For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good.
Fixes: https://github.com/llvm/llvm-project/issues/54981
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs. We make an exception for are call site of the SCC as
they are helpful providing information for the SCC.
Minor modifications to pointer privatization allow us to perform it even
in the CGSCC pass, similar to ArgumentPromotion.
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs.
Most intrinsics, especially "default" ones, will not call back into the
IR module. `nocallback` encodes this nicely. As it was not used before,
this patch also makes use of `nocallback` in the Attributor which
results in many more `norecurse` deductions.
Tablegen part is mechanical, test updates by script.
Differential Revision: https://reviews.llvm.org/D118680
As replacements will become more complex it is better to have a single
AA responsible for replacing a use. Before this patch AAValueSimplify*
and AAValueSimplifyReturned could both try to replace the returned
value. The latter was marginally better for the old pass manager
when a function was already carrying a `returned` attribute and when
the context of the return instruction was important. The second
shortcoming was resolved by looking for return attributes in the
AAValueSimplifyCallSiteReturned initialization. The old PM impact is
not concerning.
This is yet another step towards the removal of AAReturnedValues, the
very first AA we should now try to eliminate due to the overlapping
logic with value simplification.
There was some ad-hoc handling of liveness and manifest to avoid
breaking CGSCC guarantees. Things always slipped through though.
This cleanup will:
1) Prevent us from manifesting any "information" outside the CGSCC.
This might be too conservative but we need to opt-in to annotation
not try to avoid some problematic ones.
2) Avoid running any liveness analysis outside the CGSCC. We did have
some AAIsDeadFunction handling to this end but we need this for all
AAIsDead classes. The reason is that AAIsDead information is only
correct if we actually manifest it, since we don't (see point 1) we
cannot actually derive/use it at all. We are currently trying to
avoid running any AA updates outside the CGSCC but that seems to
impact things quite a bit.
3) Assert, don't check, that our modifications (during cleanup) modifies
only CGSCC functions.
Dropping this restriction seems to work fine (there are no assertion
failures), so it appears that either the updater got smarter or the
problematic cases are restricted elsewhere.
If doing this still causes issues, then the place to address it
would probably be 8f5bdaf481/llvm/lib/Transforms/IPO/Attributor.cpp (L1856-L1859),
which already prevents replacement outside the SCC, so I'm not
quite sure what this check is intended to avoid.
Differential Revision: https://reviews.llvm.org/D120987
We have the `clang -cc1` command-line option `-funwind-tables=1|2` and
the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind
tables (1) or asynchronous unwind tables (2)`. However, this is
encoded in LLVM IR by the presence or the absence of the `uwtable`
attribute, i.e. we lose the information whether to generate want just
some unwind tables or asynchronous unwind tables.
Asynchronous unwind tables take more space in the runtime image, I'd
estimate something like 80-90% more, as the difference is adding
roughly the same number of CFI directives as for prologues, only a bit
simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even
more, if you consider tail duplication of epilogue blocks.
Asynchronous unwind tables could also restrict code generation to
having only a finite number of frame pointer adjustments (an example
of *not* having a finite number of `SP` adjustments is on AArch64 when
untagging the stack (MTE) in some cases the compiler can modify `SP`
in a loop).
Having the CFI precise up to an instruction generally also means one
cannot bundle together CFI instructions once the prologue is done,
they need to be interspersed with ordinary instructions, which means
extra `DW_CFA_advance_loc` commands, further increasing the unwind
tables size.
That is to say, async unwind tables impose a non-negligible overhead,
yet for the most common use cases (like C++ exceptions), they are not
even needed.
This patch extends the `uwtable` attribute with an optional
value:
- `uwtable` (default to `async`)
- `uwtable(sync)`, synchronous unwind tables
- `uwtable(async)`, asynchronous (instruction precise) unwind tables
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114543
The oversight caused us to ignore call sites that are effectively dead
when we computed reachability (or more precise the call edges of a
function). The problem is that loads in the readonly callee might depend
on stores prior to the callee. If we do not track the call edge we
mistakenly assumed the store before the call cannot reach the load.
The problem is nicely visible in:
`llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll`
Caused by D118673.
Fixes https://github.com/llvm/llvm-project/issues/53726
D106720 introduced features that did not work properly as we could add
new queries after a fixpoint was reached and which could not be answered
by the information gathered up to the fixpoint alone.
As an alternative to D110078, which forced eager computation where we
want to continue to be lazy, this patch fixes the problem.
QueryAAs are AAs that allow lazy queries during their lifetime. They are
never fixed if they have no outstanding dependences and always run as
part of the updates in an iteration. To determine if we are done, all
query AAs are asked if they received new queries, if not, we only need
to consider updated AAs, as before. If new queries are present we go for
another iteration.
Differential Revision: https://reviews.llvm.org/D118669
We missed out on AANoRecurse in the module pass because we had no call
graph. With AAFunctionReachability we can simply ask if the function may
reach itself.
Differential Revision: https://reviews.llvm.org/D110099
This fixes a conceptual problem with our AAIsDead usage which conflated
call site liveness with call site return value liveness. Without the
fix tests would obviously miscompile as we make genericValueTraversal
more powerful (in a follow up). The effects on the tests are mixed but
mostly marginal. The most prominent one is the lack of `noreturn` for
functions. The reason is that we make entire blocks live at the same
time (for time reasons). Now that we actually look at the block
liveness, which we need to do, the return instructions are live and
will survive. As an example, `noreturn_async.ll` has been modified
to retain the `noreturn` even with block granularity. We could address
this easily but there is little need in practice.
blockaddresses do not participate in the call graph since the only
instructions that use them must all return to someplace within the
current function. And passes cannot retrieve a function address from a
blockaddress.
This was suggested by efriedma in D58260.
Fixes PR50881.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D112178
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
A logic incompleteness may lead MemorySSA to be too conservative
in its results. Specifically, when dealing with a call of kind
`call i32 bitcast (i1 (i1)* @test to i32 (i32)*)(i32 %1)`, where
the function `test` is declared with readonly attribute, the
bitcast is not looked through, obscuring function attributes. Hence,
some methods of CallBase (e.g., doesNotReadMemory) could provide
suboptimal results.
Differential Revision: https://reviews.llvm.org/D109888
In LLVM IR, `AlignmentBitfieldElementT` is 5-bit wide
But that means that the maximal alignment exponent is `(1<<5)-2`,
which is `30`, not `29`. And indeed, alignment of `1073741824`
roundtrips IR serialization-deserialization.
While this doesn't seem all that important, this doubles
the maximal supported alignment from 512MiB to 1GiB,
and there's actually one noticeable use-case for that;
On X86, the huge pages can have sizes of 2MiB and 1GiB (!).
So while this doesn't add support for truly huge alignments,
which i think we can easily-ish do if wanted, i think this adds
zero-cost support for a not-trivially-dismissable case.
I don't believe we need any upgrade infrastructure,
and since we don't explicitly record the IR version,
we don't need to bump one either.
As @craig.topper speculates in D108661#2963519,
this might be an artificial limit imposed by the original implementation
of the `getAlignment()` functions.
Differential Revision: https://reviews.llvm.org/D108661
When we simplify at least one operand in the Attributor simplification
we can use the InstSimplify to work on the simplified operands. This
allows us to avoid duplication of the logic.
Depends on D106189
Differential Revision: https://reviews.llvm.org/D106190
We first simplify the operands of a compare and then reason on the
simplified versions, e.g., with AANonNull.
This does improve the simplification capabilities but also fixes a
potential problem that has not yet been observed by simplifying the
operands first.
As a first step to simplify loads we only handle `null` and `undef`
underlying objects, as well as objects that have the load as a single user.
Loads of those values can be replaced by the initializer, if any.
Proper reasoning is introduced in a follow up patch
Differential Revision: https://reviews.llvm.org/D103862
Not all attributes are able to handle the interprocedural step and
follow the uses into a call site. Let them be able to combine call site
uses instead. This might result in some unused values/arguments being
leftover but it removes problems where we misused "is dead" even though
it was actually "is simplified/replaced".
We explicitly check for dead values due to constant propagation in
`AAIsDeadValueImpl::areAllUsesAssumedDead` instead.
Differential Revision: https://reviews.llvm.org/D103858
Broke check-clang, see https://reviews.llvm.org/D102307#2869065
Ran `git revert -n ebbe149a6f08535ede848a531a601ae6591cfbc5..269416d41908bb670f67af689155d5ab8eea689a`
Not all attributes are able to handle the interprocedural step and
follow the uses into a call site. Let them be able to combine call site
uses instead. This might result in some unused values/arguments being
leftover but it removes problems where we misused "is dead" even though
it was actually "is simplified/replaced".
We explicitly check for dead values due to constant propagation in
`AAIsDeadValueImpl::areAllUsesAssumedDead` instead.
Differential Revision: https://reviews.llvm.org/D103858
We often need to deal with the value lattice that contains none and
undef as special values. A simple helper makes this much nicer.
Differential Revision: https://reviews.llvm.org/D103857
When we do simplification via AAPotentialValues or AAValueConstantRange
we need to simplify the operands of an instruction we deconstruct first.
This does not only improve the result, see for example range.ll, but is
required as we allow outside AAs to provide simplification rules via
callbacks. If we do ignore the simplification rules and base other
simplifications on the IR instead we can create an inconsistent state.
The update_test_checks script can now check for global symbols and is able
to handle them properly when they differ across prefixes, e.g.,
attribute #0 might be different in different runs.
This patch simply updates all the Attributor tests with the new script.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D97906
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
Before we used to only mark unreachable static functions as dead if all
uses were known dead. Now we optimistically assume uses to be dead until
proven otherwise.
D70365 allows us to make attributes default. This is a follow up to
actually make nosync, nofree and willreturn default. The approach we
chose, for now, is to opt-in to default attributes to avoid introducing
problems to target specific intrinsics. Intrinsics with default
attributes can be created using `DefaultAttrsIntrinsic` class.
This commit cleans up the ::initialize method of various AAs in the
following ways:
- If an associated function is required, give up on declarations.
This was discovered as a real problem when lots of llvm.dbg.XXX
call sites were assumed `noreturn` until proven otherwise. That
does not make any sense and caused huge regressions and missed
deductions.
- Require more associated declarations for function interface AAs.
- Use the IRAttribute::initialize to determine if function interface
AAs can be used in IPO, don't replicate the checks (especially
isFunctionIPOAmendable) all over the place. Arguably the function
declaration check should be moved to some central place to.
Summary:
The module slice describes which functions we can analyze and transform
while working on an SCC as part of the Attributor-CGSCC pass. So far we
simply restricted it to the SCC.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D86319
Even though `noundef` IR attribute might be attached to non-void type values, AANoUndef is mistakenly identified for pointer type values only.
This patch fixes that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86737
This patch introduces a new abstract attribute `AANoUndef` which corresponds to `noundef` IR attribute and deduce them.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85184
Before this change we looked through all memory operations in a function
even if the first was an unknown call that could do anything. This did
cost a lot of time but there is little use to do so. We also avoid
creating AAs for things that we would have looked at in case no other AA
will; that is the reason for the test changes.
Running only the attributor-cgscc pass on a IR version of
`llvm-test-suite/MultiSource/Applications/SPASS/clause.c` reduced the
time we spend in `AAMemoryLocation::update` from 4% total to
0.9% (disclaimer: no accurate measurements).
Before we tired to create a dominator tree for a declaration when we
wanted to determine if the function pointer is `nonnull`. We now avoid
looking at global values if `Value::getPointerDereferenceableBytes` not
already determined `nonnull`.