An insert subvector under aarch64 can often be done as a single lane mov
operation. For example a v4i8 inserted into a v16i8 is a s-reg mov, so
long as the index is a multiple of 4. This teaches the cost model that,
using code copied over from the X86 backend.
Some of the costs (v16i16_4_0) are still high because they get matched
as a SK_Select, not an SK_InsertSubvector. D120879 has some codegen
tests for inserting subvectors, which I were added as
llvm/test/CodeGen/AArch64/insert-subvector.ll.
Differential Revision: https://reviews.llvm.org/D120880
The cost of a v2i64 multiply was special cased in D92208 as scalarized
into 4*extract + 2*insert + 2*mul. Scalarizing to/from gpr registers are
expensive though, and the cost wasn't high enough to prevent vectorizing
in places where it can be detrimental for performance. This increases it
so that the costs of copying to/from GPRs is increased to 2 each, with
the total cost increasing to 14. So long as umull/smull are handled
correctly (as in D123006) this seems to lead to better vectorization
factors and better performance.
Differential Revision: https://reviews.llvm.org/D123007
A vector mul(sext, sext) or mul(zext, zext) will be code generated as a
single smull or umull instruction. This most notably effects v2i64
multiplies, which are otherwise not legal and need to be expanded.
The oneuse check has also been slightly changed, as it is already
checked from the use of isWideningInstruction in getCastInstrCost.
Differential Revision: https://reviews.llvm.org/D123006
Based off the script from D103695, we were exaggerating the cost of the v2i64 comparison expansion using instruction count instead of effective throughput
To perform the cost model of vector casting, the patch consider most vector
casts as their scalar form and consider those vector form of free scalr castings
as 1.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D121771
Currently we allow half types in vectors if the scalar Zfh extension
is enabled. This behavior is not inline with the vector spec. For f32
and f64 types, the Zve32f, Zve64f, Zve64d, and V explicitly control
the availablity of floating point types in vectors.
In order to make our compiler compliant, we either need to remove all support
for half in vectors or we need an extension to control it.
Draft spec here https://github.com/riscv/riscv-v-spec/pull/780
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D121345
The vectoriser sometimes generates predicated vector loops using
the llvm.get.active.lane.mask intrinsic so it's important that we
are able to calculate a valid cost for the call instruction. When
SVE is enabled we are able to use a single whilelo instruction
for some vector types - in such cases I've marked the cost as 1.
For all other cases I've set the cost according to how the intrinsic
will be expanded.
Tests added here:
Analysis/CostModel/AArch64/sve-intrinsics.ll
Analysis/CostModel/ARM/active_lane_mask.ll
Analysis/CostModel/RISCV/active_lane_mask.ll
Differential Revision: https://reviews.llvm.org/D121109
Currently the cost model under-estimates the cost of certain
FP16 conversions.
This patch updates getCastInstrCost to return more accurate costs for
the cases improved in c2ed9fd054.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D113700
The analysis passes output function name encapsulated in `'` braces,
but LV uses `"`. Harmonizing this may help in creating an update script
for the LV costmodel test checks.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D121105
The patch adds very basic cost model for masked memory op on scalable vector.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D117884
The costs of vector shifts was 2 as opposed to 1, as the nodes are
marked custom. Fix this like the others and mark the nodes as cheap.
Differential Revision: https://reviews.llvm.org/D120773
The patch adds very basic cost model for masked memory op on scalable vector.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D117884
This reverts commit 77a0da926c as we've
received multiple reports of this significantly impacting performance,
in ways that don't seem to just be target specific cost models going
wrong. I would offer some reproducers, but the test changes here seem to
be full of them!
Reverting for now and hopefully we can remove the "hack" more carefully
as we go.
While testing scalable vectors I found that if we generate a
vector splice intrinsic and run the code through the loop unroller,
we'll crash due to an invalid cost.
This adds a basic cost based on the 2 slide instructions used by the
lowering in D119303.
We probably need to factor LMUL into this, but that's true for
arithmetic instructions too. So I've ignored for the moment.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D119316
D43208 extracted `useEmulatedMaskMemRefHack()` from legality into cost model.
What it essentially does is prevents scalarized vectorization of masked memory operations:
```
// TODO: Cost model for emulated masked load/store is completely
// broken. This hack guides the cost model to use an artificially
// high enough value to practically disable vectorization with such
// operations, except where previously deployed legality hack allowed
// using very low cost values. This is to avoid regressions coming simply
// from moving "masked load/store" check from legality to cost model.
// Masked Load/Gather emulation was previously never allowed.
// Limited number of Masked Store/Scatter emulation was allowed.
```
While i don't really understand about what specifically `is completely broken`
was talking about, i believe that at least on X86 with AVX2-or-later,
this is no longer true. (or at least, i would like to know what is still broken).
So i would like to follow suit after D111460, and like wise disable that hack for AVX2+.
But since this was added for X86 specifically, let's just instead completely remove this hack.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114779
The current cost-model overestimates the cost of vector compares &
selects for ordered floating point compares. This patch fixes that by
extending the existing logic for integer predicates.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D118256
We have some bitcasts which we know will be simplified,
so their cost is zero.
Reviewed By: david-arm, sdesmalen
Differential Revision: https://reviews.llvm.org/D118019
If we are inserting into or extracting from a scalable vector we do
not know the number of elements at runtime, so we can only let the
index wrap for fixed-length vectors.
Tests added here:
Analysis/CostModel/AArch64/sve-insert-extract.ll
Differential Revision: https://reviews.llvm.org/D117099
The code size cost model for most targets uses the legalization cost for the type of the pointer of a load. If this load is followed directly by a trunc instruction, and is the only use of the result of the load, only one instruction is generated in the target assembly language. This adds a check for this case, and uses the target type of the trunc instruction if so.
This did not show any changes in CTMark code size benchmarks.
Reviewers: paquette, samparker, dmgreen
Differential Revision: https://reviews.llvm.org/D109388
Similar to D116732, this adds basic scalar sadd_with_overflow,
uadd_with_overflow, ssub_with_overflow and usub_with_overflow costs for
aarch64, which are usually quite efficiently lowered.
Differential Revision: https://reviews.llvm.org/D116734
This adds some AArch64 specific smul_with_overflow and umul_with_overflow
costs, overriding the default costs. The code generation for these mul
with overflow intrinsics is usually better than the default expansion on
AArch64. The costs come from https://godbolt.org/z/zEzYhMWqo with various
types, or llvm/test/CodeGen/AArch64/arm64-xaluo.ll.
Differential Revision: https://reviews.llvm.org/D116732
This reverts commit 640beb38e7.
That commit caused performance degradtion in Quicksilver test QS:sGPU and a functional test failure in (rocPRIM rocprim.device_segmented_radix_sort).
Reverting until we have a better solution to s_cselect_b64 codegen cleanup
Change-Id: Ibf8e397df94001f248fba609f072088a46abae08
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D115960
Change-Id: Id169459ce4dfffa857d5645a0af50b0063ce1105
1. Fixed costs inconsistency for llvm.fma.vXf16 instinsiscs.
2. Added tests for llvm.sadd.sat, llvm.ssub.sat, llvm.uadd.sat, llvm.usub.sat
intrisics since they have special processing in cost model.
3. Minor intrisics' costs tests updat and refinement.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D115385
This patch adds on an overhead cost for gathers and scatters, which
is a rough estimate based on performance investigations I have
performed on SVE hardware for various micro-benchmarks.
Differential Revision: https://reviews.llvm.org/D115143
i64 mul cost is 1cy for all cpu that support avx512. Currently
all X86 cpu uses i64 mul cost in X64 cost table which is not
true for cpu that support avx512 (skx, icx).
Reviewed By: pengfei, RKSimon
Differential Revision: https://reviews.llvm.org/D115016
The default for min is changed to 1. The behaviour of -mvscale-{min,max}
in Clang is also changed such that 16 is the max vscale when targeting
SVE and no max is specified.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D113294
MVE can treat v16i1, v8i1, v4i1 and v2i1 as different views onto the
same 16bit VPR.P0 register, with v2i1 holding two 8 bit values for the
two halves. This was never treated as a legal type in llvm in the past
as there are not many 64bit instructions and no 64bit compares. There
are a few instructions that could use it though, notably a VSELECT (as
it can handle any size using the underlying v16i8 VPSEL), AND/OR/XOR for
similar reasons, some gathers/scatter and long multiplies and VCTP64
instructions.
This patch goes through and makes v2i1 a legal type, handling all the
cases that fall out of that. It also makes VSELECT legal for v2i64 as a
side benefit. A lot of the codegen changes as a result - usually in way
that is a little better or a little worse, but still expensive. Costs
can change a little too in the process, again in a way that expensive
things remain expensive. A lot of the tests that changed are mainly to
ensure correctness - the code can hopefully be improved in the future
where it comes up in practice.
The intrinsics currently remain using the v4i1 they previously did to
emulate a v2i1. This will be changed in a followup patch but this one
was already large enough.
Differential Revision: https://reviews.llvm.org/D114449
1. Fixed vector instructions costs estimations incosistency - removed different
logic for "not simple types" since it biases costs for these types.
2. Fixed legalization penalty for vectors too big for the target: changed from
overwrite default legalization cost value estimation to added penalty.
3. Fixed few typos in tests.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D114893
We ask `TTI.getAddressComputationCost()` about the cost of computing vector address,
and then multiply it by the vector width. This doesn't make any sense,
it implies that we'd do a vector GEP and then scalarize the vector of pointers,
but there is no such thing in the vectorized IR, we perform scalar GEP's.
This is *especially* bad on X86, and was effectively prohibiting any scalarized
vectorization of gathers/scatters, because `X86TTIImpl::getAddressComputationCost()`
says that cost of vector address computation is `10` as compared to `1` for scalar.
The computed costs are similar to the ones with D111222+D111220,
but we end up without masked memory intrinsics that we'd then have to
expand later on, without much luck. (D111363)
Differential Revision: https://reviews.llvm.org/D111460
... to actually ask about i1-elt-wide mask, since that is what will probably be used on AVX512.
This unblocks D111460.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114316
I believe, this effectively completes `X86TTIImpl::getReplicationShuffleCost()`
for AVX512, other than the question of handling plain AVX512F,
where we end up with some really ugly "shuffles",
but then is there any CPU's that support AVX512, but not AVX512DQ/AVX512BW?
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114315
Apparently my methodology was suboptimal, and not only did miss all the +VL tuples,
i also missed some plain tuples. I believe, this adds everything missing.
Indeed, these manual costmodels are just not okay long-term.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114334
Much like the VPMOVM2[BW] / VPMOV[BW]2M from AVX512BW,
these either sign-extent the mask register into a vector,
or pack the mask from vector register.
Apparently, we didn't even have MCA tests for these,
added in rG2f364f6f0d3a2420ca78cbd80abb186657180e05,
so i'm just guessing that their perf characteristics
are optimal.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114314
If in addition to AVX512BW (that provides `{k}<->{i8,i16}` casts and i16 shuffles),
we have AVX512VBMI, which provides i8 shuffles, we are in an optimal situation.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114071
Note that there are many other missing costs, i'm *only* adding the ones that are queried
from `getReplicationShuffleCost()` for the existing (quite exhaustive) test coverage.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D114070
Here we get pretty lucky. AVX512F does not provide any instructions
to convert between a `k` vector mask and a vector,
but AVX512BW adds `{k}<->nX{i8,i16}`conversions,
and just as it happens, with AVX512BW we have a i16 shuffle.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113915
Currently `X86TTIImpl::getInterleavedMemoryOpCostAVX512()` asks about i8 elt type,
so this change does affect vectorization. In the end, it will ask about i1.
We should also try to promote to i16 if we have AVX512BW, i'll do that in a follow-up.
All costs here look good, i've added the missing truncation costs in preparatory patches.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113853
Some of the costs get larger here,
but i suppose that makes sense since we'd previously query
scalarization costs that may not be really representative of the reality.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113852
While this one is trivial and identical to the previous patch,
there is a weird cost change in a follow-up patch that i'm not sure about.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113851
While this one is trivial and identical to the previous patch,
there is a weird cost change in a follow-up patch that i'm not sure about.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113850
The basic idea is simple, if we don't have native shuffle for this element type,
then we must have native shuffle for wider element type,
so promote, replicate, demote.
I believe, asking `getCastInstrCost(Instruction::Trunc` is correct semantically,
case in point `trunc <32 x i32> to <32 x i8>` aka 2 * ZMM will naively result in
2 * XMM, that then will be packed into 1 * YMM,
and it should count the cost of said packing,
not just the truncations.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113609
This was noticed in D113609, hopefully it unblocks that patch.
There are likely other similar problems.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113842
VBMI introduced VPERMB, so cost-model i8 replication shuffle using it.
Note that we can still model i8 replication shufflle without VBMI,
by promoting to i16/i32. That will be done in follow-ups.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113479
BWI introduced VPERMW, so cost-model i16 replication shuffle using it.
Note that we can still model i16 replication shufflle without BWI,
by promoting to i32. That will be done in follow-ups.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113478
This models lowering to `vpermd`/`vpermq`/`vpermps`/`vpermpd`,
that take a single input vector and a single index vector,
and are cross-lane. So far i haven't seen evidence that
replication ever results in demanding more than a single
input vector per output vector.
This results in *shockingly* lesser costs :)
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113350
This finally creates proper test coverage for replication shuffles,
that are used by LV for conditional loads, and will allow to add
proper costmodel at least for AVX512.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D113324
Even though AVX512's masked mem ops (unlike AVX1/2) have a mask
that is a `VF x i1`, replication of said masks happens after
promotion of it to `VF x i8`, so we should use `i8`, not `i1`,
when calculating the cost of mask replication.
I don't really buy that masked interleaved memory loads/stores are supported on X86.
There is zero costmodel test coverage, no actual cost modelling for the generation
of the mask repetition, and basically only two LV tests.
Additionally, i'm not very interested in AVX512.
I don't know if this really helps "soft" block over at
https://reviews.llvm.org/D111460#inline-1075467,
but i think it can't make things worse at least.
When we are being told that there is a masking, instead of
completely giving up and falling back to
fully scalarizing `BasicTTIImplBase::getInterleavedMemoryOpCost()`,
let's correctly query the cost of masked memory ops,
keep all the pretty shuffle cost modelling,
but scalarize the cost computation for the mask replication.
I think, not scalarizing the shuffles themselves
may adjust the computed costs a bit,
and maybe hopefully just enough to hide the "regressions"
at https://reviews.llvm.org/D111460#inline-1075467
I do mean hide, because the test coverage is non-existent.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D112873
As it can be seen in `InnerLoopVectorizer::vectorizeInterleaveGroup()`,
in some cases (reported by `UseMaskForGaps`), the gaps in the interleaved load/store group
will be masked away by another constant mask, so there is no need to
account for the cost of replication of the mask for these.
Differential Revision: https://reviews.llvm.org/D112877
Copied from llvm/test/Transforms/LoopVectorize/X86/x86-interleaved-accesses-masked-group.ll
As discussed in D111460 / D112877 / D112873 we have basically no test coverage
for this part of cost model.
By definition, interleaving load of stride N means:
load N*VF elements, and shuffle them into N VF-sized vectors,
with 0'th vector containing elements `[0, VF)*stride + 0`,
and 1'th vector containing elements `[0, VF)*stride + 1`.
Example: https://godbolt.org/z/df561Me5E (i64 stride 4 vf 2 => cost 6)
Now, not fully interleaved load, is when not all of these vectors is demanded.
So at worst, we could just pretend that everything is demanded,
and discard the non-demanded vectors. What this means is that the cost
for not-fully-interleaved group should be not greater than the cost
for the same fully-interleaved group, but perhaps somewhat less.
Examples:
https://godbolt.org/z/a78dK5Geq (i64 stride 4 (indices 012u) vf 2 => cost 4)
https://godbolt.org/z/G91ceo8dM (i64 stride 4 (indices 01uu) vf 2 => cost 2)
https://godbolt.org/z/5joYob9rx (i64 stride 4 (indices 0uuu) vf 2 => cost 1)
Right now, for such not-fully-interleaved loads we just use the costs
for fully-interleaved loads. But at least **in general**,
that is obviously overly pessimistic, because **in general**,
not all the shuffles needed to perform the full interleaving
will end up being live.
So what this does, is naively scales the interleaving cost
by the fraction of the live members. I believe this should still result
in the right ballpark cost estimate, although it may be over/under -estimate.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D112307
This patch introduces a new function:
AArch64Subtarget::getVScaleForTuning
that returns a value for vscale that can be used for tuning the cost
model when using scalable vectors. The VScaleForTuning option in
AArch64Subtarget is initialised according to the following rules:
1. If the user has specified the CPU to tune for we use that, else
2. If the target CPU was specified we use that, else
3. The tuning is set to "generic".
For CPUs of type "generic" I have assumed that vscale=2.
New tests added here:
Analysis/CostModel/AArch64/sve-gather.ll
Analysis/CostModel/AArch64/sve-scatter.ll
Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll
Differential Revision: https://reviews.llvm.org/D110259
A few more tuples are being queried after D111546. Might be good to model them,
They all require a lot of manual assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/9bnKrefcG - for intels `Block RThroughput: =40.0`; for ryzens, `Block RThroughput: =16.0`
So could pick cost of `40`
For store we have:
https://godbolt.org/z/5s3s14dEY - for intels `Block RThroughput: =40.0`; for ryzens, `Block RThroughput: =16.0`
So we could pick cost of `40`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111945
A few more tuples are being queried after D111546. Might be good to model them,
They all require a lot of manual assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/MTaKboejM - for intels `Block RThroughput: =32.0`; for ryzens, `Block RThroughput: <=16.0`
So could pick cost of `32`
For store we have:
https://godbolt.org/z/v7xPj3Wd4 - for intels `Block RThroughput: =32.0`; for ryzens, `Block RThroughput: <=32.0`
So we could pick cost of `32`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111944
A few more tuples are being queried after D111546. Might be good to model them,
They all require a lot of manual assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/11rcvdreP - for intels `Block RThroughput: <=68.0`; for ryzens, `Block RThroughput: <=48.0`
So could pick cost of `68`
For store we have:
https://godbolt.org/z/6aM11fWcP - for intels `Block RThroughput: <=64.0`; for ryzens, `Block RThroughput: <=32.0`
So we could pick cost of `64`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111943
A few more tuples are being queried after D111546. Might be good to model them,
They all require a lot of manual assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/s5b6E6jsP - for intels `Block RThroughput: <=32.0`; for ryzens, `Block RThroughput: <=24.0`
So could pick cost of `32`
For store we have:
https://godbolt.org/z/efh99d93b - for intels `Block RThroughput: <=48.0`; for ryzens, `Block RThroughput: <=32.0`
So we could pick cost of `48`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111942
A few more tuples are being queried after D111546. Might be good to model them,
They all require a lot of manual assembly surgery.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/YTeT9M7fW - for intels `Block RThroughput: <=212.0`; for ryzens, `Block RThroughput: <=64.0`
So could pick cost of `212`
For store we have:
https://godbolt.org/z/vc954KEGP - for intels `Block RThroughput: <=90.0`; for ryzens, `Block RThroughput: <=24.0`
So we could pick cost of `90`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111940
These cases use the same codegen as AVX2 (pshuflw/pshufd) for the sub-128bit vector deinterleaving, and unpcklqdq for v2i64.
It's going to take a while to add full interleaved cost coverage, but since these are the same for SSE2 -> AVX2 it should be an easy win.
Fixes PR47437
Differential Revision: https://reviews.llvm.org/D111938
And another attempt to start untangling this ball of threads around gather.
There's `TTI::prefersVectorizedAddressing()`hoop, which confusingly defaults to `true`,
which tells LV to try to vectorize the addresses that lead to loads,
but X86 generally can not deal with vectors of addresses,
the only instructions that support that are GATHER/SCATTER,
but even those aren't available until AVX2, and aren't really usable until AVX512.
This specializes the hook for X86, to return true only if we have AVX512 or AVX2 w/ fast gather.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111546
While i've modelled most of the relevant tuples for AVX2,
that only covered fully-interleaved groups.
By definition, interleaving load of stride N means:
load N*VF elements, and shuffle them into N VF-sized vectors,
with 0'th vector containing elements `[0, VF)*stride + 0`,
and 1'th vector containing elements `[0, VF)*stride + 1`.
Example: https://godbolt.org/z/df561Me5E (i64 stride 4 vf 2 => cost 6)
Now, not fully interleaved load, is when not all of these vectors is demanded.
So at worst, we could just pretend that everything is demanded,
and discard the non-demanded vectors. What this means is that the cost
for not-fully-interleaved group should be not greater than the cost
for the same fully-interleaved group, but perhaps somewhat less.
Examples:
https://godbolt.org/z/a78dK5Geq (i64 stride 4 (indices 012u) vf 2 => cost 4)
https://godbolt.org/z/G91ceo8dM (i64 stride 4 (indices 01uu) vf 2 => cost 2)
https://godbolt.org/z/5joYob9rx (i64 stride 4 (indices 0uuu) vf 2 => cost 1)
As we have established over the course of last ~70 patches, (wow)
`BaseT::getInterleavedMemoryOpCos()` is absolutely bogus,
it is usually almost an order of magnitude overestimation,
so i would claim that we should at least use the hardcoded costs
of fully interleaved load groups.
We could go further and adjust them e.g. by the number of demanded indices,
but then i'm somewhat fearful of underestimating the cost.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111174
Without SSE41 sext/zext instructions the extensions will be split, meaning that the MUL->PMADDWD fold will split the sext_i32(x) into zext_i32(sext_i16(x))
`X86TTIImpl::getGSScalarCost()` has (at least) two issues:
* it naively computes the cost of sequence of `insertelement`/`extractelement`.
If we are operating not on the XMM (but YMM/ZMM),
this widely overestimates the cost of subvector insertions/extractions.
* Gather/scatter takes a vector of pointers, and scalarization results in us performing
scalar memory operation for each of these pointers, but we never account for the cost
of extracting these pointers out of the vector of pointers.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111222
We would like to start pushing -mcpu=generic towards enabling the set of
features that improves performance for some CPUs, without hurting any
others. A blend of the performance options hopefully beneficial to all
CPUs. The largest part of that is enabling in-order scheduling using the
Cortex-A55 schedule model. This is similar to the Arm backend change
from eecb353d0e which made -mcpu=generic perform in-order scheduling
using the cortex-a8 schedule model.
The idea is that in-order cpu's require the most help in instruction
scheduling, whereas out-of-order cpus can for the most part out-of-order
schedule around different codegen. Our benchmarking suggests that
hypothesis holds. When running on an in-order core this improved
performance by 3.8% geomean on a set of DSP workloads, 2% geomean on
some other embedded benchmark and between 1% and 1.8% on a set of
singlecore and multicore workloads, all running on a Cortex-A55 cluster.
On an out-of-order cpu the results are a lot more noisy but show flat
performance or an improvement. On the set of DSP and embedded
benchmarks, run on a Cortex-A78 there was a very noisy 1% speed
improvement. Using the most detailed results I could find, SPEC2006 runs
on a Neoverse N1 show a small increase in instruction count (+0.127%),
but a decrease in cycle counts (-0.155%, on average). The instruction
count is very low noise, the cycle count is more noisy with a 0.15%
decrease not being significant. SPEC2k17 shows a small decrease (-0.2%)
in instruction count leading to a -0.296% decrease in cycle count. These
results are within noise margins but tend to show a small improvement in
general.
When specifying an Apple target, clang will set "-target-cpu apple-a7"
on the command line, so should not be affected by this change when
running from clang. This also doesn't enable more runtime unrolling like
-mcpu=cortex-a55 does, only changing the schedule used.
A lot of existing tests have updated. This is a summary of the important
differences:
- Most changes are the same instructions in a different order.
- Sometimes this leads to very minor inefficiencies, such as requiring
an extra mov to move variables into r0/v0 for the return value of a test
function.
- misched-fusion.ll was no longer fusing the pairs of instructions it
should, as per D110561. I've changed the schedule used in the test
for now.
- neon-mla-mls.ll now uses "mul; sub" as opposed to "neg; mla" due to
the different latencies. This seems fine to me.
- Some SVE tests do not always remove movprfx where they did before due
to different register allocation giving different destructive forms.
- The tests argument-blocks-array-of-struct.ll and arm64-windows-calls.ll
produce two LDR where they previously produced an LDP due to
store-pair-suppress kicking in.
- arm64-ldp.ll and arm64-neon-copy.ll are missing pre/postinc on LPD.
- Some tests such as arm64-neon-mul-div.ll and
ragreedy-local-interval-cost.ll have more, less or just different
spilling.
- In aarch64_generated_funcs.ll.generated.expected one part of the
function is no longer outlined. Interestingly if I switch this to use
any other scheduled even less is outlined.
Some of these are expected to happen, such as differences in outlining
or register spilling. There will be places where these result in worse
codegen, places where they are better, with the SPEC instruction counts
suggesting it is not a decrease overall, on average.
Differential Revision: https://reviews.llvm.org/D110830
Split off ABS cost handling from MIN/MAX and use explicit predicates for each
Our generic expansion of ABS doesn't use NEG+CMP+SELECT any more (its now ASHR+ADD+XOR) so this needs to be updated.
Fix copy+pasta that was checking for smul_fix instead of smul_with_overflow to detected signed values.
The LShr is performed on the extended type as we use it to truncate+extract the upper/hi bits of the extended multiply.
More closely matches the default expansion from TargetLowering::expandMULO
As suggested on D111024, we should treat getCmpSelInstrCost calls without a specific predicate as matching the worst case predicate cost.
These regressions will be addressed with a mixture of D111024 and fixing other specific getCmpSelInstrCost calls to have realistic predicates.
The coverage could have cumulative explosion here,
so i'm adding only the most basic cases,
and hoping it's enough, though more can be added if needed.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/1jfGddcre - for intels `Block RThroughput: =36.0`; for ryzens, `Block RThroughput: =12.0`
So could pick cost of `36`
For store we have:
https://godbolt.org/z/ao9srMT8r - for intels `Block RThroughput: =30.0`; for ryzens, `Block RThroughput: =12.0`
So we could pick cost of `30`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111094
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/rc8jYxW6M - for intels `Block RThroughput: =18.0`; for ryzens, `Block RThroughput: =6.0`
So could pick cost of `18`.
For store we have:
https://godbolt.org/z/9PhPEr65G - for intels `Block RThroughput: =15.0`; for ryzens, `Block RThroughput: =6.0`
So we could pick cost of `15`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111093
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/onese7rec - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: =3.0`
So could pick cost of `6`.
For store we have:
https://godbolt.org/z/bMd7dddnT - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=6.0`
So we could pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111092
This one required quite a bit of an assembly surgery, but i think it's in the right ballpark..
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/na97Kb96o - for intels `Block RThroughput: <=64.0`; for ryzens, `Block RThroughput: <=32.0`
So could pick cost of `64`.
For store we have:
https://godbolt.org/z/GG1WeoKar - for intels `Block RThroughput: =66.0`; for ryzens, `Block RThroughput: <=27.5`
So we could pick cost of `66`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111091
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/jK85GWKaK - for intels `Block RThroughput: =31.0`; for ryzens, `Block RThroughput: <=17.0`
So could pick cost of `31`.
For store we have:
https://godbolt.org/z/hPWWhEEf9 - for intels `Block RThroughput: =33.0`; for ryzens, `Block RThroughput: <=13.8`
So we could pick cost of `33`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111089
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/szEj1ceee - for intels `Block RThroughput: =15.0`; for ryzens, `Block RThroughput: <=8.8`
So could pick cost of `15`.
For store we have:
https://godbolt.org/z/81bq4fTo1 - for intels `Block RThroughput: =12.0`; for ryzens, `Block RThroughput: <=10.0`
So we could pick cost of `12`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111087
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/aec96Thee - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=3.3`
So could pick cost of `6`.
For store we have:
https://godbolt.org/z/aec96Thee - for intels `Block RThroughput: =9.0`; for ryzens, `Block RThroughput: <=3.0`
So we could pick cost of `9`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111083
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/3M3hbq7n8 - for intels `Block RThroughput: =20.0`; for ryzens, `Block RThroughput: =8.0`
So could pick cost of `20`.
For store we have:
https://godbolt.org/z/zvnPYWTx7 - for intels `Block RThroughput: =20.0`; for ryzens, `Block RThroughput: =8.0`
So we could pick cost of `20`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111076
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/MTKdzjvnr - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So could pick cost of `8`.
For store we have:
https://godbolt.org/z/cMYEvqoah - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: <=4.0`
So we could pick cost of `8`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111075
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/z197317d1 - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: =2.0`
So could pick cost of `6`.
For store we have:
https://godbolt.org/z/8dzszjf9q - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=4.0`
So we could pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111073
This one required quite a bit of assembly surgery, but the trend continues, so i think this is right.
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/EKWdj8cKT - for intels `Block RThroughput: <=32.0`; for ryzens, `Block RThroughput: <=24.0`
So could pick cost of `32`.
For store we have:
https://godbolt.org/z/zj4bb9P75 - for intels `Block RThroughput: =32.0`; for ryzens, `Block RThroughput: <=16.0`
So we could pick cost of `32`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111064
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/a6rxMG6ec - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=12.0`
So could pick cost of `16`.
For store we have:
https://godbolt.org/z/ced1bdqc9 - for intels `Block RThroughput: =16.0`; for ryzens, `Block RThroughput: <=8.0`
So we could pick cost of `16`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111063
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/avq1oz98W - for intels `Block RThroughput: =8.0`; for ryzens, `Block RThroughput: =4.0`
So could pick cost of `8`.
For store we have:
https://godbolt.org/z/89PGMc1qs - for intels `Block RThroughput: =6.0`; for ryzens, `Block RThroughput: <=6.0`
So we could pick cost of `6`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111061
Finally, we are getting to the heavy-hitter stuff!
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3
For load we have:
https://godbolt.org/z/7crGWoar6 - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So could pick cost of `4`.
For store we have:
https://godbolt.org/z/T8aq3MszM - for intels `Block RThroughput: =5.0`; for ryzens, `Block RThroughput: <=2.0`
So we could pick cost of `5`.
I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D111060