introduces a
t2LoopEndDec which is the combination of the two, combined before
registry allocation to make sure this does not fail.
Unfortunately this instruction is a terminator that produces a value
(and also branches - it only produces the value around the branching
edge). So this needs some adjustment to phi elimination and the register
allocator to make sure that we do not spill this LR def around the loop
(needing to put a spill after the terminator). We treat the loop very
carefully, making sure that there is nothing else like calls that would
break it's ability to use LR. For that, this adds a
isUnspillableTerminator to opt in the new behaviour.
There is a chance that this could cause problems, and so I have added an
escape option incase. But I have not seen any problems in the testing
that I've tried, and not reverting Low overhead loops is important for
our performance. If this does work then we can hopefully do the same for
t2WhileLoopStart and t2DoLoopStart instructions.
This patch also contains the code needed to convert or revert the
t2LoopEndDec in the backend (which just needs a subs; bne) and the code
pre-ra to create them.
Differential Revision: https://reviews.llvm.org/D91358
This adds code to revert low overhead loops with calls in them before
register allocation. Ideally we would not create low overhead loops with
calls in them to begin with, but that can be difficult to always get
correct. If we want to try and glue together t2LoopDec and t2LoopEnd
into a single instruction, we need to ensure that no instructions use LR
in the loop. (Technically the final code can be better too, as it
doesn't need to use the same registers but that has not been optimized
for here, as reverting loops with calls is expected to be very rare).
It also adds a MVETailPredUtils.h header to share the revert code
between different passes, and provides a place to expand upon, with
RevertLoopWithCall becoming a place to perform other low overhead loop
alterations like removing copies or combining LoopDec and End into a
single instruction.
Differential Revision: https://reviews.llvm.org/D91273
This introduces a new pseudo instruction, almost identical to a
t2DoLoopStart but taking 2 parameters - the original loop iteration
count needed for a low overhead loop, plus the VCTP element count needed
for a DLSTP instruction setting up a tail predicated loop. The idea is
that the instruction holds both values and the backend
ARMLowOverheadLoops pass can pick between the two, depending on whether
it creates a tail predicated loop or falls back to a low overhead loop.
To do that there needs to be something that converts a t2DoLoopStart to
a t2DoLoopStartTP, for which this patch repurposes the
MVEVPTOptimisationsPass as a "tail predication and vpt optimisation"
pass. The extra operand for the t2DoLoopStartTP is chosen based on the
operands of VCTP's in the loop, and the instruction is moved as late in
the block as possible to attempt to increase the likelihood of making
tail predicated loops.
Differential Revision: https://reviews.llvm.org/D90591
This patch make the outliner emit CFI instructions in a few more
places:
* after LR is restored, but before the return in an outlined
function
* around save/restore of LR to/from a register at calls to outlined
functions
* around save/restore of LR to/from the stack at calls to outlined
functions
The latter two only when the function does NOT spill LR. If the
function spills LR, then outliner generated saves/restores around
calls are not considered interesting for unwinding the frame.
Differential Revision: https://reviews.llvm.org/D89483
Some instructions may be removable through processes such as IfConversion,
however DefinesPredicate can not be made aware of when this should be considered.
This parameter allows DefinesPredicate to distinguish these removable instructions
on a per-call basis, allowing for more fine-grained control from processes like
ifConversion.
Renames DefinesPredicate to ClobbersPredicate, to better reflect it's purpose
Differential Revision: https://reviews.llvm.org/D88494
We really want to try and avoid spilling P0, which can be difficult
since there's only one register, so try to rematerialize any VCTP
instructions.
Differential Revision: https://reviews.llvm.org/D87280
Enable default outlining when the function has the minsize attribute
and we're targeting an m-class core.
Differential Revision: https://reviews.llvm.org/D82951
Use the stack to save and restore the link register when there is no
available register to do it.
Differential Revision: https://reviews.llvm.org/D76069
Widen the scope of memory operations that are allowed to be tail predicated
to include gathers and scatters, such that loops that are auto-vectorized
with the option -enable-arm-maskedgatscat (and actually end up containing
an MVE gather or scatter) can be tail predicated.
Differential Revision: https://reviews.llvm.org/D85138
This adds sign/zero extending scalar loads/stores to the MVE
instructions added in D77813, allowing us to create up more post-inc
instructions. These are comparatively simple, compared to LDR/STR (which
may be better turned into an LDRD/LDM), but still require some additions
over MVE instructions. Because there are i12 and i8 variants of the
offset loads/stores dealing with different signs, we may need to convert
an i12 address to a i8 negative instruction. t2LDRBi12 can also be
shrunk to a tLDRi under the right conditions, so we need to be careful
with codesize too.
Differential Revision: https://reviews.llvm.org/D78625
While validating live-out values, record instructions that look like
a reduction. This will comprise of a vector op (for now only vadd),
a vorr (vmov) which store the previous value of vadd and then a vpsel
in the exit block which is predicated upon a vctp. This vctp will
combine the last two iterations using the vmov and vadd into a vector
which can then be consumed by a vaddv.
Once we have determined that it's safe to perform tail-predication,
we need to change this sequence of instructions so that the
predication doesn't produce incorrect code. This involves changing
the register allocation of the vadd so it updates itself and the
predication on the final iteration will not update the falsely
predicated lanes. This mimics what the vmov, vctp and vpsel do and
so we then don't need any of those instructions.
Differential Revision: https://reviews.llvm.org/D75533
The ARM ARM considers p10/p11 valid arguments for MCR/MRC instructions.
MRC instructions with p10 arguments are also used in kernel code which
is shared for different architectures. Turn usage of p10/p11 to warnings
for ARMv7/ARMv8-M.
Reviewers: rengolin, olista01, t.p.northover, efriedma, psmith, simon_tatham
Reviewed By: simon_tatham
Subscribers: hiraditya, danielkiss, jcai19, tpimh, nickdesaulniers, peter.smith, javed.absar, kristof.beyls, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59733
Outline chunks of code which need to save and restore the link register
when a spare register can be used to it.
Differential Revision: https://reviews.llvm.org/D80127
Enables Machine Outlining for ARM and Thumb2 modes. This is the first
patch of the series which adds all the basic logic for the support, and
only handles tail-calls and thunks.
The outliner can be turned on by using clang -moutline option or -mllvm
-enable-machine-outliner one (like AArch64).
Differential Revision: https://reviews.llvm.org/D76066
getARMVPTBlockMask was an outdated function that only handled basic
block masks: T, TT, TTT and TTTT. This worked fine before the MVE
VPT Block Insertion Pass improvements as it was the only kind of
masks that it could generate, but now it can generate more complex
masks that uses E predicates, so it's dangerous to use that function
to calculate VPT/VPST block masks.
I replaced it with 2 different functions:
- expandPredBlockMask, in ARMBaseInfo. This adds an "E" or "T" at
the end of an existing PredBlockMask.
- recomputeVPTBlockMask, in Thumb2InstrInfo. This takes an iterator
to a VPT/VPST instruction and recomputes its block mask by looking
at the predicated instructions that follows it. This should be
used to recompute a block mask after removing/adding a predicated
instruction to the block.
The expandPredBlockMask function is pretty much imported from the MVE
VPT Blocks pass.
I had to change the ARMLowOverheadLoops and MVEVPTBlocks passes as well
so they could use these new functions.
Differential Revision: https://reviews.llvm.org/D78201
Enables the MVEGatherScatterLowering pass to build
pre-incrementing gathers. Incrementing writeback gathers
are built when it is possible to replace the loop increment
instruction.
Differential Revision: https://reviews.llvm.org/D76786