Rename CalleeSavedRegs defs to avoid being overly specific:
* CSR_AMDGPU_AGPRs_32_255 => CSR_AMDGPU_AGPRs
* CSR_AMDGPU_SGPRs_30_31 + CSR_AMDGPU_SGPRs_32_105 => CSR_AMDGPU_SGPRs
* CSR_AMDGPU_SI_Gfx_SGPRs_4_29 + CSR_AMDGPU_SI_Gfx_SGPRs_64_105 =>
CSR_AMDGPU_SI_Gfx_SGPRs
* CSR_AMDGPU_HighRegs => CSR_AMDGPU
* CSR_AMDGPU_HighRegs_With_AGPRs => CSR_AMDGPU_GFX90AInsts
* CSR_AMDGPU_SI_Gfx_With_AGPRs => CSR_AMDGPU_SI_Gfx_GFX90AInsts
Introduce a class RegMask to mark the cases where we use the
CalleeSavedRegs class purely as an expedient way to produce a mask.
Update the names of these masks to not mention "CSR". Other targets also
seem to do this, so a reasonable alternative is to actually update
table-gen to include a new class to do this explicitly, but the current
approach seems harmless so I opted to just make it more explicit.
Reviewed By: arsenm, sebastian-ne
Differential Revision: https://reviews.llvm.org/D109008
Currently the return address ABI registers s[30:31], which fall in the call
clobbered register range, are added as a live-in on the function entry to
preserve its value when we have calls so that it gets saved and restored
around the calls.
But the DWARF unwind information (CFI) needs to track where the return address
resides in a frame and the above approach makes it difficult to track the
return address when the CFI information is emitted during the frame lowering,
due to the involvment of understanding the control flow.
This patch moves the return address ABI registers s[30:31] into callee saved
registers range and stops adding live-in for return address registers, so that
the CFI machinery will know where the return address resides when CSR
save/restore happen during the frame lowering.
And doing the above poses an issue that now the return instruction uses undefined
register `sgpr30_sgpr31`. This is resolved by hiding the return address register
use by the return instruction through the `SI_RETURN` pseudo instruction, which
doesn't take any input operands, until the `SI_RETURN` pseudo gets lowered to the
`S_SETPC_B64_return` during the `expandPostRAPseudo()`.
As an added benefit, this patch simplifies overall return instruction handling.
Note: The AMDGPU CFI changes are there only in the downstream code and another
version of this patch will be posted for review for the downstream code.
Reviewed By: arsenm, ronlieb
Differential Revision: https://reviews.llvm.org/D114652
Currently the return address ABI registers s[30:31], which fall in the call
clobbered register range, are added as a live-in on the function entry to
preserve its value when we have calls so that it gets saved and restored
around the calls.
But the DWARF unwind information (CFI) needs to track where the return address
resides in a frame and the above approach makes it difficult to track the
return address when the CFI information is emitted during the frame lowering,
due to the involvment of understanding the control flow.
This patch moves the return address ABI registers s[30:31] into callee saved
registers range and stops adding live-in for return address registers, so that
the CFI machinery will know where the return address resides when CSR
save/restore happen during the frame lowering.
And doing the above poses an issue that now the return instruction uses undefined
register `sgpr30_sgpr31`. This is resolved by hiding the return address register
use by the return instruction through the `SI_RETURN` pseudo instruction, which
doesn't take any input operands, until the `SI_RETURN` pseudo gets lowered to the
`S_SETPC_B64_return` during the `expandPostRAPseudo()`.
As an added benefit, this patch simplifies overall return instruction handling.
Note: The AMDGPU CFI changes are there only in the downstream code and another
version of this patch will be posted for review for the downstream code.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D114652
Replace individual operands GLC, SLC, and DLC with a single cache_policy
bitmask operand. This will reduce the number of operands in MIR and I hope
the amount of code. These operands are mostly 0 anyway.
Additional advantage that parser will accept these flags in any order unlike
now.
Differential Revision: https://reviews.llvm.org/D96469