Pulled out of D106237, this replaces the X86ISD::AVG DAG node with the
generic ISD::AVGCEILU. It doesn't remove the detectAVGPattern method,
but the extra generic ISel matching does alter the existing test.
Differential Revision: https://reviews.llvm.org/D119073
The VINSERTF128 instruction is often much quicker, and never slower, than the more general VPERM2F128 instruction, so we should try to use that in more circumstances.
This requires a fallback to a commuted VPERM2F128 for the case where we need to fold the 256-bit vector source instead of the 128-bit subvector source.
There is one interesting side effect - DAGCombine's narrowExtractedVectorLoad combine gets called in a number of locations, this often creates an extracted subvector load without regard to other uses of the original wider load. I'm expecting AVX cpus to be capable of merging such aliased loads, but I do wonder whether narrowExtractedVectorLoad's call to X86TargetLowering::shouldReduceLoadWidth needs to be altered to check for more partial uses?
Noticed while investigating the quality of interleaved load/store codegen.
Differential Revision: https://reviews.llvm.org/D111960
Followup to D92645 - remove the remaining places where we create X86ISD::SUBV_BROADCAST, and fold splatted vector loads to X86ISD::SUBV_BROADCAST_LOAD instead.
Remove all the X86SubVBroadcast isel patterns, including all the fallbacks for if memory folding failed.
Subvector broadcasts are only load instructions, yet X86ISD::SUBV_BROADCAST treats them more generally, requiring a lot of fallback tablegen patterns.
This initial patch replaces constant vector lowering inside lowerBuildVectorAsBroadcast with direct X86ISD::SUBV_BROADCAST_LOAD loads which helps us merge a number of equivalent loads/broadcasts.
As well as general plumbing/analysis additions for SUBV_BROADCAST_LOAD, I needed to wrap SelectionDAG::makeEquivalentMemoryOrdering so it can handle result chains from non generic LoadSDNode nodes.
Later patches will continue to replace X86ISD::SUBV_BROADCAST usage.
Differential Revision: https://reviews.llvm.org/D92645
X86 was already specially marking fma as commutable which allowed
tablegen to autogenerate commuted patterns. This moves it to the target
independent definition and fix up the targets to remove now
unneeded patterns.
Unfortunately, the tests change because the commuted version of
the patterns are generating operands in a different than the
explicit patterns.
Differential Revision: https://reviews.llvm.org/D91842
When we use mask compare intrinsics under strict FP option, the masked
elements shouldn't raise any exception. So, we cann't replace the
intrinsic with a full compare + "and" operation.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D85385
Isel match that instead of the intrinsic. Similar to what we do
for avx512.
Trying to move more intrinsics to target specific ISD opcodes.
Hoping to add DAG combines to shrink simple loads going into
scalar intrinsics that only read 32 or 64 bits.
This ensures we create mem operands for these instructions fixing PR45949.
Unfortunately, it increases the size of X86GenDAGISel.inc, but some dag
combine canonicalization could reduce the types of load we need to match.
The type profile we use for the isel patterns lied about how
many operands the gather/scatter node has to skip the index
and scale operands. This allowed us to expand the baseptr
operand into base, displacement, and segment and then merge
the index and scale with them in the final instruction during
isel. This is kind of a hack that relies on isel not checking the
number of operands at all.
This commit switches to custom isel where we can manage this
directly without relying on holes in the isel checking.
Leave the gather/scatter subclasses, but make them inherit from
MemIntrinsicSDNode and delete their constructor and destructor.
This way we can still have the getIndex, getMask, etc. convenience
functions.
This adds a strict version of FP16_TO_FP and FP_TO_FP16 and uses
them to implement soft promotion for the half type. This is
enough to provide basic support for __fp16 with strictfp.
Add the necessary X86 support to use VCVTPS2PH/VCVTPH2PS when F16C
is enabled.
Summary: X86 has instructions to calculate fma and fneg at the same time. But we combine the fneg and fma only when fneg is the source operand under strict FP.
Reviewers: craig.topper, andrew.w.kaylor, uweigand, RKSimon, LiuChen3
Subscribers: LuoYuanke, llvm-commits, cfe-commits, jdoerfert, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72824
Also use X86any_vfpround instead of X86vfpround in some instruction
definitions so the strict version can be used to infer the chain
property.
Without these changes we don't propagate strict FP chain through
isel for some instructions.
Summary: This is a follow up of D69281, it enables the X86 backend support for the FP comparision.
Reviewers: uweigand, kpn, craig.topper, RKSimon, cameron.mcinally, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits, annita.zhang, LuoYuanke, LiuChen3
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70582
MVE has a basic symmetry between it's normal loads/store operations and
the masked variants. This means that masked loads and stores can use
pre-inc and post-inc addressing modes, just like the standard loads and
stores already do.
To enable that, this patch adds all the relevant infrastructure for
treating masked loads/stores addressing modes in the same way as normal
loads/stores.
This involves:
- Adding an AddressingMode to MaskedLoadStoreSDNode, along with an extra
Offset operand that is added after the PtrBase.
- Extending the IndexedModeActions from 8bits to 16bits to store the
legality of masked operations as well as normal ones. This array is
fairly small, so doubling the size still won't make it very large.
Offset masked loads can then be controlled with
setIndexedMaskedLoadAction, similar to standard loads.
- The same methods that combine to indexed loads, such as
CombineToPostIndexedLoadStore, are adjusted to handle masked loads in
the same way.
- The ARM backend is then adjusted to make use of these indexed masked
loads/stores.
- The X86 backend is adjusted to hopefully be no functional changes.
Differential Revision: https://reviews.llvm.org/D70176
Summary:
This adds the ISD opcode and a DAG combine to create it. There are
probably some places where we can directly create it, but I'll
leave that for future work.
This updates all of the isel patterns to look for this new node.
I had to add a few additional isel patterns for aligned extloads
which we should probably fix with a DAG combine or something. This
does mean that the broadcast load folding for avx512 can no
longer match a broadcasted aligned extload.
There's still some work to do here for combining a broadcast of
a broadcast_load. We also need to improve extractelement or
demanded vector elements of a broadcast_load. I'll try to get
those done before I submit this patch.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68198
llvm-svn: 373349
Summary:
SSE1 only supports v4f32. But does have instructions like movlps/movhps that load/store 64-bits of memory.
This patch breaks the connection between the node VT of the vzext_load/vextract_store patterns and the memory VT. Enabling a v4f32 node with a 64-bit memory VT. I've used i64 as the memory VT here. I've written the PatFrag predicate to just check the store size not the specific VT. I think the VT will only matter for CSE purposes. We could use v2f32, but if we want to start using these operations in more places a simple integer type might make the most sense.
I'd like to maybe use this same thing for SSE2 and later as well, but that will need more work to be supported by EltsFromConsecutiveLoads to avoid regressing lit tests. I'd maybe also like to combine bitcasts with these load/stores nodes now that the types are disconnected. And I'd also like to consider canonicalizing (scalar_to_vector + load) to vzext_load.
If you want I can split the mechanical tablegen stuff where I added the 32/64 off from the sse1 change.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64528
llvm-svn: 366034
v2i64 vzload defines a 64-bit memory access. It doesn't look like
we have any coverage for this either way.
Also remove some vzload usages where the instruction loads only
16-bits.
llvm-svn: 364851
I believe these all get canonicalized to vzext_movl. The only case where that wasn't true was when the load was loadi32 and the load was an extload aligned to 32 bits. But that was fixed in r364207.
Differential Revision: https://reviews.llvm.org/D63701
llvm-svn: 364337
Rename masked_load/masked_store to masked_ld/masked_st to discourage
their direct use. We need to check truncating/extending and
compressing/expanding before using them. This revealed that
our scalar masked load/store patterns were misusing these.
With those out of the way, renamed masked_load_unaligned and
masked_store_unaligned to remove the "_unaligned". We didn't
check the alignment anyway so the name was somewhat misleading.
Make the aligned versions inherit from masked_load/store instead
from a separate identical version. Merge the 3 different alignments
PatFrags into a single version that uses the VT from the SDNode to
determine the size that the alignment needs to match.
llvm-svn: 364150
The result types aren't mentioned in the pattern name so really shouldn't be in the PatFrags.
The users of these either have their own type constraint or rely on the type constranit system to realize the only legal extend would be to f64.
llvm-svn: 362175
We effectively had a second set of isel patterns that tried to use a
regular store instruction and an extract_subreg instruction. Or a masked move
and an extract_subreg. These patterns were intended to override the
matching of VEXTRACT instructions by taking advantage of the priority
of the explicit immediate 0 for the index.
This patch instaed just disables the immediate 0 matchin the VEXTRACT
patterns. This each of the component pieces of the larger patterns will
match by themselves.
This found a bug of sorts were we didn't use 128-bit store for 512->128
extract on KNL. Its unclear what the right thing here should be.
Using the vextract avoids constraining the register allocator to use
xmm0-15. But it always results in a longer encoding if the register
allocator ends up choosing xmm0-15 anyway.
llvm-svn: 361431
These particular instructions only operate on 128-bit vectors and have no wider equivalents. And the
element size is always known.
One could argue that MOVSS/MOVSD could be merged, but that's probably disruptive to code in
X86ISelLowering and probably low value.
llvm-svn: 360815
Summary:
1. Enable infrastructure of AVX512_BF16, which is supported for BFLOAT16 in Cooper Lake;
2. Enable VCVTNE2PS2BF16, VCVTNEPS2BF16 and DPBF16PS instructions, which are Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion instructions from IEEE single precision.
VCVTNE2PS2BF16: Convert Two Packed Single Data to One Packed BF16 Data.
VCVTNEPS2BF16: Convert Packed Single Data to Packed BF16 Data.
VDPBF16PS: Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
For more details about BF16 isa, please refer to the latest ISE document: https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
Author: LiuTianle
Reviewers: craig.topper, smaslov, LuoYuanke, wxiao3, annita.zhang, RKSimon, spatel
Reviewed By: craig.topper
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60550
llvm-svn: 360017
Summary: If we have SSE2 we can use a MOVQ to store 64-bits and avoid falling back to a cmpxchg8b loop. If its a seq_cst store we need to insert an mfence after the store.
Reviewers: spatel, RKSimon, reames, jfb, efriedma
Reviewed By: RKSimon
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60546
llvm-svn: 359368
This changes the operand type from v4f32/v2f64 to iPTR which seems more correct. But that doesn't seem to do anything other than change the comments in X86GenDAGISel.inc. Probably because we use a ComplexPattern to do the matching so there's no autogenerated code to change.
llvm-svn: 357959
The only thing the print methods currently need to know is the string to print for the memory size in intel syntax.
This patch merges the functions based on this string. If we ever need something else in the future, its easy to split them back out.
This reduces the number of cases in the assembly printers. It shrinks the intel printer to only use 7 bytes per instruction instead of 8.
llvm-svn: 356352