Before this patch `Args` was used to pass a broadcat's arguments by SLP.
This patch changes this. `Args` is now used for passing the operands of
the shuffle.
Differential Revision: https://reviews.llvm.org/D124202
This is used to emit one field in doFinalization for the module. We
can accumulate this when emitting all individual functions directly in
the AsmPrinter, rather than accumulating additional state in
MachineModuleInfo.
Move the special case behavior predicate into MachineFrameInfo to
share it. This now promotes it to generic behavior. I'm assuming this
is fine because no other target implements adjustForSegmentedStacks,
or has tests using the split-stack attribute.
The patch adds SPIRV-specific MC layer implementation, SPIRV object
file support and SPIRVInstPrinter.
Differential Revision: https://reviews.llvm.org/D116462
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
I assume we meant to return the result of the call to
BaseT::isLoweredToCall(F).
This might not be a functional change in practice because it would
still hit the default case in the switch and call
BaseT::isLoweredToCall(F) at the end.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D123333
Use the same enum as the other atomic instructions for consistency, in
preparation for addition of another strategy.
Introduce a new "Expand" option, since the store expansion does not
use cmpxchg. Alternatively, the existing CmpXChg strategy could be
renamed to Expand.
DXIL is wrapped in a container format defined by the DirectX 11
specification. Codebases differ in calling this format either DXBC or
DXILContainer.
Since eventually we want to add support for DXBC as a target
architecture and the format is used by DXBC and DXIL, I've termed it
DXContainer here.
Most of the changes in this patch are just adding cases to switch
statements to address warnings.
Reviewed By: pete
Differential Revision: https://reviews.llvm.org/D122062
All LLVM backends use MCDisassembler as a base class for their
instruction decoders. Use "const MCDisassembler *" for the decoder
instead of "const void *". Remove unnecessary static casts.
Reviewed By: skan
Differential Revision: https://reviews.llvm.org/D122245
The mask being NoRegister prevented the existing aliases from matching
since NoRegister isn't in the VMV0 register class.
To workaround this I've added new aliases that look for zero_reg.
I had to motify tablegen to generate matching code for zero_reg.
And as a consequence, I had to change the EmitPriority for an ARM
alias that used zero_reg that started printing.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D121496
Regression from 2f497ec3; we should not try to generate ldrexd on
targets that don't have it.
Also, while I'm here, fix shouldExpandAtomicStoreInIR, for consistency.
That doesn't really have any practical effect, though. On Thumb targets
where we need to use __sync_* libcalls, there is no libcall for stores,
so SelectionDAG calls __sync_lock_test_and_set_8 anyway.
Without this patch, clang would generate calls to __sync_* routines on
targets where it does not make sense; we can't assume the routines exist
on unknown targets. Linux has special implementations of the routines
that work on old ARM targets; other targets have no such routines. In
general, atomics operations which aren't natively supported should go
through libatomic (__atomic_*) APIs, which can support arbitrary atomics
through locks.
ARM targets older than v6, where this patch makes a difference, are rare
in practice, but not completely extinct. See, for example, discussion on
D116088.
This also affects Cortex-M0, but I don't think __sync_* routines
actually exist in any Cortex-M0 libraries. So in practice this just
leads to a slightly different linker error for those cases, I think.
Mechanically, this patch does the following:
- Ensures we run atomic expansion unconditionally; it never makes sense to
completely skip it.
- Fixes getMaxAtomicSizeInBitsSupported() so it returns an appropriate
number on all ARM subtargets.
- Fixes shouldExpandAtomicRMWInIR() and shouldExpandAtomicCmpXchgInIR() to
correctly handle subtargets that don't have atomic instructions.
Differential Revision: https://reviews.llvm.org/D120026
Reland of D120906 after sanitizer failures.
This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc. ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.
Some naming inconsistencies have been fixed to allow this, and one unused
member removed.
This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.
Differential Revision: https://reviews.llvm.org/D120906
This patch aims to reduce a lot of the boilerplate around adding new subtarget
features. From the SubtargetFeatures tablegen definitions, a series of calls to
the macro GET_SUBTARGETINFO_MACRO are generated in
ARM/AArch64GenSubtargetInfo.inc. ARMSubtarget/AArch64Subtarget can then use
this macro to define bool members and the corresponding getter methods.
Some naming inconsistencies have been fixed to allow this, and one unused
member removed.
This implementation only applies to boolean members; in future both BitVector
and enum members could also be generated.
Differential Revision: https://reviews.llvm.org/D120906
There is a crash in the ARM backend when attempting to decode a "tsb
csync" instruction using `llvm-objdump --triple=armv8.4a -d`. The crash
was in `ARMMCInstrAnalysis::evaluateBranch` where the number of operands
in the decoded instruction (0) did not match the number of operands in
the instruction description (1).
This is becuase `tsb csync` looks like it has an operand during
assembly, but there is only one valid operand (csync), so there is no
encoding space in the instruction for the operand, so the decoder never
has a field to decode that represents `csync`.
The fix is to add a custom decode method, which ensures that this
instruction does have the right number of operands after decoding. This
method merely adds the only available operand value, `ARM_TSB::CSYNC`.
Reviewed By: tmatheson
Differential Revision: https://reviews.llvm.org/D121479
While experimenting with different algorithms for std::sort
I discovered that combine-vmovdrr.ll fails if this sort is not
stable.
I suspect that the test is too stringent in its check--the resultant
code looks functionally identical to me under both stable and unstable
sorting, but a generic fix is quite a bit more difficult to implement.
Thanks to scw@google.com for finding the proper fix.
Differential Revision: https://reviews.llvm.org/D121870
Includes verifier changes checking the elementtype, clang codegen
changes to emit the elementtype, and ISel changes using the elementtype.
Basically the same as D120527.
Reviewed By: #opaque-pointers, nikic
Differential Revision: https://reviews.llvm.org/D121847
It fixes the overflow of 8-bit immediate field in the emitted
instruction that allocates large stacklet.
For thumb2 targets, load large immediate by a pair of movw and movt
instruction. For thumb1 and ARM targets, load large immediate by reading
from literal pool.
Differential Revision: https://reviews.llvm.org/D118545
This wraps up from D119053. The 2 headers are moved as described,
fixed file headers and include guards, updated all files where the old
paths were detected (simple grep through the repo), and `clang-format`-ed it all.
Differential Revision: https://reviews.llvm.org/D119876
Internally to DAGCombiner the SDValues were passed by non-const
reference despite not being modified. They were then passed by
const reference to TLI.
This patch passes them by value which is consistent with the vast
majority of code.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D120420
We have some recognition of SSAT and USAT from SELECT_CC at the moment.
This extends the matching to SMIN/SMAX which can help catch more cases,
either from min/max being the canonical form in instcombine or from some
expanded nodes like fp_to_si_sat.
Differential Revision: https://reviews.llvm.org/D119819
This patch is the first in a series of patches to upstream the support for Apple's DriverKit. Once complete, it will allow targeting DriverKit platform with Clang similarly to AppleClang.
This code was originally authored by JF Bastien.
Differential Revision: https://reviews.llvm.org/D118046
This function was added in D49837, but no setOperationAction call
was added with it. The code is equivalent to what is done by the
default ExpandIntRes_ABS implementation when ADDCARRY is supported.
Test case added to verify this. There was some existing coverage
from Thumb2 MVE tests, but they started from vectors.
Previous we used sra (X, size(X)-1); xor (add (X, Y), Y).
By placing sub at the end, we allow RISCV to combine sign_extend_inreg
with it to form subw.
Some X86 tests for Z - abs(X) seem to have improved as well.
Other targets look to be a wash.
I had to modify ARM's abs matching code to match from sub instead of
xor. Maybe instead ISD::ABS should be made legal. I'll try that in
parallel to this patch.
This is an alternative to D119099 which was focused on RISCV only.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D119171
It's not particularly user-friendly to have to call `initLRU` everywhere. Also,
it wasn't particularly great that the LRU for registers used in a sequence was
also initialized by `initLRU`.
This patch hides this stuff behind some helper functions:
* `isAvailableAcrossAndOutOfSeq`
* `isAnyUnavailableAcrossOrOutOfSeq`
* `isAvailableInsideSeq`
This allows the user to avoid calling `initLRU` explicitly. Also, it allows
us to separate initializing the used-in-sequence LRU from the main LRU.
Since both ARM and AArch64 check LR liveness in `insertOutlinedCall`, this
refactor requires that we de-const the Candidate there.
Some other quality-of-code improvements:
* LRUs in outliner::Candidate now have more descriptive names
* Use `Register` instead of `unsigned` in some places
* Improve readability in some places by using ranges rather than `std::for_each`
This is a preparatory commit for a larger compile time related change for the
AArch64 outliner.
The introduction and some examples are on this page:
https://devblogs.microsoft.com/cppblog/announcing-jmc-stepping-in-visual-studio/
The `/JMC` flag enables these instrumentations:
- Insert at the beginning of every function immediately after the prologue with
a call to `void __fastcall __CheckForDebuggerJustMyCode(unsigned char *JMC_flag)`.
The argument for `__CheckForDebuggerJustMyCode` is the address of a boolean
global variable (the global variable is initialized to 1) with the name
convention `__<hash>_<filename>`. All such global variables are placed in
the `.msvcjmc` section.
- The `<hash>` part of `__<hash>_<filename>` has a one-to-one mapping
with a directory path. MSVC uses some unknown hashing function. Here I
used DJB.
- Add a dummy/empty COMDAT function `__JustMyCode_Default`.
- Add `/alternatename:__CheckForDebuggerJustMyCode=__JustMyCode_Default` link
option via ".drectve" section. This is to prevent failure in
case `__CheckForDebuggerJustMyCode` is not provided during linking.
Implementation:
All the instrumentations are implemented in an IR codegen pass. The pass is placed immediately before CodeGenPrepare pass. This is to not interfere with mid-end optimizations and make the instrumentation target-independent (I'm still working on an ELF port in a separate patch).
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D118428
These patterns were omitted because clang only allows converting between
these types using intrinsics, but other front-ends or optimisation
passes may want to use them.
Differential revision: https://reviews.llvm.org/D119354
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
AArch32/Armv8A introduced the performance deprecation of certain patterns
of IT instructions. After some debate internal to ARM, this is now being
reverted; i.e. no IT instruction patterns are performance deprecated
anymore, as the perfomance degredation is not significant enough.
This reverts the following:
"ARMv8-A deprecates some uses of the T32 IT instruction. All uses of
IT that apply to instructions other than a single subsequent 16-bit
instruction from a restricted set are deprecated, as are explicit
references to the PC within that single 16-bit instruction. This permits
the non-deprecated forms of IT and subsequent instructions to be treated
as a single 32-bit conditional instruction."
The deprecation no longer applies, but the behaviour may be controlled
by the -arm-restrict-it and -arm-no-restrict-it command-line options,
with the latter being the default. No warnings about complex IT blocks
will be generated.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D118044
This way they get lowered through the ARMISD::BUILD_VECTOR, which can
produce more efficient D register moves.
Also helps D115653 not get stuck in a loop.
None of the external users actual touch these (they're purely used internally down the recursive call) - its trivial to add another wrapper if anything ever does want to track known elements.
Currently, ARMBaseInstrInfo::getInstSizeInBytes() uses hard-coded
instruction size for some pseudo-instructions, while this
information should ideally be found in ARMInstrInfo.td,
ARMInstrThumb(2).td files (which can be accessed via MCInstrDesc). Hence,
the .td files should be updated and no hard-coded instruction sizes
should be used by getInstSizeInBytes() anymore.
Differential Revision: https://reviews.llvm.org/D118009
I have updated TargetLowering::isConstTrueVal to also consider
SPLAT_VECTOR nodes with constant integer operands. This allows the
optimisation to also work for targets that support scalable vectors.
Differential Revision: https://reviews.llvm.org/D117210
Inspecting the pointer element type here is incompatible with
opaque pointers, and doesn't seem necessary to me. I think the
intention might have been to check the type of load/store pointer
arguments, but I believe those should get checked through their
return type or value operand anyway. I don't get any test failures
if I simply drop this.
Differential Revision: https://reviews.llvm.org/D118353
Since it's introduction, the qrdmlah has been represented as a qrdmulh
and a sadd_sat. This doesn't produce the same result for all input
values though. This patch fixes that by introducing a qrdmlah (and
qrdmlsh) intrinsic specifically for the vqrdmlah and sqrdmlah
instructions. The old test cases will now produce a qrdmulh and sqadd,
as expected.
Fixes#53120 and #50905 and #51761.
Differential Revision: https://reviews.llvm.org/D117592
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
If you want to check for all uses of PAC, the SpillsLR argument to
shouldSignReturnAddress should be true instead of false, as that value will be
returned from the function if the other checks fall through.
Reviewed By: miyuki
Differential Revision: https://reviews.llvm.org/D116213
This is required to query the legality more precisely in the LoopVectorizer.
This adds another TTI function named 'forceScalarizeMaskedGather/Scatter'
function to work around the hack introduced for MVE, where
isLegalMaskedGather/Scatter would return an answer by second-guessing
where the function was called from, based on the Type passed in (vector
vs scalar). The new interface makes this explicit. It is also used by
X86 to check for vector widths where gather/scatters aren't profitable
(or don't exist) for certain subtargets.
Differential Revision: https://reviews.llvm.org/D115329
FeaturePerfMon relates to the PMU extensions available in armv7-a, and
should not be available in v7-m (it requires loading from a system
register with a mrc). Sink it down a level in the dependency map so that
it isn't present in ARMv7m or HasV8MMainlineOps.
It is also removed from the Neoverse-N2, as it will already be
transitively included.
Differential Revision: https://reviews.llvm.org/D117022
The interface for these instructions changed with support for mandatory tail
calls, and now -1 indicates the CalleePopAmount argument is not valid.
Unfortunately I didn't realise FastISel or GISel did calls at the time so
didn't update them.
This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
This patch introduces support for targetting the Armv9.3-A architecture,
which should map to the existing Armv8.8-A extensions.
Differential Revision: https://reviews.llvm.org/D116158
This adds at extra check into ARMBaseInstrInfo::verifyInstruction to
verify the offsets used in addressing mode immediates using
isLegalAddressImm. Some tests needed fixing up as a result, adjusting
the opcode created from CMSE stack adjustments.
Differential Revision: https://reviews.llvm.org/D114939
This is the first commit in a series that implements support for
"armv8.8-a" architecture. This should contain all the necessary
boilerplate to make the 8.8-A architecture exist from LLVM and Clang's
point of view: it adds the new arch as a subtarget feature, a definition
in TargetParser, a name on the command line, an appropriate set of
predefined macros, and adds appropriate tests. The new architecture name
is supported in both AArch32 and AArch64.
However, in this commit, no actual _functionality_ is added as part of
the new architecture. If you specify -march=armv8.8a, the compiler
will accept it and set the right predefines, but generate no code any
differently.
Differential Revision: https://reviews.llvm.org/D115694
A 'CMOV 1, 0, CC, %cpsr, Cmp' is the same as a 'CSINC 0, 0, CC, Cmp',
and can be treated the same in IsCMPZCSINC added in D114013. This allows
us to remove the unnecessary CMOV in the same way that we could remove a
CSINC.
Differential Revision: https://reviews.llvm.org/D115188
This makes use of the code in D114013 to fold away unnecessary
CMPZ/CSINC starting from a CMOV, in a similar way to how we fold away
CSINV/CSINC/etc
Differential Revision: https://reviews.llvm.org/D115185
Some MVE instructions have qr variants that take a Q and R register,
splatting the R register for each lane. This is usually handled fine for
standard splats as we sink the splat into the loop and combine the
resulting dup into the qr instruction. It does not work for constant
splats though, as we generate a vmovimm or constant pool load instead.
This intercepts that, generating a vdup of the constant instead where we
can turn the result into a qr instruction variant.
Differential Revision: https://reviews.llvm.org/D115242
As reported from a failing firefox build, we can sometimes get frame
indices with negative offsets from a t2LDRi8. This adds support for
them, to prevent the crash.
We can be in situations where And 1 zext nodes will not have been yet,
preventing us from detecting removable cmpz/csinc patterns. This peeks
through those nodes allowing us to simplify more code.
Differential Revision: https://reviews.llvm.org/D115176
This patch implements PAC return address signing for armv8-m. This patch roughly
accomplishes the following things:
- PAC and AUT instructions are generated.
- They're part of the stack frame setup, so that shrink-wrapping can move them
inwards to cover only part of a function
- The auth code generated by PAC is saved across subroutine calls so that AUT
can find it again to check
- PAC is emitted before stacking registers (so that the SP it signs is the one
on function entry).
- The new pseudo-register ra_auth_code is mentioned in the DWARF frame data
- With CMSE also in use: PAC is emitted before stacking FPCXTNS, and AUT
validates the corresponding value of SP
- Emit correct unwind information when PAC is replaced by PACBTI
- Handle tail calls correctly
Some notes:
We make the assembler accept the `.save {ra_auth_code}` directive that is
emitted by the compiler when it saves a register that contains a
return address authentication code.
For EHABI we need to have the `FrameSetup` flag on the instruction and
handle the `t2PACBTI` opcode (identically to `t2PAC`), so we can emit
`.save {ra_auth_code}`, instead of `.save {r12}`.
For PACBTI-M, the instruction which computes return address PAC should use SP
value before adjustment for the argument registers save are (used for variadic
functions and when a parameter is is split between stack and register), but at
the same it should be after the instruction that saves FPCXT when compiling a
CMSE entry function.
This patch moves the varargs SP adjustment after the FPCXT save (they are never
enabled at the same time), so in a following patch handling of the `PAC`
instruction can be placed between them.
Epilogue emission code adjusted in a similar manner.
PACBTI-M code generation should not emit any instructions for architectures
v6-m, v8-m.base, and for A- and R-class cores. Diagnostic message for such cases
is handled separately by a future ticket.
note on tail calls:
If the called function has four arguments that occupy registers `r0`-`r3`, the
only option for holding the function pointer itself is `r12`, but this register
is used to keep the PAC during function/prologue epilogue and clobbers the
function pointer.
When we do the tail call we need the five registers (`r0`-`r3` and `r12`) to
keep six values - the four function arguments, the function pointer and the PAC,
which is obviously impossible.
One option would be to authenticate the return address before all callee-saved
registers are restored, so we have a scratch register to temporarily keep the
value of `r12`. The issue with this approach is that it violates a fundamental
invariant that PAC is computed using CFA as a modifier. It would also mean using
separate instructions to pop `lr` and the rest of the callee-saved registers,
which would offset the advantages of doing a tail call.
Instead, this patch disables indirect tail calls when the called function take
four or more arguments and the return address sign and authentication is enabled
for the caller function, conservatively assuming the caller function would spill
LR.
This patch is part of a series that adds support for the PACBTI-M extension of
the Armv8.1-M architecture, as detailed here:
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
The PACBTI-M specification can be found in the Armv8-M Architecture Reference
Manual:
https://developer.arm.com/documentation/ddi0553/latest
The following people contributed to this patch:
- Momchil Velikov
- Ties Stuij
Reviewed By: danielkiss
Differential Revision: https://reviews.llvm.org/D112429
The v8.1-m ARMARM uses the vrinta.f16.f16 names, as opposed to
vrinta.f16. This adds an alias for it in the same way that we have for
f32 and f64.
Differential Revision: https://reviews.llvm.org/D68127
This adjusts all the MVE and CDE intrinsics now that v2i1 is a legal
type, to use a <2 x i1> as opposed to emulating the predicate with a
<4 x i1>. The v4i1 workarounds have been removed leaving the natural
v2i1 types, notably in vctp64 which now generates a v2i1 type.
AutoUpgrade code has been added to upgrade old IR, which needs to
convert the old v4i1 to a v2i1 be converting it back and forth to an
integer with arm.mve.v2i and arm.mve.i2v intrinsics. These should be
optimized away in the final assembly.
Differential Revision: https://reviews.llvm.org/D114455
MVE can treat v16i1, v8i1, v4i1 and v2i1 as different views onto the
same 16bit VPR.P0 register, with v2i1 holding two 8 bit values for the
two halves. This was never treated as a legal type in llvm in the past
as there are not many 64bit instructions and no 64bit compares. There
are a few instructions that could use it though, notably a VSELECT (as
it can handle any size using the underlying v16i8 VPSEL), AND/OR/XOR for
similar reasons, some gathers/scatter and long multiplies and VCTP64
instructions.
This patch goes through and makes v2i1 a legal type, handling all the
cases that fall out of that. It also makes VSELECT legal for v2i64 as a
side benefit. A lot of the codegen changes as a result - usually in way
that is a little better or a little worse, but still expensive. Costs
can change a little too in the process, again in a way that expensive
things remain expensive. A lot of the tests that changed are mainly to
ensure correctness - the code can hopefully be improved in the future
where it comes up in practice.
The intrinsics currently remain using the v4i1 they previously did to
emulate a v2i1. This will be changed in a followup patch but this one
was already large enough.
Differential Revision: https://reviews.llvm.org/D114449
Some instructions with i8 immediate ranges can only hold negative values
(like t2LDRHi8), only hold positive values (like t2STRT) or hold +/-
depending on the U bit (like the pre/post inc instructions. e.g
t2LDRH_POST). This patch splits the AddrModeT2_i8 into AddrModeT2_i8,
AddrModeT2_i8pos and AddrModeT2_i8neg to make this clear.
This allows us to get the offset ranges of t2LDRHi8 correct in the
load/store optimizer, fixing issues where we could end up creating
instructions with positive offsets (which may then be encoded as ldrht).
Differential Revision: https://reviews.llvm.org/D114638
The ranges in isLegalAddressImm were off by one, not allowing the
maximum values for unscaled offsets.
Differential Revision: https://reviews.llvm.org/D114636
Given a min(max(fptosi, INT_MIN), INT_MAX) with the correct constants,
we can now generate a fptosi.sat. But in the arm backend, the constant
can be treated as high cost, pulling it out of the basic block in a way
that the DAG combine can no longer see it. This teaches it again that it
is a low cost constant, not worth hoisting out.
Recommitted from 0e98659ea1 with a fix for APInt comparison.
Differential Revision: https://reviews.llvm.org/D114380
This patch implements a new MachineFunction in the ARM backend for
placing BTI instructions. It is similar to the existing AArch64
aarch64-branch-targets pass.
BTI instructions are inserted into basic blocks that:
- Have their address taken
- Are the entry block of a function, if the function has external
linkage or has its address taken
- Are mentioned in jump tables
- Are exception/cleanup landing pads
Each BTI instructions is placed in the beginning of a BB after the
so-called meta instructions (e.g. exception handler labels).
Each outlining candidate and the outlined function need to be in agreement about
whether BTI placement is enabled or not. If branch target enforcement is
disabled for a function, the outliner should not covertly enable it by emitting
a call to an outlined function, which begins with BTI.
The cost mode of the outliner is adjusted to account for the extra BTI
instructions in the outlined function.
The ARM Constant Islands pass will maintain the count of the jump tables, which
reference a block. A `BTI` instruction is removed from a block only if the
reference count reaches zero.
PAC instructions in entry blocks are replaced with PACBTI instructions (tests
for this case will be added in a later patch because the compiler currently does
not generate PAC instructions).
The ARM Constant Island pass is adjusted to handle BTI
instructions correctly.
Functions with static linkage that don't have their address taken can
still be called indirectly by linker-generated veneers and thus their
entry points need be marked with BTI or PACBTI.
The changes are tested using "LLVM IR -> assembly" tests, jump tables
also have a MIR test. Unfortunately it is not possible add MIR tests
for exception handling and computed gotos because of MIR parser
limitations.
This patch is part of a series that adds support for the PACBTI-M extension of
the Armv8.1-M architecture, as detailed here:
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
The PACBTI-M specification can be found in the Armv8-M Architecture Reference
Manual:
https://developer.arm.com/documentation/ddi0553/latest
The following people contributed to this patch:
- Mikhail Maltsev
- Momchil Velikov
- Ties Stuij
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D112426
This patch encapsulates decision logic about when and how to generate
PAC/BTI related code. It's a part shared by PAC-RET, BTI placement,
build attribute emission, etc, so it make sense committing it
separately in order to unblock the aforementioned parts, which can
proceed concurrently.
This patch adds a few member functions to `ARMFunctionInfo`, which are currently
unused, therefore there is no testing for them at the moment. This code is
tested in follow-up PAC/BTI code gen patches.
This patch is part of a series that adds support for the PACBTI-M extension of
the Armv8.1-M architecture, as detailed here:
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
The PACBTI-M specification can be found in the Armv8-M Architecture Reference
Manual:
https://developer.arm.com/documentation/ddi0553/latest
The following people contributed to this patch:
- Momchil Velikov
- Ties Stuij
Reviewed By: danielkiss
Differential Revision: https://reviews.llvm.org/D112423
Given a min(max(fptosi, INT_MIN), INT_MAX) with the correct constants,
we can now generate a fptosi.sat. But in the arm backend, the constant
can be treated as high cost, pulling it out of the basic block in a way
that the DAG combine can no longer see it. This teaches it again that it
is a low cost constant, not worth hoisting out.
Differential Revision: https://reviews.llvm.org/D114380
This adds a fold in DAGCombine to create fptosi_sat from sequences for
smin(smax(fptosi(x))) nodes, where the min/max saturate the output of
the fp convert to a specific bitwidth (say INT_MIN and INT_MAX). Because
it is dealing with smin(/smax) in DAG they may currently be ISD::SMIN,
ISD::SETCC/ISD::SELECT, ISD::VSELECT or ISD::SELECT_CC nodes which need
to be handled similarly.
A shouldConvertFpToSat method was added to control when converting may
be profitable. The original fptosi will have a less strict semantics
than the fptosisat, with less values that need to produce defined
behaviour.
This especially helps on ARM/AArch64 where the vcvt instructions
naturally saturate the result.
Differential Revision: https://reviews.llvm.org/D111976
It causes builds to fail with this assert:
llvm/include/llvm/ADT/APInt.h:990:
bool llvm::APInt::operator==(const llvm::APInt &) const:
Assertion `BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"' failed.
See comment on the code review.
> This adds a fold in DAGCombine to create fptosi_sat from sequences for
> smin(smax(fptosi(x))) nodes, where the min/max saturate the output of
> the fp convert to a specific bitwidth (say INT_MIN and INT_MAX). Because
> it is dealing with smin(/smax) in DAG they may currently be ISD::SMIN,
> ISD::SETCC/ISD::SELECT, ISD::VSELECT or ISD::SELECT_CC nodes which need
> to be handled similarly.
>
> A shouldConvertFpToSat method was added to control when converting may
> be profitable. The original fptosi will have a less strict semantics
> than the fptosisat, with less values that need to produce defined
> behaviour.
>
> This especially helps on ARM/AArch64 where the vcvt instructions
> naturally saturate the result.
>
> Differential Revision: https://reviews.llvm.org/D111976
This reverts commit 52ff3b0093.
This adds a fold in DAGCombine to create fptosi_sat from sequences for
smin(smax(fptosi(x))) nodes, where the min/max saturate the output of
the fp convert to a specific bitwidth (say INT_MIN and INT_MAX). Because
it is dealing with smin(/smax) in DAG they may currently be ISD::SMIN,
ISD::SETCC/ISD::SELECT, ISD::VSELECT or ISD::SELECT_CC nodes which need
to be handled similarly.
A shouldConvertFpToSat method was added to control when converting may
be profitable. The original fptosi will have a less strict semantics
than the fptosisat, with less values that need to produce defined
behaviour.
This especially helps on ARM/AArch64 where the vcvt instructions
naturally saturate the result.
Differential Revision: https://reviews.llvm.org/D111976
We can't use the existing pseudo ARM::tLDRLIT_ga_pcrel for loading the
stack guard for PIC code that references the GOT, since arm-pseudo may
expand this to the narrow tLDRpci rather than the wider t2LDRpci.
Create a new pseudo, t2LDRLIT_ga_pcrel, and expand it to t2LDRpci.
Fixes: https://bugs.chromium.org/p/chromium/issues/detail?id=1270361
Reviewed By: ardb
Differential Revision: https://reviews.llvm.org/D114762
We sometimes end up generating CMOV with constant operands that can be
simplified to CSINC or CSINV under Arm-8.1m. This adds some simple
patterns for them.
Differential Revision: https://reviews.llvm.org/D114349
Codegen from expanded vector operations can end up with unnecessary
CMPZ/CSINC, of the form:
CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0)
These can be converted to remove the CMPZ and CSINC, depending on the
condition.
if C1==NE -> CSXYZ A, B, C2, D
if C1==EQ -> CSXYZ A, B, NOT(C2), D
Differential Revision: https://reviews.llvm.org/D114013
This converts a vector SETCC([0,1,2,..], splat(n), ult) to vctp n, which
can be fewer instructions and prevent the need for constant pool loads.
Differential Revision: https://reviews.llvm.org/D114177
This is a very small addition to the existing MVE fixed point vcvt code
to also create them from FP_TO_SINT_SAT and FP_TO_UINT_SAT nodes, which
should be equally valid for native saturating converts under MVE.
Differential Revision: https://reviews.llvm.org/D114360
If we only demand bits from one half of a rotation pattern, see if we can simplify to a logical shift.
For the ARM/AArch64 rev16/32 patterns, I had to drop a fold to prevent srl(bswap()) -> rotr(bswap) -> srl(bswap) infinite loops. I've replaced this with an isel PatFrag which should do the same task.
Reapplied with fix for AArch64 rev patterns to matching the ARM fix.
https://alive2.llvm.org/ce/z/iroxki (rol -> shl by amt iff demanded bits has at least as many trailing zeros as the shift amount)
https://alive2.llvm.org/ce/z/4ez_U- (ror -> shl by revamt iff demanded bits has at least as many trailing zeros as the reverse shift amount)
https://alive2.llvm.org/ce/z/cD7dR- (ror -> lshr by amt iff demanded bits has at least as many leading zeros as the shift amount)
https://alive2.llvm.org/ce/z/_XGHtQ (rol -> lshr by revamt iff demanded bits has at least as many leading zeros as the reverse shift amount)
Differential Revision: https://reviews.llvm.org/D114354
If we only demand bits from one half of a rotation pattern, see if we can simplify to a logical shift.
For the ARM rev16 patterns, I had to drop a fold to prevent srl(bswap()) -> rotr(bswap) -> srl(bswap) infinite loops. I've replaced this with an isel PatFrag which should do the same task.
https://alive2.llvm.org/ce/z/iroxki (rol -> shl by amt iff demanded bits has at least as many trailing zeros as the shift amount)
https://alive2.llvm.org/ce/z/4ez_U- (ror -> shl by revamt iff demanded bits has at least as many trailing zeros as the reverse shift amount)
https://alive2.llvm.org/ce/z/cD7dR- (ror -> lshr by amt iff demanded bits has at least as many leading zeros as the shift amount)
https://alive2.llvm.org/ce/z/_XGHtQ (rol -> lshr by revamt iff demanded bits has at least as many leading zeros as the reverse shift amount)
Differential Revision: https://reviews.llvm.org/D114354
This is similar to D113574, but as a DAG combine, not tablegen patterns.
Doing the fold as a DAG combine allows the fadd to be folded with a
fmul, finally producing a predicated vfma. It performs the same fold of
fadd(x, vselect(p, y, -0.0)) to vselect p, (fadd x, y), x) using -0.0 as
the identity value of a fadd.
Differential Revision: https://reviews.llvm.org/D113584
Similar to D84091 which added extra predicated folds for integer operations
using the identity element of the operation, this adds them for floating
point operations for the form `BinOp(x, select(p, y, Identity))`. They are
folded back to predicated versions of the operator, with fadd having the
identity -0.0, fsub using the identity 0.0 and fmul using 1.0.
Differential Revision: https://reviews.llvm.org/D113574
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master with main in `Thumb2SizeReduction.cpp`.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D114196
Delegate updating of LiveIntervals to each target's
convertToThreeAddress implementation, instead of repairing LiveIntervals
after the fact in TwoAddressInstruction::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D113493
Implement support for loading the stack canary from a memory location held in
the TLS register, with an optional offset applied. This is used by the Linux
kernel to implement per-task stack canaries, which is impossible on SMP systems
when using a global variable for the stack canary.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D112768
Currently, LOAD_STACK_GUARD on ARM is only implemented for Mach-O targets, and
other targets rely on the generic support which may result in spilling of the
stack canary value or address, or may cause it to be kept in a callee save
register across function calls, which means they essentially get spilled as
well, only by the callee when it wants to free up this register.
So let's implement LOAD_STACK GUARD for other targets as well. This ensures
that the load of the stack canary is rematerialized fully in the epilogue.
This code was split off from
D112768: [ARM] implement support for TLS register based stack protector
for which it is a prerequisite.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D112811
Currently when tail predicating loops, vpt blocks need to be created
with the vctp predicate in case we need to revert to non-tail predicated
form. This has the unfortunate side effect of severely hampering post-ra
scheduling at times as the instructions are already stuck in vpt blocks,
not allowed to be independently ordered.
This patch addresses that by just moving the creation of VPT blocks
later in the pipeline, after post-ra scheduling has been performed. This
allows more optimal scheduling post-ra before the vpt blocks are
created, leading to more optimal tail predicated loops.
Differential Revision: https://reviews.llvm.org/D113094
LLVM has the habit of turning adds with no common bits set into ors,
which means we need to detect them and treat them like adds again in the
MVE gather/scatter lowering pass.
Differential Revision: https://reviews.llvm.org/D112922
This teaches the MVE gather scatter lowering pass that SHL is
essentially the same as Mul, where we are able to optimize the
induction of a gather/scatter address by pushing them out of loops.
https://alive2.llvm.org/ce/z/wG4VyT
Differential Revision: https://reviews.llvm.org/D112920
This is relanding commit da1d1a0869 .
This patch additionally addresses failures found in buildbots & post review comments.
ARM EHABI[1] specifies the __cxa_end_cleanup to be called after cleanup.
It will call the UnwindResume.
__cxa_begin_cleanup will be called from libcxxabi while __cxa_end_cleanup is never called.
This will trigger a termination when a foreign exception is processed while UnwindResume is called
because the global state will be wrong due to the missing __cxa_end_cleanup call.
Additional test here: D109856
[1] https://github.com/ARM-software/abi-aa/blob/main/ehabi32/ehabi32.rst#941compiler-helper-functions
Reviewed By: logan
Differential Revision: https://reviews.llvm.org/D111703