The version of this instruction with the .w suffix already correctly accepts
this, but the alias without the .w did not.
Differential Revision: https://reviews.llvm.org/D26499
llvm-svn: 286446
When the base register (register pointing to the jump table) is the PC, we expect the jump table to directly follow the jump sequence with no intervening padding.
If there is intervening padding, the calculated offsets will not be correct. One solution would be to account for any padding in the emitted LDRB instruction, but at the moment we don't support emitting MCExprs for the load offset.
In the meantime, it's correct and only a slight amount worse to just move the padding up, from just before the jump table to just before the jump instruction sequence. We can do that by emitting code alignment before the jump sequence, as we know the number of instructions in the sequence is always 4.
llvm-svn: 286107
This handles the last case of the builtin function calls that we would
generate code which differed from Microsoft's ABI. Rather than
generating a call to `__pow{d,s}i2` we now promote the parameter to a
float or double and invoke `powf` or `pow` instead.
Addresses PR30825!
llvm-svn: 286082
Summary: ARMv6m supports dmb etc fench instructions but not ldrex/strex etc. So for some atomic load/store, LLVM should inline instructions instead of lowering to __sync_ calls.
Reviewers: rengolin, efriedma, t.p.northover, jmolloy
Subscribers: efriedma, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D26120
llvm-svn: 285969
This recommits r281323, which was backed out for two reasons. One, a selfhost failure, and two, it apparently caused Chromium failures. Actually, the latter was a red herring. The log has expired from the former, but I suspect that was a red herring too (actually caused by another problematic patch of mine). Therefore reapplying, and will watch the bots like a hawk.
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 285893
As it stands, the OperandMatchResultTy is only included in the generated
header if there is custom operand parsing. However, almost all backends
make use of MatchOperand_Success and friends from OperandMatchResultTy for
e.g. parseRegister. This is a pain when starting an AsmParser for a new
backend that doesn't yet have custom operand parsing. Move the enum to
MCTargetAsmParser.h.
This patch is a prerequisite for D23563
Differential Revision: https://reviews.llvm.org/D23496
llvm-svn: 285705
[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
llvm-svn: 285690
Generate the slowest possible codepath for noopt CodeGen. Even trying to be
clever with the negated jump can cause out-of-range jumps. Use a wide branch
instead. Although the code is modelled simplistically, the later optimizations
would recombine the branching into `cbz` if possible. This re-enables the
previous optimization as well as hopefully gives us working code in all cases.
Addresses PR30356!
llvm-svn: 285649
The Windows ARM target expects the compiler to emit a division-by-zero check.
The check would use the form of:
cmp r?, #0
cbz .Ltrap
b .Lbody
.Lbody:
...
.Ltrap:
udf #249 @ __brkdiv0
This works great most of the time. However, if the body of the function is
greater than 127 bytes, the branch target limitation of cbz becomes an issue.
This occurs in the unoptimized code generation cases sometimes (like in
compiler-rt).
Since this is a matter of correctness, possibly pay a small penalty instead. We
now form this slightly differently:
cbnz .Lbody
udf #249 @ __brkdiv0
.Lbody:
...
The positive case is through the branch instead of being the next instruction.
However, because of the basic block layout, the negated branch is going to be
a short distance always (2 bytes away, after the inserted __brkdiv0).
The new t__brkdiv0 instruction is required to explicitly mark the instruction as
a terminator as the generic UDF instruction is not a terminator.
Addresses PR30532!
llvm-svn: 285312
UMAAL is a DSP instruction and it is not available on thumbv7m
(Cortex-M3) and thumbv6m (Cortex-M0+1) targets. Also fix wrong
CHECK prefix in longMAC.ll test.
Patch by Vadzim Dambrouski.
Differential Revision: https://reviews.llvm.org/D25890
llvm-svn: 285278
It would be a very nice invariant to rely on, but unfortunately it doesn't
necessarily hold (and the causes of mis-sorted reglists appear to be quite
varied) so to be robust the frame lowering code can't assume that the first
register in the list is also the first one that actually gets pushed.
Should fix an issue where we were turning something like:
push {r8, r4, r7, lr}
sub sp, #24
into nonsense like:
push {r2, r3, r4, r5, r6, r7, r8, r4, r7, lr}
llvm-svn: 285232
Passing a MachineFunction as argument is more natural and avoids an
unnecessary round-trip through the logic determining the correct
Subtarget because MachineFunction already has a reference anyway.
llvm-svn: 285039
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.
No functionality change intended.
llvm-svn: 284721
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
llvm-svn: 284580
This renames the function for checking FP function attribute values and also
adds more build attribute tests (which are in separate files because build
attributes are set per file).
Differential Revision: https://reviews.llvm.org/D25625
llvm-svn: 284571
The custom lowering is pretty straightforward: basically, just AND
together the two halves of a <4 x i32> compare.
Differential Revision: https://reviews.llvm.org/D25713
llvm-svn: 284536
This patch assigns cost of the scaling used in addressing for Cortex-R52.
On Cortex-R52 a negated register offset takes longer than a non-negated
register offset, in a register-offset addressing mode.
Differential Revision: http://reviews.llvm.org/D25670
Reviewer: jmolloy
llvm-svn: 284460
This patch adds simplified support for tail calls on ARM with XRay instrumentation.
Known issue: compiled with generic flags: `-O3 -g -fxray-instrument -Wall
-std=c++14 -ffunction-sections -fdata-sections` (this list doesn't include my
specific flags like --target=armv7-linux-gnueabihf etc.), the following program
#include <cstdio>
#include <cassert>
#include <xray/xray_interface.h>
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fC() {
std::printf("In fC()\n");
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fB() {
std::printf("In fB()\n");
fC();
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fA() {
std::printf("In fA()\n");
fB();
}
// Avoid infinite recursion in case the logging function is instrumented (so calls logging
// function again).
[[clang::xray_never_instrument]] void simplyPrint(int32_t functionId, XRayEntryType xret)
{
printf("XRay: functionId=%d type=%d.\n", int(functionId), int(xret));
}
int main(int argc, char* argv[]) {
__xray_set_handler(simplyPrint);
printf("Patching...\n");
__xray_patch();
fA();
printf("Unpatching...\n");
__xray_unpatch();
fA();
return 0;
}
gives the following output:
Patching...
XRay: functionId=3 type=0.
In fA()
XRay: functionId=3 type=1.
XRay: functionId=2 type=0.
In fB()
XRay: functionId=2 type=1.
XRay: functionId=1 type=0.
XRay: functionId=1 type=1.
In fC()
Unpatching...
In fA()
In fB()
In fC()
So for function fC() the exit sled seems to be called too much before function
exit: before printing In fC().
Debugging shows that the above happens because printf from fC is also called as
a tail call. So first the exit sled of fC is executed, and only then printf is
jumped into. So it seems we can't do anything about this with the current
approach (i.e. within the simplification described in
https://reviews.llvm.org/D23988 ).
Differential Revision: https://reviews.llvm.org/D25030
llvm-svn: 284456
This patch assigns cost of the scaling used in addressing.
On many ARM cores, a negated register offset takes longer than a
non-negated register offset, in a register-offset addressing mode.
For instance:
LDR R0, [R1, R2 LSL #2]
LDR R0, [R1, -R2 LSL #2]
Above, (1) takes less cycles than (2).
By assigning appropriate scaling factor cost, we enable the LLVM
to make the right trade-offs in the optimization and code-selection phase.
Differential Revision: http://reviews.llvm.org/D24857
Reviewers: jmolloy, rengolin
llvm-svn: 284127
Reverts r283938 to reinstate r283867 with a fix.
The original change had an ArrayRef referring to a destroyed temporary
initializer list. Use plain C arrays instead.
llvm-svn: 283942
The high registers are not allocatable in Thumb1 functions, but they
could still be used by inline assembly, so we need to save and restore
the callee-saved high registers (r8-r11) in the prologue and epilogue.
This is complicated by the fact that the Thumb1 push and pop
instructions cannot access these registers. Therefore, we have to move
them down into low registers before pushing, and move them back after
popping into low registers.
In most functions, we will have low registers that are also being
pushed/popped, which we can use as the temporary registers for
saving/restoring the high registers. However, this is not guaranteed, so
we may need to push some extra low registers to ensure that the high
registers can be saved/restored. For correctness, it would be sufficient
to use just one low register, but if we have enough low registers
available then we only need one push/pop instruction, rather than one
per high register.
We can also use the argument/return registers when they are not live,
and the link register when saving (but not restoring), reducing the
number of extra registers we need to push.
There are still a few extreme edge cases where we need two push/pop
instructions, because not enough low registers can be made live in the
prologue or epilogue.
In addition to the regression tests included here, I've also tested this
using a script to generate functions which clobber different
combinations of registers, have different numbers of argument and return
registers (including variadic arguments), allocate different fixed sized
objects on the stack, and do or don't use variable sized allocas and the
__builtin_return_address intrinsic (all of which affect the available
registers in the prologue and epilogue). I ran these functions in a test
harness which verifies that all of the callee-saved registers are
correctly preserved.
Differential Revision: https://reviews.llvm.org/D24228
llvm-svn: 283867
Currently, the Int_eh_sjlj_dispatchsetup intrinsic is marked as
clobbering all registers, including floating-point registers that may
not be present on the target. This is technically true, as we could get
linked against code that does use the FP registers, but that will not
actually work, as the soft-float code cannot save and restore the FP
registers. SjLj exception handling can only work correctly if either all
or none of the code is built for a target with FP registers. Therefore,
we can assume that, when Int_eh_sjlj_dispatchsetup is compiled for a
soft-float target, it is only going to be linked against other
soft-float code, and so only clobbers the general-purpose registers.
This allows us to check that no non-savable registers are clobbered when
generating the prologue/epilogue.
Differential Revision: https://reviews.llvm.org/D25180
llvm-svn: 283866
The instructions VLDM/VSTM can only access word-aligned memory
locations and produce alignment fault if the condition is not met.
The compiler currently generates VLDM/VSTM for v2f64 load/store
regardless the alignment of the memory access. Instead, if a v2f64
load/store is not word-aligned, the compiler should generate
VLD1/VST1. For each non double-word-aligned VLD1/VST1, a VREV
instruction should be generated when targeting Big Endian.
Differential Revision: https://reviews.llvm.org/D25281
llvm-svn: 283763
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
Reapplying r283383 after revert in r283442. The additional fix
is a getting rid of a stray space in a function name, in the
refactoring part of the commit.
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D25332
llvm-svn: 283550
With the ROPI and RWPI relocation models we can't always have pointers
to global data or functions in constant data, so don't try to convert switches
into lookup tables if any value in the lookup table would require a relocation.
We can still safely emit lookup tables of other values, such as simple
constants.
Differential Revision: https://reviews.llvm.org/D24462
llvm-svn: 283530
This reverts commit r283383 because it broke some of the bots:
undefined reference to ` __aeabi_uldivmod'
It affected (at least) clang-cmake-armv7-a15-selfhost,
clang-cmake-armv7-a15-selfhost and clang-native-arm-lnt.
llvm-svn: 283442
Global variables are GlobalValues, so they have explicit alignment. Querying
DataLayout for the alignment was incorrect.
Testcase added.
llvm-svn: 283423
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D24076
llvm-svn: 283383
This is not a valid encoding - these instructions cannot do PC-relative addressing.
The underlying problem here is of whitelist in ARMISelDAGToDAG that unwraps ARMISD::Wrappers during addressing-mode selection. This didn't realise TargetConstantPool was actually possible, so didn't handle it.
llvm-svn: 283323
This fixes the inconsistency of the fp denormal option names: in LLVM this was
DenormalType, but in Clang this is DenormalMode which seems better.
Differential Revision: https://reviews.llvm.org/D24906
llvm-svn: 283192
library call to __aeabi_uidivmod. This is an improved implementation of
r280808, see also D24133, that got reverted because isel was stuck in a loop.
That was caused by the optimisation incorrectly triggering on i64 ints, which
shouldn't happen because there is no 64bit hwdiv support; that put isel's type
legalization and this optimisation in a loop. A native ARM compiler and testing
now shows that this is fixed.
Patch mostly by Pablo Barrio.
Differential Revision: https://reviews.llvm.org/D25077
llvm-svn: 283098
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282387
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282241
The initial mapping symbol state is set from the triple, but we only checked
for the little-endian thumb triple, so could end up with an ARM mapping symbol
for big-endian thumb.
Differential Revision: https://reviews.llvm.org/D24553
llvm-svn: 281894
ldm and stm instructions always require 4-byte alignment on the pointer, but we
weren't checking this before trying to reduce code-size by replacing a
post-indexed load/store with them. Unfortunately, we were also dropping this
incormation in DAG ISel too, but that's easy enough to fix.
llvm-svn: 281893
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
Recommitting after fixing AsmParser initialization and X86 inline asm
error cleanup.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281762
(and the same for SREM)
This was causing buildbot failures earlier (time outs in the LNT suite).
However, we haven't been able to reproduce this and are suspecting this
was caused by another (reverted) patch.
llvm-svn: 281719
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 281715
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
llvm-svn: 281604
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281484
Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
Before, only Thumb functions were marked as ".code 16". These
".code x" directives are effective until the next directive of its
kind is encountered. Therefore, in code with interleaved ARM and
Thumb functions, it was possible to declare a function as ARM and
end up with a Thumb function after assembly. A test has been added.
An existing test has also been fixed to take this change into
account.
Reviewers: aschwaighofer, t.p.northover, jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D24337
llvm-svn: 281324
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281323
The changes made in r269352, r269353 and r269354 to support the
transformation of the ldr rd,=immediate to mov introduced a regression
from 3.8 (ldr.w rd, =immediate) not supported.
This change puts support back in for ldr.w by means of a t2InstAlias for
the .w form. The .w is ignored in ARM state and propagated to the ldr in
Thumb2.
llvm-svn: 281319
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281314
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281215
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281213
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172