The unrolling code was previously inserting new cloned blocks at the end of the function. The result of this with typical loop structures is that the new iterations are placed far from the initial iteration.
With unrolling, the general assumption is that the a) the loop is reasonable hot, and b) the first Count-1 copies of the loop are rarely (if ever) loop exiting. As such, placing Count-1 copies out of line is a fairly poor code placement choice. We'd much rather fall through into the hot (non-exiting) path. For code with branch profiles, later layout would fix this, but this may have a positive impact on non-PGO compiled code.
However, the real motivation for this change isn't performance. Its readability and human understanding. Having to jump around long distances in an IR file to trace an unrolled loop structure is error prone and tedious.
Unrolling with more iterations than MaxTripCount is pointless, as
those iterations can never be executed. As such, we clamp ULO.Count
to MaxTripCount if it is known. This means we no longer need to
consider iterations after MaxTripCount for exit folding, and the
CompletelyUnroll flag becomes independent of ULO.TripCount.
Differential Revision: https://reviews.llvm.org/D103748
For a runtime loop if we can compute its trip count upperbound:
Don't unroll if:
1. loop is not guaranteed to run either zero or upperbound iterations; and
2. trip count upperbound is less than UnrollMaxUpperBound
Unless user or TTI asked to do so.
If unrolling, limit unroll factor to loop's trip count upperbound.
Differential Revision: https://reviews.llvm.org/D62989
Change-Id: I6083c46a9d98b2e22cd855e60523fdc5a4929c73
llvm-svn: 373017