shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
This extends the transform added with 0353c2c996.
If the shuffle reduces vector length, the transform
reduces the width of the cast, so that should be a
win for most codegen (if not, it can be inverted).
shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
This extends the transform added with 0353c2c996.
If the casts are to a larger element type, the transform
reduces shuffle bit width, so that should be a win for
most codegen (if not, it can be inverted).
shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
This is similar to a recent transform with fneg ( b331a7ebc1 ),
but this is intentionally the most conservative first step to
try to avoid regressions in codegen. There are several
restrictions that could be removed as follow-up enhancements.
Note that a cast with a unary shuffle is currently canonicalized
in the other direction (shuffle after cast - D103038 ). We might
want to invert that to be consistent with this patch.
For the unary shuffle pattern, this is opposite to what we try
to do with binops, but it seems better to keep it consistent
with the motivating binary shuffle pattern. On that, it is
clearly better on the usual no-extra uses case.
There is a chance that this will pull an fneg away from some
other binop and cause a regression in codegen, but that should
be invertible in the backend. The transform is birectional:
https://alive2.llvm.org/ce/z/kKaKCUhttps://alive2.llvm.org/ce/z/3DesfwFixes#45631
The basic idea to this is that a) having a single canonical type makes CSE easier, and b) many of our transforms are inconsistent about which types we end up with based on visit order.
I'm restricting this to constants as for non-constants, we'd have to decide whether the simplicity was worth extra instructions. For constants, there are no extra instructions.
We chose the canonical type as i64 arbitrarily. We might consider changing this to something else in the future if we have cause.
Differential Revision: https://reviews.llvm.org/D115387
This patch is for fixing potential shufflevector-related bugs like D93818.
As D93818, this patch change shufflevector's default placeholder to poison.
To reduce risk, it was divided into several patches, and this patch is for InstCombineVectorOps.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110230
This patch is for fixing potential shufflevector-related bugs like D93818.
As D93818, this patch change shufflevector's default placeholder to poison.
To reduce risk, it was divided into several patches, and this patch is for InstCombineCompares and InstructionCombining.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110227
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93793
Currently undef is used as a don’t-care vector when constructing a vector using a series of insertelement.
However, this is problematic because undef isn’t undefined enough.
Especially, a sequence of insertelement can be optimized to shufflevector, but using undef as its placeholder makes shufflevector a poison-blocking instruction because undef cannot be optimized to poison.
This makes a few straightforward optimizations incorrect, such as:
```
; https://bugs.llvm.org/show_bug.cgi?id=44185
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
%xv = insertelement <4 x float> %q, float %x, i32 2
%r = shufflevector <4 x float> %y, <4 x float> %xv, <4 x i32> { 0, 6, 2, undef }
ret <4 x float> %r ; %r[3] is undef
}
=>
define <4 x float> @insert_not_undef_shuffle_translate_commute(float %x, <4 x float> %y, <4 x float> %q) {
%r = insertelement <4 x float> %y, float %x, i32 1
ret <4 x float> %r ; %r[3] = %y[3], incorrect if %y[3] = poison
}
Transformation doesn't verify!
ERROR: Target is more poisonous than source
```
I’d like to suggest
1. Using poison as insertelement’s placeholder value (IRBuilder::CreateVectorSplat should be patched too)
2. Updating shufflevector’s semantics to return poison element if mask is undef
Note that poison is currently lowered into UNDEF in SelDag, so codegen part is okay.
m_Undef() matches PoisonValue as well, so existing optimizations will still fire.
The only concern is hidden miscompilations that will go incorrect when poison constant is given.
A conservative way is copying all tests having `insertelement undef` & replacing it with `insertelement poison` & run Alive2 on it, but it will create many tests and people won’t like it. :(
Instead, I’ll simply locally maintain the tests and run Alive2.
If there is any bug found, I’ll report it.
Relevant links: https://bugs.llvm.org/show_bug.cgi?id=43958 , http://lists.llvm.org/pipermail/llvm-dev/2019-November/137242.html
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93586
This is one of the deficiencies that can be observed in
https://godbolt.org/z/YPczsG after D91038 patch set.
This exposed two missing folds, one was fixed by the previous commit,
another one is `(A ^ B) | ~(A ^ B) --> -1` / `(A ^ B) & ~(A ^ B) --> 0`.
`-early-cse` will catch it: https://godbolt.org/z/4n1T1v,
but isn't meaningful to fix it in InstCombine,
because we'd need to essentially do our own CSE,
and we can't even rely on `Instruction::isIdenticalTo()`,
because there are no guarantees that the order of operands matches.
So let's just accept it as a loss.
Summary: Rewrite the fsub-0.0 idiom to fneg and always emit fneg for fp
negation. This also extends the scalarization cost in instcombine for unary
operators to result in the same IR rewrites for fneg as for the idiom.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D75467
bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
This patch depends on the splat analysis enhancement in D73549.
See the test with comment:
; Negative test - mismatched splat elements
...as the motivation for that first patch.
The motivating case for reassociating splatted ops is shown in PR42174:
https://bugs.llvm.org/show_bug.cgi?id=42174
In that example, a slight change in order-of-associative math results
in a big difference in IR and codegen. This patch gets all of the
unnecessary shuffles out of the way, but doesn't address the potential
scalarization (see D50992 or D73480 for that).
Differential Revision: https://reviews.llvm.org/D73703
And simultaneously enhance SimplifyDemandedVectorElts() to rcognize that
pattern. That preserves some of the old optimizations in IR.
Given a shuffle that includes undef elements in an otherwise identity mask like:
define <4 x float> @shuffle(<4 x float> %arg) {
%shuf = shufflevector <4 x float> %arg, <4 x float> undef, <4 x i32> <i32 undef, i32 1, i32 2, i32 3>
ret <4 x float> %shuf
}
We were simplifying that to the input operand.
But as discussed in PR43958:
https://bugs.llvm.org/show_bug.cgi?id=43958
...that means that per-vector-element poison that would be stopped by the shuffle can now
leak to the result.
Also note that we still have (and there are tests for) the same transform with no undef
elements in the mask (a fully-defined identity mask). I don't think there's any
controversy about that case - it's a valid transform under any interpretation of
shufflevector/undef/poison.
Looking at a few of the diffs into codegen, I don't see any difference in final asm. So
depending on your perspective, that's good (no real loss of optimization power) or bad
(poison exists in the DAG, so we only partially fixed the bug).
Differential Revision: https://reviews.llvm.org/D70246
Currently we miss folds with undef and identity values for binary ops
that do not fold to undef in general.
We can generalize the identity simplifications and do them before
checking for undef in particular.
Alive checks:
* OR - https://rise4fun.com/Alive/8OsK
* AND - https://rise4fun.com/Alive/e3tE
This will also allow us to remove some now redundant cases throughout
the function, but I would like to do this as follow-up. That should make
tracking down potential issues easier.
Reviewers: spatel, RKSimon, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D70169
I think we have to be a bit more careful when it comes to moving
ops across shuffles, if the op does restrict undef. For example, without
this patch, we would move 'and %v, <0, 0, -1, -1>' over a
'shufflevector %a, undef, <undef, undef, 1, 2>'. As a result, the first
2 lanes of the result are undef after the combine, but they really
should be 0, unless I am missing something.
For ops that do fold to undef on undef operands, the current behavior
should be fine. I've add conservative check OpDoesRestrictUndef, maybe
there's a better existing utility?
Reviewers: spatel, RKSimon, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D70093
This is reduced from a fuzzer test:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14890
Usually, demanded elements should be able to simplify shuffle
mask elements that are pointing to undef elements of its source
operands, but that doesn't happen in the test case.
llvm-svn: 361533
This should be a valid exception to the general rule of not creating new shuffle masks in IR...
because we already do it. :)
Also, DAG combining/legalization will undo this by widening the shuffle back out if needed.
Explanation for how we already do this: SLP or vector source can create chains of insert/extract
as shown in 1 of the examples from PR16739:
https://godbolt.org/z/NlK7rAhttps://bugs.llvm.org/show_bug.cgi?id=16739
And we expect instcombine or DAGCombine to clean that up by creating relatively simple shuffles.
Differential Revision: https://reviews.llvm.org/D62024
llvm-svn: 361338
As discussed in D62024, we want to limit any potential IR
transforms of shuffles to cases where we know the SDAG
conversion would result in equivalent patterns for these
IR variants.
llvm-svn: 361317
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
As discussed in D53037, this can lead to worse codegen, and we
don't generally expect the backend to be able to optimize
arbitrary shuffles. If there's only one use of the 1st shuffle,
that means it's getting removed, so that should always be
safe.
llvm-svn: 353235
When we have a shuffle that extends a source vector with undefs
and then do some binop on that, we must make sure that the extra
elements remain undef with that binop if we reverse the order of
the binop and shuffle.
'or' is probably the easiest example to show the bug because
'or C, undef --> -1' (not undef). But there are other
opcode/constant combinations where this is true as shown by
the 'shl' test.
llvm-svn: 348191
This is part of the missing IR-level folding noted in D52912.
This should be ok as a canonicalization because the new shuffle mask can't
be any more complicated than the existing shuffle mask. If there's some
target where the shorter vector shuffle is not legal, it should just end up
expanding to something like the pair of shuffles that we're starting with here.
Differential Revision: https://reviews.llvm.org/D53037
llvm-svn: 344476
We're a long way from D50992 and D51553, but this is where we have to start.
We weren't back-propagating undefs into binop constant values for anything but
add/sub/mul/and/or/xor.
This is likely because we have to be careful about not introducing UB/poison
with div/rem/shift. But I suspect we already are getting the poison part wrong
for add/sub/mul (although it may not be possible to expose the bug currently
because we use SimplifyDemandedVectorElts from a limited set of opcodes).
See the discussion/implementation from D48987 and D49047.
This patch just enables functionality for FP ops because those do not have
UB/poison potential.
llvm-svn: 343727
As noted in post-commit comments for D52548, the limitation on
increasing vector length can be applied by opcode.
As a first step, this patch only allows insertelement to be
widened because that has no logical downsides for IR and has
little risk of pessimizing codegen.
This may cause PR39132 to go into hiding during a full compile,
but that bug is not fixed.
llvm-svn: 343406
InstCombine would propagate shufflevector insts that had wider output vectors onto
predecessors, which would sometimes push undef's onto the divisor of a div/rem and
result in bad codegen.
I've fixed this by just banning propagating shufflevector back if the result of
the shufflevector is wider than the input vectors.
Patch by: @sheredom (Neil Henning)
Differential Revision: https://reviews.llvm.org/D52548
llvm-svn: 343329
These are the updated baseline tests for D52548 -
I'm putting the tests next to the tests where the transform
functions as expected, so we can see the intended/unintended
consequences.
Patch by: @sheredom (Neil Henning)
llvm-svn: 343328
If the fsub in this pattern was replaced by an actual fneg
instruction, we would need to add a fold to recognize that
because fneg would not be a binop.
llvm-svn: 343041
This lines up with the behavior of an existing transform where if both
operands of the binop are shuffled, we allow moving the binop before the
shuffle regardless of whether the shuffle changes the size of the vector.
llvm-svn: 340787
As discussed in D49047 / D48987, shift-by-undef produces poison,
so we can't use undef vector elements in that case..
Note that we need to extend this for poison-generating flags,
and there's a proposal to create poison from FMF in D47963,
llvm-svn: 336562