This flag serves no purpose other than to prevent us walking through a type to
check whether it contains an 'auto' specifier; this duplication of information
is error-prone, does not appear to provide any performance benefit, and will
become less practical once we support C++1z deduced class template types and
eventually constrained types from the Concepts TS.
No functionality change intended.
llvm-svn: 291737
filter out the implicilty imported modules at CodeGen instead of removing the
implicit ImportDecl when an implementation TU of a module imports a header of
that same module.
llvm-svn: 291688
This patch is to implement sema and parsing for 'target teams distribute simd’ pragma.
Differential Revision: https://reviews.llvm.org/D28252
llvm-svn: 291579
This commit ensures that clang avoids the redundant -Wshadow warning for
variables that already get a "redefinition of " error.
rdar://29067894
Differential Revision: https://reviews.llvm.org/D28350
llvm-svn: 291564
Don't prematurely clean up an RAII object; there's another RAII object in the
same scope that tries to save and restore the same member!
llvm-svn: 291551
This patch is to add support of the 'is_device_ptr' clause with the 'target parallel for' pragma.
Differential Revision: https://reviews.llvm.org/D28255
llvm-svn: 291540
This patch is to add support of the 'is_device_ptr' clause with the 'target parallel for simd' pragma.
Differential Revision: https://reviews.llvm.org/D28402
llvm-svn: 291537
properly even when a non-type template parameter has a dependent type.
Previously, if a non-type template parameter was dependent, but not dependent
on an outer level of template parameter, we would not match the type of the
parameter. Under [temp.arg.template], we are supposed to check that the types
are equivalent, which means checking for syntactic equivalence in the dependent
case.
This also fixes some accepts-invalids when passing templates with auto-typed
non-type template parameters as template template arguments.
llvm-svn: 291512
Fixes a regression introduced in r291045, which would lead to link
errors. While we should no longer encounter unparsed or uninstantiated
default arguments in this codepath, we still need to call
CheckCXXDefaultArgExpr to mark the default argument expressions as
ODR-used.
llvm-svn: 291453
Check for implicit conversion sequences for non-dependent function
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside the
immediate context is much more common during substitution than during implicit
conversion sequence formation.
This re-commits r290808, reverted in r290811 and r291412, with a couple of
fixes for handling of explicitly-specified non-trailing template argument
packs.
llvm-svn: 291427
This issue clarifies how deduction proceeds past a non-trailing function
parameter pack. Essentially, the pack itself is skipped and consumes no
arguments (except for those implied by an explicitly-specified template
arguments), and nothing is deduced from it. As a small fix to the standard's
rule, we do not allow subsequent deduction to change the length of the function
parameter pack (by preventing extension of the explicitly-specified pack if
present, and otherwise deducing all contained packs to empty packs).
llvm-svn: 291425
`diagnose_if` can be used to have clang emit either warnings or errors
for function calls that meet user-specified conditions. For example:
```
constexpr int foo(int a)
__attribute__((diagnose_if(a > 10, "configurations with a > 10 are "
"expensive.", "warning")));
int f1 = foo(9);
int f2 = foo(10); // warning: configuration with a > 10 are expensive.
int f3 = foo(f2);
```
It currently only emits diagnostics in cases where the condition is
guaranteed to always be true. So, the following code will emit no
warnings:
```
constexpr int bar(int a) {
foo(a);
return 0;
}
constexpr int i = bar(10);
```
We hope to support optionally emitting diagnostics for cases like that
(and emitting runtime checks) in the future.
Release notes will appear shortly. :)
Differential Revision: https://reviews.llvm.org/D27424
llvm-svn: 291418
Add a visitor for lambda expressions to RecordExprEvaluator in ExprConstant.cpp that creates an empty APValue of Struct type to represent the closure object. Additionally, add a LambdaExpr visitor to the TemporaryExprEvaluator that forwards constant evaluation of immediately-called-lambda-expressions to the one in RecordExprEvaluator through VisitConstructExpr.
This patch supports:
constexpr auto ID = [] (auto a) { return a; };
static_assert(ID(3.14) == 3.14);
static_assert([](auto a) { return a + 1; }(10) == 11);
Lambda captures are still not supported for constexpr lambdas.
llvm-svn: 291416
Check for implicit conversion sequences for non-dependent function
template parameters between deduction and substitution. The idea is to accept
as many cases as possible, on the basis that substitution failure outside the
immediate context is much more common during substitution than during implicit
conversion sequence formation.
This re-commits r290808, reverted in r290811, with a fix for handling of
explicitly-specified template argument packs.
llvm-svn: 291410
deduction in partial ordering.
This prevents us from crashing due to attempting to instantiate the same class
template specialization definition multiple times. (Debug builds also appear to
sometimes hit the stack limit before hitting the instantiation depth limit in
this case.)
llvm-svn: 291407
The rule we use is that a construction of a class type T from an argument of
type U cannot use an inherited constructor if U is the same as T or is derived
from T (or if the initialization would first convert it to such a type). This
(approximately) matches the rule in use by GCC, and matches the current proposed
DR resolution.
llvm-svn: 291403
This patch has been sitting in review hell since july 2016 and our lack of constexpr lambda support is getting embarrassing (given that I've had a branch that implements the feature (modulo *this capture) for over a year. While in Issaquah I was enjoying shamelessly trying to convince folks of the lie that this was Richard's fault ;) I won't be able to do so in Kona since I won't be attending - so I'm going to aim to have this feature be implemented by then.
I'm quite confident of the approach in this patch, which simply maps the static-invoker 'thunk' back to the corresponding call-operator (specialization).
Thanks!
llvm-svn: 291397
This implements something like the current direction of DR1581: we use a narrow
syntactic check to determine the set of places where a constant expression
could be evaluated, and only instantiate a constexpr function or variable if
it's referenced in one of those contexts, or is odr-used.
It's not yet clear whether this is the right set of syntactic locations; we
currently consider all contexts within templates that would result in odr-uses
after instantiation, and contexts within list-initialization (narrowing
conversions take another victim...), as requiring instantiation. We could in
principle restrict the former cases more (only const integral / reference
variable initializers, and contexts in which a constant expression is required,
perhaps). However, this is sufficient to allow us to accept libstdc++ code,
which relies on GCC's behavior (which appears to be somewhat similar to this
approach).
llvm-svn: 291318
dependent context and can't be used in a constant expression.
Per C++ [temp.inst]p2, "the instantiation of a static data member does not
occur unless the static data member is used in a way that requires the
definition to exist".
This doesn't /quite/ match that, as we still instantiate static data members
that are usable in constant expressions even if the use doesn't require a
definition. A followup patch will fix that for both variables and functions.
llvm-svn: 291295
Now when completing blocks properties that return void the block call completion
result shows up before the setter, otherwise the setter completion shows up
before the block call completion. We normally want to use the result of the
block call, so one typically wouldn't call a block that returns a non-void type
in a standalone statement.
rdar://28846153
Differential Revision: https://reviews.llvm.org/D26034
llvm-svn: 291232
We were previously incorrectly using TDK_TooFewArguments to report a template
argument list that's too short, but it actually means that the number of
arguments in a top-level function call was insufficient. When diagnosing the
problem, SemaOverload would (rightly) assert that the failure kind didn't make
any sense.
llvm-svn: 291064
Summary:
Replace some old code that probably pre-dated the change to delay
emission of dllexported code until after the closing brace of the
outermost record type. Only uninstantiated default argument expressions
need to be handled now. It is enough to instantiate default argument
expressions when instantiating dllexported default ctors. This also
fixes some double-diagnostic issues in this area.
Fixes PR31500
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D28274
llvm-svn: 291045
Most code paths would already bail out in this case, but certain paths,
particularly overload resolution and typo correction, would not. Carrying on
with an invalid declaration could in some cases result in crashes due to
downstream code relying on declaration invariants that are not necessarily
met for invalid declarations, and in other cases just resulted in undesirable
follow-on diagnostics.
llvm-svn: 291030
Previously, if an overloaded function in a braced-init-list was encountered in
template argument deduction, and the overload set couldn't be resolved to a
particular function, we'd immediately produce a deduction failure. That's not
correct; this situation is supposed to result in that particular P/A pair being
treated as a non-deduced context, and deduction can still succeed if the type
can be deduced from elsewhere.
llvm-svn: 291014
Previously, if the arguments for a parameter pack contained a braced-init-list,
we would abort deduction (keeping the pack deductions from prior arguments) at
the point when we reached the braced-init-list, resulting in wrong deductions
and rejects-valids. We now just leave a "hole" in the pack for such an argument,
which needs to be filled by another deduction of the same pack.
llvm-svn: 290933
When a parameter pack has multiple corresponding arguments, and some subset of
them are overloaded functions, it's possible that some subset of the parameters
are non-deduced contexts. In such a case, keep deducing from the remainder of
the arguments, and resolve the incomplete pack against whatever other
deductions we've performed for the pack.
GCC, MSVC, and ICC give three different bad behaviors for this case; what we do
now (and what we did before) don't exactly match any of them, sadly :( I'm
getting a core issue opened to specify more precisely how this should be
handled.
llvm-svn: 290923
This patch is to implement sema and parsing for 'target teams distribute parallel for simd’ pragma.
Differential Revision: https://reviews.llvm.org/D28202
llvm-svn: 290862
In many translation units I have tried, the calls to isIgnored() removed
in this patch are more expensive than doing the analysis that is behind
it. The speed-up in translation units I have tried is between 10 and
20%.
Review: https://reviews.llvm.org/D28208
llvm-svn: 290842
This reverts commit r290808, as it broken all ARM and AArch64 test-suite
test: MultiSource/UnitTests/C++11/frame_layout
Also, please, next time, try to write a commit message in according to
our guidelines:
http://llvm.org/docs/DeveloperPolicy.html#commit-messages
llvm-svn: 290811