Commit Graph

1806 Commits

Author SHA1 Message Date
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
David Majnemer 1bacc0abc9 InstCombine: Ensure select condition types are identical before merging
Selection conditions may be vectors or scalars.  Make sure InstCombine
doesn't indiscriminately assume that a select which is value dependent
on another select have identical select condition types.

This fixes PR22773.

llvm-svn: 231156
2015-03-03 22:40:36 +00:00
Nadav Rotem 029c5c7fdb Teach ComputeNumSignBits about signed divisions.
http://reviews.llvm.org/D8028
rdar://20023136

llvm-svn: 231140
2015-03-03 21:39:02 +00:00
Duncan P. N. Exon Smith e274180f0e DebugInfo: Move new hierarchy into place
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464.  I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned.  Let me know if I'm wrong :).

The code changes are fairly mechanical:

  - Bumped the "Debug Info Version".
  - `DIBuilder` now creates the appropriate subclass of `MDNode`.
  - Subclasses of DIDescriptor now expect to hold their "MD"
    counterparts (e.g., `DIBasicType` expects `MDBasicType`).
  - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
    for printing comments.
  - Big update to LangRef to describe the nodes in the new hierarchy.
    Feel free to make it better.

Testcase changes are enormous.  There's an accompanying clang commit on
its way.

If you have out-of-tree debug info testcases, I just broke your build.

  - `upgrade-specialized-nodes.sh` is attached to PR22564.  I used it to
    update all the IR testcases.
  - Unfortunately I failed to find way to script the updates to CHECK
    lines, so I updated all of these by hand.  This was fairly painful,
    since the old CHECKs are difficult to reason about.  That's one of
    the benefits of the new hierarchy.

This work isn't quite finished, BTW.  The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro).  Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers.  I
also expect to make a few schema changes now that it's easier to reason
about everything.

llvm-svn: 231082
2015-03-03 17:24:31 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Hal Finkel 221f467185 [InstCombine/PowerPC] Convert aligned QPX load/store intrinsics into loads/stores
InstCombine has long had logic to convert aligned Altivec load/store intrinsics
into regular loads and stores. This mirrors that functionality for QPX vector
load/store intrinsics.

llvm-svn: 230660
2015-02-26 18:56:03 +00:00
Hal Finkel 18ee7c14fd [InstCombine] Add a test for altivec load/store intrinsic simplification
InstCombine has logic to convert aligned Altivec load/store intrinsics into
regular loads and stores. Unfortunately, there seems to be no regression test
covering this behavior. Adding one...

llvm-svn: 230632
2015-02-26 14:22:41 +00:00
JF Bastien d52c990a90 InstCombine: extract instead of shuffle when performing vector/array type punning
Summary: SROA generates code that isn't quite as easy to optimize and contains unusual-sized shuffles, but that code is generally correct. As discussed in D7487 the right place to clean things up is InstCombine, which will pick up the type-punning pattern and transform it into a more obvious bitcast+extractelement, while leaving the other patterns SROA encounters as-is.

Test Plan: make check

Reviewers: jvoung, chandlerc

Subscribers: llvm-commits
llvm-svn: 230560
2015-02-25 22:30:51 +00:00
Charles Davis 33d1dc0008 [IC] Turn non-null MD on pointer loads to range MD on integer loads.
Summary:
This change fixes the FIXME that you recently added when you committed
(a modified version of) my patch.  When `InstCombine` combines a load and
store of an pointer to those of an equivalently-sized integer, it currently
drops any `!nonnull` metadata that might be present.  This change replaces
`!nonnull` metadata with `!range !{ 1, -1 }` metadata instead.

Reviewers: chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7621

llvm-svn: 230462
2015-02-25 05:10:25 +00:00
Sanjoy Das 82ea3d45b5 New instcombine rule: max(~a,~b) -> ~min(a, b)
This case is interesting because ScalarEvolutionExpander lowers min(a,
b) as ~max(~a,~b).  I think the profitability heuristics can be made
more clever/aggressive, but this is a start.

Differential Revision: http://reviews.llvm.org/D7821

llvm-svn: 230285
2015-02-24 00:08:41 +00:00
Hal Finkel 847e05f569 [InstCombine] Remove unnecessary variable indexing into single-element arrays
This change addresses a deficiency pointed out in PR22629. To copy from the bug
report:

[from the bug report]

Consider this code:

int f(int x) {
  int a[] = {12};
  return a[x];
}

GCC knows to optimize this to

movl     $12, %eax
ret

The code generated by recent Clang at -O3 is:

movslq   %edi, %rax
movl     .L_ZZ1fiE1a(,%rax,4), %eax
retq

.L_ZZ1fiE1a:
  .long    12                      # 0xc

[end from the bug report]

This definitely seems worth fixing. I've also seen this kind of code before (as
the base case of generic vector wrapper templates with one element).

The general idea is to look at the GEP feeding a load or a store, which has
some variable as its first non-zero index, and determine if that index must be
zero (or else an out-of-bounds access would occur). We can do this for allocas
and globals with constant initializers where we know the maximum size of the
underlying object. When we find such a GEP, we create a new one for the memory
access with that first variable index replaced with a constant zero.

Even if we can't eliminate the memory access (and sometimes we can't), it is
still useful because it removes unnecessary indexing calculations.

llvm-svn: 229959
2015-02-20 03:05:53 +00:00
Akira Hatanaka 1defd5afbd [InstCombine] Do not insert a GEP instruction before a landingpad instruction.
InstCombiner::visitGetElementPtrInst was using getFirstNonPHI to compute the
insertion point, which caused the verifier to complain when a GEP was inserted
before a landingpad instruction. This commit fixes it to use getFirstInsertionPt
instead.

rdar://problem/19394964

llvm-svn: 229619
2015-02-18 03:30:11 +00:00
Mehdi Amini b9a0fa4822 InstCombine: fold more cases of (fp_to_u/sint (u/sint_to_fp val))
Fixes radar 15486701.

From: Fiona Glaser <fglaser@apple.com>
llvm-svn: 229437
2015-02-16 21:47:54 +00:00
Mehdi Amini 7aab8752ba Tests: reformat sitofp.ll and use FileCheck
From: Fiona Glaser <fglaser@apple.com>
llvm-svn: 229436
2015-02-16 21:47:50 +00:00
Ramkumar Ramachandra 8fcb498a9a InstCombine: propagate deref via new addDereferenceableAttr
The "dereferenceable" attribute cannot be added via .addAttribute(),
since it also expects a size in bytes. AttrBuilder#addAttribute or
AttributeSet#addAttribute is wrapped by classes Function, InvokeInst,
and CallInst. Add corresponding wrappers to
AttrBuilder#addDereferenceableAttr.

Having done this, propagate the dereferenceable attribute via
gc.relocate, adding a test to exercise it. Note that -datalayout is
required during execution over and above -instcombine, because
InstCombine only optionally requires DataLayoutPass.

Differential Revision: http://reviews.llvm.org/D7510

llvm-svn: 229265
2015-02-14 19:37:54 +00:00
Philip Reames 9ae15209ad [InstCombine] When canonicalizing gep indices, prefer zext when possible
If we know that the sign bit of a value being sign extended is zero, we can use a zero extension instead.  This is motivated by the fact that zero extensions are generally cheaper on x86 (and most other architectures?).  We already apply a similar transform in DAGCombine, this just extends that to the IR level.

This comes up when we eagerly canonicalize gep indices to the width of a machine register (i64 on x86_64). To do so, we insert sign extensions (sext) to promote smaller types. 

Differential Revision: http://reviews.llvm.org/D7255

llvm-svn: 229189
2015-02-14 00:05:36 +00:00
Andrea Di Biagio 30d471f6aa [InstCombine] Fix regression introduced at r227197.
This patch fixes a problem I accidentally introduced in an instruction combine
on select instructions added at r227197. That revision taught the instruction
combiner how to fold a cttz/ctlz followed by a icmp plus select into a single
cttz/ctlz with flag 'is_zero_undef' cleared.

However, the new rule added at r227197 would have produced wrong results in the
case where a cttz/ctlz with flag 'is_zero_undef' cleared was follwed by a
zero-extend or truncate. In that case, the folded instruction would have
been inserted in a wrong location thus leaving the CFG in an inconsistent
state.

This patch fixes the problem and add two reproducible test cases to
existing test 'InstCombine/select-cmp-cttz-ctlz.ll'.

llvm-svn: 229124
2015-02-13 16:33:34 +00:00
Michael Liao d266b928ae [InstCombine] Fix a bug when combining `icmp` from `ptrtoint`
- First, there's a crash when we try to combine that pointers into `icmp`
  directly by creating a `bitcast`, which is invalid if that two pointers are
  from different address spaces.

- It's not always appropriate to cast one pointer to another if they are from
  different address spaces as that is not no-op cast. Instead, we only combine
  `icmp` from `ptrtoint` if that two pointers are of the same address space.

llvm-svn: 229063
2015-02-13 04:51:26 +00:00
Chandler Carruth 87fdafc7b2 [IC] Fix a bug with the instcombine canonicalizing of loads and
propagating of metadata.

We were propagating !nonnull metadata even when the newly formed load is
no longer of a pointer type. This is clearly broken and results in LLVM
failing the verifier and aborting. This patch just restricts the
propagation of !nonnull metadata to when we actually have a pointer
type.

This bug report and the initial version of this patch was provided by
Charles Davis! Many thanks for finding this!

We still need to add logic to round-trip the metadata correctly if we
combine from pointer types to integer types and then back by using range
metadata for the integer type loads. But this is the minimal and safe
version of the patch, which is important so we can backport it into 3.6.

llvm-svn: 229029
2015-02-13 02:30:01 +00:00
Benjamin Kramer 443c7967ea InstCombine: Allow folding of xor into icmp by changing the predicate for vectors
The loop vectorizer can create this pattern.

llvm-svn: 228954
2015-02-12 20:26:46 +00:00
Chandler Carruth 2496910325 Revert r228556: InstCombine: propagate nonNull through assume
This commit isn't using the correct context, and is transfoming calls
that are operands to loads rather than calls that are operands to an
icmp feeding into an assume. I've replied on the original review thread
with a very reduced test case and some thoughts on how to rework this.

llvm-svn: 228677
2015-02-10 08:07:32 +00:00
Ramkumar Ramachandra a021ee62ca InstCombine: propagate nonNull through assume
Make assume (load (call|invoke) != null) set nonNull return attribute
for the call and invoke. Also include tests.

Differential Revision: http://reviews.llvm.org/D7107

llvm-svn: 228556
2015-02-09 01:13:13 +00:00
Matthias Braun 2e404597f4 InstCombine: Combine select sequences into a single select
Normalize
select(C0, select(C1, a, b), b) -> select((C0 & C1), a, b)
select(C0, a, select(C1, a, b)) -> select((C0 | C1), a, b)

This normal form may enable further combines on the And/Or and shortens
paths for the values. Many targets prefer the other but can go back
easily in CodeGen.

Differential Revision: http://reviews.llvm.org/D7399

llvm-svn: 228409
2015-02-06 17:49:36 +00:00
Reid Kleckner 4af6415237 Move EH personality type classification to Analysis/LibCallSemantics.h
Summary:
Also add enum types for __C_specific_handler and _CxxFrameHandler3 for
which we know a few things.

Reviewers: majnemer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7214

llvm-svn: 227284
2015-01-28 01:17:38 +00:00
Ahmed Bougacha 1ac9356524 [SimplifyLibCalls] Don't confuse strcpy_chk for stpcpy_chk.
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).

The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.

The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification.  This was introduced in a
refactoring (r225640) to match the original behavior.

However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.

For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW.  When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
  stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
  and simplifies the first stpcpy to a memcpy.  We now have
  two memcpys.

llvm-svn: 227250
2015-01-27 21:52:16 +00:00
Andrea Di Biagio 086cbc37ad [InstCombine] Teach how to fold a select into a cttz/ctlz with the 'is_zero_undef' flag.
This patch teaches the Instruction Combiner how to fold a cttz/ctlz followed by
a icmp plus select into a single cttz/ctlz with flag 'is_zero_undef' cleared.

Added test InstCombine/select-cmp-cttz-ctlz.ll.

llvm-svn: 227197
2015-01-27 15:58:14 +00:00
Chandler Carruth 83ba269e4b [PM] Port instcombine to the new pass manager!
This is exciting as this is a much more involved port. This is
a complex, existing transformation pass. All of the core logic is shared
between both old and new pass managers. Only the access to the analyses
is separate because the actual techniques are separate. This also uses
a bunch of different and interesting analyses and is the first time
where we need to use an analysis across an IR layer.

This also paves the way to expose instcombine utility functions. I've
got a static function that implements the core pass logic over
a function which might be mildly interesting, but more interesting is
likely exposing a routine which just uses instructions *already in* the
worklist and combines until empty.

I've switched one of my favorite instcombine tests to run with both as
well to make sure this keeps working.

llvm-svn: 226987
2015-01-24 04:19:17 +00:00
Chandler Carruth cd8522ef44 [canonicalize] Teach InstCombine to canonicalize loads which are only
ever stored to always use a legal integer type if one is available.

Regardless of whether this particular type is good or bad, it ensures we
don't get weird differences in generated code (and resulting
performance) from "equivalent" patterns that happen to end up using
a slightly different type.

After some discussion on llvmdev it seems everyone generally likes this
canonicalization. However, there may be some parts of LLVM that handle
it poorly and need to be fixed. I have at least verified that this
doesn't impede GVN and instcombine's store-to-load forwarding powers in
any obvious cases. Subtle cases are exactly what we need te flush out if
they remain.

Also note that this IR pattern should already be hitting LLVM from Clang
at least because it is exactly the IR which would be produced if you
used memcpy to copy a pointer or floating point between memory instead
of a variable.

llvm-svn: 226781
2015-01-22 05:08:12 +00:00
David Majnemer 4c0a6e918a InstCombine: Don't strip bitcasts off of callsites marked 'thunk'
The return type of a thunk is meaningless, we just want the arguments
and return value to be forwarded.

llvm-svn: 226708
2015-01-21 22:32:04 +00:00
Richard Smith e78bb1249e For PR21145: recognise a builtin call to a known deallocation function even if
it's defined in the current module. Clang generates this situation for the
C++14 sized deallocation functions, because it generates a weak definition in
case one isn't provided by the C++ runtime library.

llvm-svn: 226069
2015-01-15 01:00:33 +00:00
Duncan P. N. Exon Smith 9885469922 IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

llvm-svn: 226048
2015-01-14 22:27:36 +00:00
David Majnemer a0afb55ff9 InstCombine: Don't take A-B<0 into A<B if A-B has other uses
This fixes PR22226.

llvm-svn: 226023
2015-01-14 19:26:56 +00:00
Ahmed Bougacha 71d7b18e3d [SimplifyLibCalls] Don't try to simplify indirect calls.
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).

This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.

Fix that, add a testcase, and document the requirement.

llvm-svn: 225895
2015-01-14 00:55:05 +00:00
Matt Arsenault b935d9df4c Fix fcmp + fabs instcombines when using the intrinsic
This was only handling the libcall. This is another example
of why only the intrinsic should ever be used when it exists.

llvm-svn: 225465
2015-01-08 20:09:34 +00:00
Matt Arsenault 2458393104 Fix using wrong intrinsic in test
This is a leftover from renaming the intrinsic.
It's surprising the unknown llvm. intrinsic wasn't rejected.

llvm-svn: 225304
2015-01-06 23:00:33 +00:00
Matt Arsenault 55e7312cd8 Convert fcmp with 0.0 from casted integers to icmp
This is already handled in general when it is known the
conversion can't lose bits with smaller integer types
casted into wider floating point types.

This pattern happens somewhat often in GPU programs that cast
workitem intrinsics to float, which are often compared with 0.

Specifically handle the special case of compares with zero which
should also be known to not lose information. I had a more general
version of this which allows equality compares if the casted float is
exactly representable in the integer, but I'm not 100% confident that
is always correct.

Also fold cases that aren't integers to true / false.

llvm-svn: 225265
2015-01-06 15:50:59 +00:00
David Majnemer 9b6b822814 InstCombine: Bitcast call arguments from/to pointer/integer type
Try harder to get rid of bitcast'd calls by ptrtoint/inttoptr'ing
arguments and return values when DataLayout says it is safe to do so.

llvm-svn: 225254
2015-01-06 08:41:31 +00:00
David Majnemer 087dc8b831 InstCombine: match can find ConstantExprs, don't assume we have a Value
We assumed the output of a match was a Value, this would cause us to
assert because we would fail a cast<>.  Instead, use a helper in the
Operator family to hide the distinction between Value and Constant.

This fixes PR22087.

llvm-svn: 225127
2015-01-04 07:36:02 +00:00
David Majnemer c8a576b5c0 InstCombine: Detect when llvm.umul.with.overflow always overflows
We know overflow always occurs if both ~LHSKnownZero * ~RHSKnownZero
and LHSKnownOne * RHSKnownOne overflow.

llvm-svn: 225077
2015-01-02 07:29:47 +00:00
Sanjay Patel e68f71574f InstCombine: fsub nsz 0, X ==> fsub nsz -0.0, X
Some day the backend may handle instruction-level fast math flags and make
this transform unnecessary, but it's still better practice to use the canonical
representation of fneg when possible (use a -0.0).

This is a partial fix for PR20870 ( http://llvm.org/bugs/show_bug.cgi?id=20870 ).
See also http://reviews.llvm.org/D6723.

Differential Revision: http://reviews.llvm.org/D6731

llvm-svn: 225050
2014-12-31 22:14:05 +00:00
David Majnemer f89dc3edc9 InstCombine: try to transform A-B < 0 into A < B
We are allowed to move the 'B' to the right hand side if we an prove
there is no signed overflow and if the comparison itself is signed.

llvm-svn: 225034
2014-12-31 04:21:41 +00:00
Philip Reames 9db26ffc9a Carry facts about nullness and undef across GC relocation
This change implements four basic optimizations:

    If a relocated value isn't used, it doesn't need to be relocated.
    If the value being relocated is null, relocation doesn't change that. (Technically, this might be collector specific. I don't know of one which it doesn't work for though.)
    If the value being relocated is undef, the relocation is meaningless.
    If the value being relocated was known nonnull, the relocated pointer also isn't null. (Since it points to the same source language object.)

I outlined other planned work in comments.

Differential Revision: http://reviews.llvm.org/D6600

llvm-svn: 224968
2014-12-29 23:27:30 +00:00
Philip Reames 5ad26c353c Loading from null is valid outside of addrspace 0
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen.  This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.

We really should introduce a hook to control this property on a per target per address space basis.  We may be loosing valuable optimizations in some address spaces by being too conservative.

Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.

llvm-svn: 224961
2014-12-29 22:46:21 +00:00
David Majnemer b1296ec0fd InstCombine: Infer nuw for multiplies
A multiply cannot unsigned wrap if there are bitwidth, or more, leading
zero bits between the two operands.

llvm-svn: 224849
2014-12-26 09:50:35 +00:00
David Majnemer 54c2ca2539 InstCombe: Infer nsw for multiplies
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.

llvm-svn: 224847
2014-12-26 09:10:14 +00:00
Michael Kuperstein be8032c875 [ValueTracking] Move GlobalAlias handling to be after the max depth check in computeKnownBits()
GlobalAlias handling used to be after GlobalValue handling, which meant it was, in practice, dead code. r220165 moved GlobalAlias handling to be before GlobalValue handling, but also moved it to be before the max depth check, causing an assert due to a recursion depth limit violation. 

This moves GlobalAlias handling forward to where it's safe, and changes the GlobalValue handling to only look at GlobalObjects.

Differential Revision: http://reviews.llvm.org/D6758

llvm-svn: 224765
2014-12-23 11:33:41 +00:00
David Majnemer 6eed0e0d20 This should have been part of r224676.
llvm-svn: 224677
2014-12-20 04:48:34 +00:00
David Majnemer b0362e4ee6 InstCombine: Squash an icmp+select into bitwise arithmetic
(X & INT_MIN) == 0 ? X ^ INT_MIN : X  into  X | INT_MIN
(X & INT_MIN) != 0 ? X ^ INT_MIN : X  into  X & INT_MAX

This fixes PR21993.

llvm-svn: 224676
2014-12-20 04:45:35 +00:00
Bruno Cardoso Lopes f6cf8ad4e5 Reapply: [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. Also, fix code to also return the modified switch when only
the truncation is performed.

This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

llvm-svn: 224588
2014-12-19 17:12:35 +00:00
Sanjay Patel ea3c802887 use -0.0 when creating an fneg instruction
Backends recognize (-0.0 - X) as the canonical form for fneg
and produce better code. Eg, ppc64 with 0.0:

   lis r2, ha16(LCPI0_0)
   lfs f0, lo16(LCPI0_0)(r2)
   fsubs f1, f0, f1
   blr

vs. -0.0:

   fneg f1, f1
   blr

Differential Revision: http://reviews.llvm.org/D6723

llvm-svn: 224583
2014-12-19 16:44:08 +00:00
Bruno Cardoso Lopes 3be15b2fa6 Revert "[InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr"
Reverts commit r224574 to appease buildbots:

The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

llvm-svn: 224576
2014-12-19 14:36:24 +00:00
Bruno Cardoso Lopes c9005f2f2b [InstCombine] Fix visitSwitchInst to use right operand types for sub cstexpr
The visitSwitchInst generates SUB constant expressions to recompute the
switch condition. When truncating the condition to a smaller type, SUB
expressions should use the previous type (before trunc) for both
operands. This fixes an assertion crash.

Differential Revision: http://reviews.llvm.org/D6644

rdar://problem/19191835

llvm-svn: 224574
2014-12-19 14:23:15 +00:00
Erik Eckstein a451b9b0b5 Strength reduce intrinsics with overflow into regular arithmetic operations if possible.
Some intrinsics, like s/uadd.with.overflow and umul.with.overflow, are already strength reduced.
This change adds other arithmetic intrinsics: s/usub.with.overflow, smul.with.overflow.
It completes the work on PR20194.

llvm-svn: 224417
2014-12-17 07:29:19 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
David Majnemer 9b6097586c ValueTracking: Don't recurse too deeply in computeKnownBitsFromAssume
Respect the MaxDepth recursion limit, doing otherwise will trigger an
assert in computeKnownBits.

This fixes PR21891.

llvm-svn: 224168
2014-12-12 23:59:29 +00:00
Steven Wu 881916dea5 Fix another infinite loop in InstCombine
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6634

llvm-svn: 224097
2014-12-12 04:34:07 +00:00
Andrea Di Biagio 72b05aa59c [InstCombine][X86] Improved folding of calls to Intrinsic::x86_sse4a_insertqi.
This patch teaches the instruction combiner how to fold a call to 'insertqi' if
the 'length field' (3rd operand) is set to zero, and if the sum between
field 'length' and 'bit index' (4th operand) is bigger than 64.

From the AMD64 Architecture Programmer's Manual:
1. If the sum of the bit index + length field is greater than 64, then the
   results are undefined;
2. A value of zero in the field length is defined as a length of 64.

This patch improves the existing combining logic for intrinsic 'insertqi'
adding extra checks to address both point 1. and point 2.

Differential Revision: http://reviews.llvm.org/D6583

llvm-svn: 224054
2014-12-11 20:44:59 +00:00
David Majnemer 5a7717e498 ConstantFold, InstSimplify: undef >>a x can be either -1 or 0, choose 0
Zero is usually a nicer constant to have than -1.

llvm-svn: 223969
2014-12-10 21:58:15 +00:00
Chandler Carruth a7f247ea56 Revert r223764 which taught instcombine about integer-based elment extraction
patterns.

This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.

This reverts commit r223764.

Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

llvm-svn: 223813
2014-12-09 19:21:16 +00:00
Sonam Kumari 72ccc3c428 Removal Of Duplicate Test Cases and Addition Of Missing Check Statements
llvm-svn: 223768
2014-12-09 10:46:38 +00:00
Ankur Garg 51eeba70da [test/Transforms/InstCombine/shift.ll] Removed duplicate test cases. NFC.
Removed some duplicate test cases from the file /test/Transforms/InstCombine/shift.ll.

test54 and test57 were duplicates of each other.
test55 and test58 were duplicates of each other.

(Removed test57 and test58)

llvm-svn: 223767
2014-12-09 10:35:19 +00:00
Chandler Carruth 7415205113 Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

Differential Revision: http://reviews.llvm.org/D6548

llvm-svn: 223764
2014-12-09 08:55:32 +00:00
Sonam Kumari 90d266c0a9 Removal Of Duplicate Test Case from shift.ll file
llvm-svn: 223648
2014-12-08 09:40:43 +00:00
Philip Reames 5b3ce71b62 Add a test case for argument type coercion in an invoke of a vararg function
This would have caught the bug I fixed in 223370.  

llvm-svn: 223378
2014-12-04 19:13:45 +00:00
Simon Pilgrim be24ab367b [InstCombine] Minor optimization for bswap with binary ops
Added instcombine optimizations for BSWAP with AND/OR/XOR ops:

OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )

Since its just a one liner, I've also added BSWAP to the DAGCombiner equivalent as well:

fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))

Refactored bswap-fold tests to use FileCheck instead of just checking that the bswaps had gone.

Differential Revision: http://reviews.llvm.org/D6407

llvm-svn: 223349
2014-12-04 09:44:01 +00:00
Matthias Braun d34e4d2354 [SimplifyLibCalls] Improve double->float shrinking to consider constants
This allows cases like float x; fmin(1.0, x); to be optimized to fminf(1.0f, x);

rdar://19049359

Differential Revision: http://reviews.llvm.org/D6496

llvm-svn: 223270
2014-12-03 21:46:33 +00:00
Matthias Braun 892c923c46 [SimplifyLibCalls] Enable double to float shrinking for copysign
rdar://19049359

Differential Revision: http://reviews.llvm.org/D6495

llvm-svn: 223269
2014-12-03 21:46:29 +00:00
Erik Eckstein d181752be0 InstCombine: simplify signed range checks
Try to convert two compares of a signed range check into a single unsigned compare.
Examples:
(icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
(icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n

llvm-svn: 223224
2014-12-03 10:39:15 +00:00
Sonam Kumari f2eacabd66 [signext.ll] Removal Of Duplicate Test Cases
Removed the duplicate test case existing in signext.ll file.

llvm-svn: 223109
2014-12-02 05:29:47 +00:00
Sonam Kumari 237cfa9916 Removed extra whitespace. (Testing commit access). NFC.
llvm-svn: 222994
2014-12-01 09:27:46 +00:00
David Majnemer 3d6f80b619 InstCombine: FoldOrOfICmps harder
We may be in a situation where the icmps might not be near each other in
a tree of or instructions.  Try to dig out related compare instructions
and see if they combine.

N.B.  This won't fire on deep trees of compares because rewritting the
tree might end up creating a net increase of IR.  We may have to resort
to something more sophisticated if this is a real problem.

llvm-svn: 222928
2014-11-28 19:58:29 +00:00
Suyog Sarda f8516e1662 Use FileCheck instead of grep. Change by Ankur Garg.
Differential Revision: http://reviews.llvm.org/D6430

llvm-svn: 222879
2014-11-27 11:22:49 +00:00
Suyog Sarda c3024c75e0 Use FileCheck instead of grep. Change by Sonam.
Differential Revision: http://reviews.llvm.org/D6432

llvm-svn: 222876
2014-11-27 10:57:24 +00:00
David Majnemer 40157d5c4d InstCombine: Restore optimizations lost in r210006
This restores our ability to optimize:
(X & C) == 0 ? X ^ C : X  into  X | C
(X & C) != 0 ? X ^ C : X  into  X & ~C

llvm-svn: 222871
2014-11-27 07:25:21 +00:00
David Majnemer c6a5e1dd4f InstSimplify: Restore optimizations lost in r210006
This restores our ability to optimize:
(X & C) ? X & ~C : X  into  X & ~C
(X & C) ? X : X & ~C  into  X
(X & C) ? X | C : X  into  X
(X & C) ? X : X | C  into  X | C

llvm-svn: 222868
2014-11-27 06:32:46 +00:00
David Majnemer 5468e86469 Revert "Added inst combine transforms for single bit tests from Chris's note"
This reverts commit r210006, it miscompiled libapr which is used in who
knows how many projects.

A test has been added to ensure that we don't regress again.

I'll work on a rewrite of what the optimization was trying to do later.

llvm-svn: 222856
2014-11-26 23:00:38 +00:00
Chandler Carruth 816d26fe5e [InstCombine] Change LLVM To canonicalize toward the value type being
stored rather than the pointer type.

This change is analogous to r220138 which changed the canonicalization
for loads. The rationale is the same: memory does not have a type,
operations (and thus the values they produce) have a type. We should
match that type as closely as possible rather than reading some form of
semantics into the pointer type.

With this change, loads and stores should no longer be made with
nonsensical types for the values that tehy load and store. This is
particularly important when trying to match specific loaded and stored
types in the process of doing other instcombines, which is what led me
down this twisty maze of miscanonicalization.

I've put quite some effort into looking through IR to find places where
LLVM's optimizer was being unreasonably conservative in the face of
mismatched load and store types, however it is possible (let's say,
likely!) I have missed some. If you see regressions here, or from
r220138, the likely cause is some part of LLVM failing to cope with load
and store types differing. Test cases appreciated, it is important that
we root all of these out of LLVM.

llvm-svn: 222748
2014-11-25 10:09:51 +00:00
Suyog Sarda 99c9c1f2b0 Change the test case file to use FileCheck instead of grep. NFC.
Change by Ankur Garg.

Differential Revision: http://reviews.llvm.org/D6382

llvm-svn: 222740
2014-11-25 08:44:56 +00:00
Chandler Carruth 1a3c2c414c Revert r220349 to re-instate r220277 with a fix for PR21330 -- quite
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.

Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

llvm-svn: 222739
2014-11-25 08:20:27 +00:00
Matt Arsenault 238ff1ad1e Bug 21610: Canonicalize min/max fcmp selects to use ordered comparisons
llvm-svn: 222705
2014-11-24 23:15:18 +00:00
Matt Arsenault ea515d33c9 Convert test to FileCheck and use CHECK-LABEL
llvm-svn: 222704
2014-11-24 23:03:17 +00:00
David Majnemer 8e6f6a98b5 InstCombine: Don't create an unused instruction
We would create an instruction but not inserting it.
Not inserting the unused instruction would lead us to verification
failure.

This fixes PR21653.

llvm-svn: 222659
2014-11-24 16:41:13 +00:00
David Majnemer b2a6e7458d InstCombine: Don't assume DataLayout is always available
We tried to get the result of DataLayout::getLargestLegalIntTypeSize but
we didn't have a DataLayout.  This resulted in opt crashing.

This fixes PR21651.

llvm-svn: 222645
2014-11-24 07:26:20 +00:00
David Majnemer fb3805576b InstCombine: Propagate exact for (sdiv X, Pow2) -> (udiv X, Pow2)
llvm-svn: 222625
2014-11-22 20:00:41 +00:00
David Majnemer ec6e481bc5 InstCombine: Propagate exact for (sdiv X, Y) -> (udiv X, Y)
llvm-svn: 222624
2014-11-22 20:00:38 +00:00
David Majnemer fa4699e65f InstCombine: Propagate exact for (sdiv -X, C) -> (sdiv X, -C)
llvm-svn: 222623
2014-11-22 20:00:34 +00:00
David Majnemer a3aeb15613 InstCombine: Propagate exact in (udiv (lshr X,C1),C2) -> (udiv x,C1<<C2)
llvm-svn: 222620
2014-11-22 18:16:54 +00:00
David Majnemer 546f81064c InstCombine: Propagate NSW/NUW for X*(1<<Y) -> X<<Y
llvm-svn: 222613
2014-11-22 08:57:02 +00:00
David Majnemer 8279a7506d InstCombine: Propagate NSW for -X * -Y -> X * Y
llvm-svn: 222612
2014-11-22 07:25:19 +00:00
David Majnemer 80c8f627db InstCombine: Preserve nsw when folding X*(2^C) -> X << C
llvm-svn: 222606
2014-11-22 04:52:55 +00:00
David Majnemer fd4a6d2b7a InstCombine: Preserve nsw/nuw for ((X << C2)*C1) -> (X * (C1 << C2))
llvm-svn: 222605
2014-11-22 04:52:52 +00:00
David Majnemer 027bc80928 InstCombine: Preserve nsw for (mul %V, -1) -> (sub 0, %V)
llvm-svn: 222604
2014-11-22 04:52:38 +00:00
Gerolf Hoflehner ec6217c929 [InstCombine] Re-commit of r218721 (Optimize icmp-select-icmp sequence)
Fixes the self-host fail. Note that this commit activates dominator
analysis in the combiner by default (like the original commit did).

llvm-svn: 222590
2014-11-21 23:36:44 +00:00
David Majnemer c6b8e20a5c InstCombine: Fix another infinite loop caused by visitFPTrunc
We would attempt to replace an frem's operand with the same operand.
This would cause InstCombine to think real work was done, causing
InstCombine to enter an infinite loop.

This fixes the second part of PR21576.

llvm-svn: 222265
2014-11-18 22:06:45 +00:00
David Majnemer b32eaddf11 Revert "Revert r222040 because of bot failure."
This reverts commit r222203, reverting r222040 didn't end up turning the
bot green.

llvm-svn: 222261
2014-11-18 21:30:02 +00:00
David Majnemer 6fdb6b8fd4 InstCombine: Fold away tautological masked compares
It is impossible for (x & INT_MAX) == 0 && x == INT_MAX to ever be true.

While this sort of reasoning should normally live in InstSimplify,
the machinery that derives this result is not trivial to split out.

llvm-svn: 222230
2014-11-18 09:31:41 +00:00
Manman Ren a64bd44fd8 Revert r222040 because of bot failure.
http://lab.llvm.org:8080/green/job/clang-Rlto_master/298/
Hopefully, bot will be green.

llvm-svn: 222203
2014-11-18 00:33:22 +00:00
David Majnemer 8c3d92e7e5 InstCombine: Fix infinite loop caused by visitFPTrunc
We would attempt to replace a fptrunc of an frem with an identical
fptrunc.  This would cause the new fptrunc to be added to the worklist.
Of course, this results in an infinite loop because we will keep
visiting the newly created fptruncs.

This fixes PR21576.

llvm-svn: 222040
2014-11-14 21:21:15 +00:00
Sanjay Patel 4c219fd248 CGSCC should not treat intrinsic calls like function calls (PR21403)
Make the handling of calls to intrinsics in CGSCC consistent: 
they are not treated like regular function calls because they
are never lowered to function calls.

Without this patch, we can get dangling pointer asserts from
the subsequent loop that processes callsites because it already
ignores intrinsics.

See http://llvm.org/bugs/show_bug.cgi?id=21403 for more details / discussion.

Differential Revision: http://reviews.llvm.org/D6124

llvm-svn: 221802
2014-11-12 18:25:47 +00:00
Bill Schmidt 729547847f [PowerPC] Add vec_vsx_ld and vec_vsx_st intrinsics
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.

New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td.  These are patterned after the similar
intrinsics for lvx and stvx (Altivec).  In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.

At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp.  This will open up more
optimization opportunities while still allowing the correct
instructions to be generated.  (Similar code exists for aligned
Altivec loads and stores.)

The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().

There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number.  It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.

I ended up having to modify vsx-fma-m.ll.  It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it.  The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands.  Commutativity allows
either to be chosen.  If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result.  Hopefully this doesn't change often.

There is a companion patch for Clang.

llvm-svn: 221767
2014-11-12 04:19:40 +00:00
Philip Reames 66c6de61ee Canonicalize an assume(load != null) into !nonnull metadata
We currently have two ways of informing the optimizer that the result of a load is never null: metadata and assume. This change converts the second in to the former. This avoids a need to implement optimizations using both forms.

We should probably extend this basic idea to metadata of other forms; in particular, range metadata. We view is that assumes should be considered a "last resort" for when there isn't a more canonical way to represent something.

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5951

llvm-svn: 221737
2014-11-11 23:33:19 +00:00
David Majnemer c1eca5ad7c InstCombine: Rely on cmpxchg's return code when it's strong
Comparing the result of a cmpxchg instruction can be replaced with an
extractvalue of the cmpxchg success indicator.

llvm-svn: 221498
2014-11-06 23:23:30 +00:00
David Majnemer d28edfea03 Minimize test case further
No functional change intended.

llvm-svn: 221237
2014-11-04 05:17:58 +00:00
David Majnemer 7e2b9882b1 InstCombine: Remove infinite loop caused by FoldOpIntoPhi
FoldOpIntoPhi could create an infinite loop if the PHI could potentially
reach a BB it was considering inserting instructions into.  The
instructions it would insert would eventually lead to other combines
firing which would, again, lead to FoldOpIntoPhi firing.

The solution is to handicap FoldOpIntoPhi so that it doesn't attempt to
insert instructions that the PHI might reach.

This fixes PR21377.

llvm-svn: 221187
2014-11-03 21:55:12 +00:00
David Majnemer 72a643dc8f InstCombine: Combine (X | Y) - X to (~X & Y)
This implements the transformation from (X | Y) - X to (~X & Y).

Differential Revision: http://reviews.llvm.org/D5791

llvm-svn: 221129
2014-11-03 05:53:55 +00:00
David Majnemer 634ca236dc InstCombine: Don't assume that m_ZExt matches an Instruction
m_ZExt might bind against a ConstantExpr instead of an Instruction.
Assuming this, using cast<Instruction>, results in InstCombine crashing.

Instead, introduce ZExtOperator to bridge both Instruction and
ConstantExpr ZExts.

This fixes PR21445.

llvm-svn: 221069
2014-11-01 23:46:05 +00:00
David Majnemer 549f4f2510 InstCombine: Combine (X+cst) < 0 --> X < -cst
This can happen pretty often in code that looks like:
int foo = bar - 1;
if (foo < 0)
  do stuff

In this case, bar < 1 is an equivalent condition.

This transform requires that the add instruction be annotated with nsw.

llvm-svn: 221045
2014-11-01 09:09:51 +00:00
Philip Reames 4cb4d3e048 Add handling for range metadata in ValueTracking isKnownNonZero
If we load from a location with range metadata, we can use information about the ranges of the loaded value for optimization purposes.  This helps to remove redundant checks and canonicalize checks for other optimization passes.  This particular patch checks whether a value is known to be non-zero from the range metadata.

Currently, these tests are against InstCombine.  In theory, all of these should be InstSimplify since we're not inserting any new instructions.  Moving the code may follow in a separate change.

Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D5947

llvm-svn: 220925
2014-10-30 20:25:19 +00:00
David Majnemer c8bdd23acf InstCombine: Fix a combine assuming that icmp operands were integers
An icmp may have pointer arguments, it isn't limited to integers or
vectors of integers.

This fixes PR21388.

llvm-svn: 220664
2014-10-27 05:47:49 +00:00
Sanjay Patel 848309da7c Handle sqrt() shrinking in SimplifyLibCalls like any other call
This patch removes a chunk of special case logic for folding 
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.

No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.

I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.

Differential Revision: http://reviews.llvm.org/D5919

llvm-svn: 220514
2014-10-23 21:52:45 +00:00
Sanjay Patel a92fa44740 Shrinkify libcalls: use float versions of double libm functions with fast-math (bug 17850)
When a call to a double-precision libm function has fast-math semantics 
(via function attribute for now because there is no IR-level FMF on calls), 
we can avoid fpext/fptrunc operations and use the float version of the call
if the input and output are both float.

We already do this optimization using a command-line option; this patch just
adds the ability for fast-math to use the existing functionality.

I moved the cl::opt from InstructionCombining into SimplifyLibCalls because
it's only ever used internally to that class.

Modified the existing test cases to use the unsafe-fp-math attribute rather
than repeating all tests.

This patch should solve: http://llvm.org/bugs/show_bug.cgi?id=17850

Differential Revision: http://reviews.llvm.org/D5893

llvm-svn: 220390
2014-10-22 15:29:23 +00:00
Hans Wennborg 0b39fc0d16 Revert "Teach the load analysis to allow finding available values which require" (r220277)
This seems to have caused PR21330.

llvm-svn: 220349
2014-10-21 23:49:52 +00:00
Matt Arsenault d6511b49ac Add minnum / maxnum intrinsics
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.

llvm-svn: 220341
2014-10-21 23:00:20 +00:00
David Majnemer d205602a0b InstCombine: Simplify FoldICmpCstShrCst
This function was complicated by the fact that it tried to perform
canonicalizations that were already preformed by InstSimplify.  Remove
this extra code and move the tests over to InstSimplify.  Add asserts to
make sure our preconditions hold before we make any assumptions.

llvm-svn: 220314
2014-10-21 19:51:55 +00:00
Chandler Carruth aa72a6dd3b Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

llvm-svn: 220277
2014-10-21 09:00:40 +00:00
Chandler Carruth a32038b006 Fix a miscompile introduced in r220178.
The original code had an implicit assumption that if the test for
allocas or globals was reached, the two pointers were not equal. With my
changes to make the pointer analysis more powerful here, I also had to
guard against circumstances where the results weren't useful. That in
turn violated the assumption and gave rise to a circumstance in which we
could have a store with both the queried pointer and stored pointer
rooted at *the same* alloca. Clearly, we cannot ignore such a store.
There are other things we might do in this code to better handle the
case of both pointers ending up at the same alloca or global, but it
seems best to at least make the test explicit in what it intends to
check.

I've added tests for both the alloca and global case here.

llvm-svn: 220190
2014-10-20 10:03:01 +00:00
Chandler Carruth eeec35ae1c Teach the load analysis driving core instcombine logic and other bits of
logic to look through pointer casts, making them trivially stronger in
the face of loads and stores with intervening pointer casts.

I've included a few test cases that demonstrate the kind of folding
instcombine can do without pointer casts and then variations which
obfuscate the logic through bitcasts. Without this patch, the variations
all fail to optimize fully.

This is more important now than it has been in the past as I've started
moving the load canonicialization to more closely follow the value type
requirements rather than the pointer type requirements and thus this
needs to be prepared for more pointer casts. When I made the same change
to stores several test cases regressed without logic along these lines
so I wanted to systematically improve matters first.

llvm-svn: 220178
2014-10-20 00:24:14 +00:00
Chandler Carruth b5f4c32830 Add a datalayout string to this test so that it exercises the full gamut
of InstCombine rather than just the bits enabled when datalayout is
optional.

The primary fixes here are because now things are little endian.

In good news, silliness like this seems like it will be going away as
we've got pretty stong consensus on dropping optional datalayout
entirely.

llvm-svn: 220176
2014-10-20 00:11:31 +00:00
Chandler Carruth bc6378defb Do a better and more complete job of preserving metadata when combining
loads.

This handles many more cases than just the AA metadata, some of them
suggested by Hal in his review of the AA metadata handling patch. I've
tried to test this behavior where tractable to do so.

I'll point out that I have specifically *not* included a test for
debuginfo because it was going to require 2 or 3 times as much work to
craft some input which would survive the "helpful" stripping of debug
info metadata that doesn't match the desired schema. This is another
good example of why the current state of write-ability for our debug
info metadata is unacceptable. I spent over 30 minutes trying to conjure
some test case that would survive, even copying from other debug info
tests, but it always failed to survive with no explanation of why or how
I might fix it. =[

llvm-svn: 220165
2014-10-19 10:46:46 +00:00
Chandler Carruth 5b8cd2f73c Move previously dead code to handle computing the known bits of an alias
up to where it actually works as intended. The problem is that
a GlobalAlias isa GlobalValue and so the prior block handled all of the
cases.

This allows us to constant fold based on the actual constant expression
in the global alias. As an example, see the last function in the newly
added test case which explicitly aligns an unaligned pointer using
constant expression math. Without this change, we fail to see that and
fold an alignment test to zero.

llvm-svn: 220164
2014-10-19 09:06:56 +00:00
David Majnemer 312c3e5f39 InstCombine: (sub (or A B) (xor A B)) --> (and A B)
The following implements the transformation:
(sub (or A B) (xor A B)) --> (and A B).

Patch by Ankur Garg!

Differential Revision: http://reviews.llvm.org/D5719

llvm-svn: 220163
2014-10-19 08:32:32 +00:00
David Majnemer 59939acd26 InstCombine: Optimize icmp eq/ne (shl Const2, A), Const1
The following implements the optimization for sequences of the form:
icmp eq/ne (shl Const2, A), Const1

Such sequences can be transformed to:
icmp eq/ne A, (TrailingZeros(Const1) - TrailingZeros(Const2))

This handles only the equality operators for now. Other operators need
to be handled.

Patch by Ankur Garg!

llvm-svn: 220162
2014-10-19 08:23:08 +00:00
Chandler Carruth a801dd5799 Fix a long-standing miscompile in the load analysis that was uncovered
by my refactoring of this code.

The method isSafeToLoadUnconditionally assumes that the load will
proceed with the preferred type alignment. Given that, it has to ensure
that the alloca or global is at least that aligned. It has always done
this historically when a datalayout is present, but has never checked it
when the datalayout is absent. When I refactored the code in r220156,
I exposed this path when datalayout was present and that turned the
latent bug into a patent bug.

This fixes the issue by just removing the special case which allows
folding things without datalayout. This isn't worth the complexity of
trying to tease apart when it is or isn't safe without actually knowing
the preferred alignment.

llvm-svn: 220161
2014-10-19 08:17:50 +00:00
Chandler Carruth be9dccd64d Preserve AA metadata when combining (cast (load (...))) -> (load (cast
(...))).

llvm-svn: 220141
2014-10-18 11:00:12 +00:00
Chandler Carruth 2f75fcfef3 [InstCombine] Do an about-face on how LLVM canonicalizes (cast (load
...)) and (load (cast ...)): canonicalize toward the former.

Historically, we've tried to load using the type of the *pointer*, and
tried to match that type as closely as possible removing as many pointer
casts as we could and trading them for bitcasts of the loaded value.
This is deeply and fundamentally wrong.

Repeat after me: memory does not have a type! This was a hard lesson for
me to learn working on SROA.

There is only one thing that should actually drive the type used for
a pointer, and that is the type which we need to use to load from that
pointer. Matching up pointer types to the loaded value types is very
useful because it minimizes the physical size of the IR required for
no-op casts. Similarly, the only thing that should drive the type used
for a loaded value is *how that value is used*! Again, this minimizes
casts. And in fact, the *only* thing motivating types in any part of
LLVM's IR are the types used by the operations in the IR. We should
match them as closely as possible.

I've ended up removing some tests here as they were testing bugs or
behavior that is no longer present. Mostly though, this is just cleanup
to let the tests continue to function as intended.

The only fallout I've found so far from this change was SROA and I have
fixed it to not be impeded by the different type of load. If you find
more places where this change causes optimizations not to fire, those
too are likely bugs where we are assuming that the type of pointers is
"significant" for optimization purposes.

llvm-svn: 220138
2014-10-18 06:36:22 +00:00
Chandler Carruth 71009cad95 Remove a test that was ported from the old llvm-gcc frontend test suite.
This test is pretty awesome. It is claiming to test devirtualization.
However, the code in question is not in fact devirtualized by LLVM. If
you take the original C++ test case and run it through Clang at -O3 we
fail to devirtualize it completely. It also isn't a sufficiently focused
test case.

The *reason* we fail to devirtualize it isn't because of any missing
instcombine though. Instead, it is because we fail to emit an available
externally vtable and thus the vtable is just an external and completely
opaque. If I cause the vtable to be emitted, we successfully
devirtualize things.

Anyways, I'm just removing it because it is providing negative value at
this point: it isn't representative of the output of Clang really, LLVM
isn't doing the transform it claims to be testing, LLVM's failure to do
the transform isn't actually an LLVM bug at all and we shouldn't be
testing for it here, and finally the test is written in such a way that
it will trivially pass even when the point of the test is failing.

llvm-svn: 220137
2014-10-18 06:36:18 +00:00
Rafael Espindola 11aaaeebe0 Delete -std-compile-opts.
These days -std-compile-opts was just a silly alias for -O3.

llvm-svn: 219951
2014-10-16 20:00:02 +00:00
Sanjay Patel c699a6117b fold: sqrt(x * x * y) -> fabs(x) * sqrt(y)
If a square root call has an FP multiplication argument that can be reassociated,
then we can hoist a repeated factor out of the square root call and into a fabs().

In the simplest case, this:

   y = sqrt(x * x);

becomes this:

   y = fabs(x);

This patch relies on an earlier optimization in instcombine or reassociate to put the
multiplication tree into a canonical form, so we don't have to search over
every permutation of the multiplication tree.

Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to
use function-level attributes to do this optimization. This needs to be fixed
for both the intrinsics and in the backend.

Differential Revision: http://reviews.llvm.org/D5787

llvm-svn: 219944
2014-10-16 18:48:17 +00:00
Akira Hatanaka 5c221ef98f Reapply r219832 - InstCombine: Narrow switch instructions using known bits.
The code committed in r219832 asserted when it attempted to shrink a switch
statement whose type was larger than 64-bit.

llvm-svn: 219902
2014-10-16 06:00:46 +00:00
Akira Hatanaka 40c2cf4afc Revert r219832.
llvm-svn: 219884
2014-10-16 01:17:02 +00:00
Akira Hatanaka 5bb9346a45 InstCombine: Narrow switch instructions using known bits.
Truncate the operands of a switch instruction to a narrower type if the upper
bits are known to be all ones or zeros.

rdar://problem/17720004

llvm-svn: 219832
2014-10-15 19:05:50 +00:00
Sanjay Patel 0ca42bb5a8 Optimize away fabs() calls when input is squared (known positive).
Eliminate library calls and intrinsic calls to fabs when the input 
is a squared value.

Note that no unsafe-math / fast-math assumptions are needed for
this optimization.

Differential Revision: http://reviews.llvm.org/D5777

llvm-svn: 219717
2014-10-14 20:43:11 +00:00
David Majnemer dad2103801 InstCombine: Don't miscompile X % ((Pow2 << A) >>u B)
We assumed that A must be greater than B because the right hand side of
a remainder operator must be nonzero.

However, it is possible for A to be less than B if Pow2 is a power of
two greater than 1.

Take for example:
i32 %A = 0
i32 %B = 31
i32 Pow2 = 2147483648

((Pow2 << 0) >>u 31) is non-zero but A is less than B.

This fixes PR21274.

llvm-svn: 219713
2014-10-14 20:28:40 +00:00
David Majnemer db0773089f InstCombine: Fix miscompile in X % -Y -> X % Y transform
We assumed that negation operations of the form (0 - %Z) resulted in a
negative number.  This isn't true if %Z was originally negative.
Substituting the negative number into the remainder operation may result
in undefined behavior because the dividend might be INT_MIN.

This fixes PR21256.

llvm-svn: 219639
2014-10-13 22:37:51 +00:00
David Majnemer a252138942 InstCombine: Don't miscompile (x lshr C1) udiv C2
We have a transform that changes:
  (x lshr C1) udiv C2
into:
  x udiv (C2 << C1)

However, it is unsafe to do so if C2 << C1 discards any of C2's bits.

This fixes PR21255.

llvm-svn: 219634
2014-10-13 21:48:30 +00:00
Benjamin Kramer 240b85eec5 InstCombine: Turn (x != 0 & x <u C) into the canonical range check form (x-1 <u C-1)
llvm-svn: 219585
2014-10-12 14:02:34 +00:00
David Majnemer fe7fccff11 InstCombine: Don't fold (X <<s log(INT_MIN)) /s INT_MIN to X
Consider the case where X is 2.  (2 <<s 31)/s-2147483648 is zero but we
would fold to X.  Note that this is valid when we are in the unsigned
domain because we require NUW: 2 <<u 31 results in poison.

This fixes PR21245.

llvm-svn: 219568
2014-10-11 10:20:04 +00:00
David Majnemer cb9d596655 InstCombine, InstSimplify: (%X /s C1) /s C2 isn't always 0 when C1 * C2 overflow
consider:
C1 = INT_MIN
C2 = -1

C1 * C2 overflows without a doubt but consider the following:
%x = i32 INT_MIN

This means that (%X /s C1) is 1 and (%X /s C1) /s C2 is -1.

N. B.  Move the unsigned version of this transform to InstSimplify, it
doesn't create any new instructions.

This fixes PR21243.

llvm-svn: 219567
2014-10-11 10:20:01 +00:00
David Majnemer 3cac85e071 InstCombine: mul to shl shouldn't preserve nsw
consider:
mul i32 nsw %x, -2147483648

this instruction will not result in poison if %x is 1

however, if we transform this into:
shl i32 nsw %x, 31

then we will be generating poison because we just shifted into the sign
bit.

This fixes PR21242.

llvm-svn: 219566
2014-10-11 10:19:52 +00:00
Sanjay Patel ad8b666624 Return undef on FP <-> Int conversions that overflow (PR21330).
The LLVM Lang Ref states for signed/unsigned int to float conversions:
"If the value cannot fit in the floating point value, the results are undefined."

And for FP to signed/unsigned int:
"If the value cannot fit in ty2, the results are undefined."

This matches the C definitions.

The existing behavior pins to infinity or a max int value, but that may just
lead to more confusion as seen in:
http://llvm.org/bugs/show_bug.cgi?id=21130

Returning undef will hopefully lead to a less silent failure.

Differential Revision: http://reviews.llvm.org/D5603

llvm-svn: 219542
2014-10-10 23:00:21 +00:00
Andrea Di Biagio 458a669f49 [InstCombine] Fix wrong folding of constant comparisons involving ashr and negative values.
This patch fixes a bug in method InstCombiner::FoldCmpCstShrCst where we
wrongly computed the distance between the highest bits set of two negative
values.

This fixes PR21222.

Differential Revision: http://reviews.llvm.org/D5700

llvm-svn: 219406
2014-10-09 12:41:49 +00:00
Justin Bogner 894eff7a9f Revert "[InstCombine] re-commit r218721 with fix for pr21199"
This seems to cause a miscompile when building clang, which causes a
bootstrapped clang to fail or crash in several of its tests.

See:
  http://lab.llvm.org:8013/builders/clang-x86_64-darwin11-RA/builds/1184
  http://bb.pgr.jp/builders/clang-3stage-x86_64-linux/builds/7813

This reverts commit r219282.

llvm-svn: 219317
2014-10-08 16:30:22 +00:00
Gerolf Hoflehner e2ff5b9223 [InstCombine] re-commit r218721 with fix for pr21199
The icmp-select-icmp optimization targets select-icmp.eq
only. This is now ensured by testing the branch predicate
explictly. This commit also includes the test case for pr21199.

llvm-svn: 219282
2014-10-08 06:42:19 +00:00
Hans Wennborg 1256198bbc Revert r219175 - [InstCombine] re-commit r218721 icmp-select-icmp optimization
This seems to have caused PR21199.

llvm-svn: 219264
2014-10-08 01:05:57 +00:00
Suyog Sarda 181cc9a029 Remove Extra lines. NFC.
llvm-svn: 219201
2014-10-07 11:31:31 +00:00
Gerolf Hoflehner c0b4c20e5e [InstCombine] re-commit r218721 icmp-select-icmp optimization
Takes care of the assert that caused build fails.
Rather than asserting the code checks now that the definition
and use are in the same block, and does not attempt
to optimize when that is not the case.

llvm-svn: 219175
2014-10-07 00:16:12 +00:00
Hal Finkel 04a156139e [InstCombine] Remove redundant @llvm.assume intrinsics
For any @llvm.assume intrinsic, if there is another which dominates it and uses
the same condition, then it is redundant and can be removed. While this does
not alter the semantics of the @llvm.assume intrinsics, it makes subsequent
handling more efficient (and the resulting IR easier to read).

llvm-svn: 219067
2014-10-04 21:27:06 +00:00
Richard Smith 1ed4229f6f PR21145: Teach LLVM about C++14 sized deallocation functions.
C++14 adds new builtin signatures for 'operator delete'. This change allows
new/delete pairs to be removed in C++14 onwards, as they were in C++11 and
before.

llvm-svn: 219014
2014-10-03 20:17:06 +00:00
Duncan P. N. Exon Smith 176b691d32 Revert "Revert "DI: Fold constant arguments into a single MDString""
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash.  The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).

Original commit message follows.

--

This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 219010
2014-10-03 20:01:09 +00:00
Duncan P. N. Exon Smith 786cd049fc Revert "DI: Fold constant arguments into a single MDString"
This reverts commit r218914 while I investigate some bots.

llvm-svn: 218918
2014-10-02 22:15:31 +00:00
Duncan P. N. Exon Smith 571f97bd90 DI: Fold constant arguments into a single MDString
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 218914
2014-10-02 21:56:57 +00:00
Sanjay Patel 13a657819b Remove unused function attribute params.
llvm-svn: 218909
2014-10-02 21:12:04 +00:00
Sanjay Patel 12d1ce5408 Optimize square root squared (PR21126).
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.

This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.

Differential Revision: http://reviews.llvm.org/D5584

llvm-svn: 218906
2014-10-02 21:10:54 +00:00
Sanjay Patel 7b2cd9ad86 Make the sqrt intrinsic return undef for a negative input.
As discussed here:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140609/220598.html

And again here:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/077168.html

The sqrt of a negative number when using the llvm intrinsic is undefined. 
We should return undef rather than 0.0 to match the definition in the LLVM IR lang ref.

This change should not affect any code that isn't using "no-nans-fp-math"; 
ie, no-nans is a requirement for generating the llvm intrinsic in place of a sqrt function call.

Unfortunately, the behavior introduced by this patch will not match current gcc, xlc, icc, and 
possibly other compilers. The current clang/llvm behavior of returning 0.0 doesn't either. 
We knowingly approve of this difference with the other compilers in an attempt to flag code 
that is invoking undefined behavior.

A front-end warning should also try to convince the user that the program will fail:
http://llvm.org/bugs/show_bug.cgi?id=21093

Differential Revision: http://reviews.llvm.org/D5527

llvm-svn: 218803
2014-10-01 20:36:33 +00:00
Adrian Prantl 87b7eb9d0f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl b458dc2eee Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl 25a7174e7a Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Evgeniy Stepanov 815f2869ad Revert r218721, r218735.
Failing bootstrap on Linux (arm, x86).

http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/13139/steps/bootstrap%20clang/logs/stdio
http://lab.llvm.org:8011/builders/clang-cmake-armv7-a15-selfhost/builds/470
http://lab.llvm.org:8011/builders/clang-native-arm-lnt/builds/8518

llvm-svn: 218752
2014-10-01 10:07:28 +00:00
Gerolf Hoflehner 08cc4b950c [InstCombine] Optimize icmp-select-icmp
In special cases select instructions can be eliminated by
replacing them with a cheaper bitwise operation even when the
select result is used outside its home block. The instances implemented
are patterns like
    %x=icmp.eq
    %y=select %x,%r, null
    %z=icmp.eq|neq %y, null
    br %z,true, false
==> %x=icmp.ne
    %y=icmp.eq %r,null
    %z=or %x,%y
    br %z,true,false
The optimization is integrated into the instruction
combiner and performed only when all uses of the select result can
be replaced by the select operand proper. For this dominator information
is used and dominance is now a required analysis pass in the combiner.
The optimization itself is iterative. The critical step is to replace the
select result with the non-constant select operand. So the select becomes
local and the combiner iteratively works out simpler code pattern and
eventually eliminates the select.

rdar://17853760

llvm-svn: 218721
2014-10-01 00:13:22 +00:00
Andrea Di Biagio 5b92b4971a [InstCombine] Fix wrong folding of constant comparison involving ahsr and negative quantities (PR20945).
Example:
define i1 @foo(i32 %a) {
  %shr = ashr i32 -9, %a
  %cmp = icmp ne i32 %shr, -5
  ret i1 %cmp
}

Before this fix, the instruction combiner wrongly thought that %shr
could have never been equal to -5. Therefore, %cmp was always folded to 'true'.
However, when %a is equal to 1, then %cmp evaluates to 'false'. Therefore,
in this example, it is not valid to fold %cmp to 'true'.
The problem was only affecting the case where the comparison was between
negative quantities where one of the quantities was obtained from arithmetic
shift of a negative constant.

This patch fixes the problem with the wrong folding (fixes PR20945).
With this patch, the 'icmp' from the example is now simplified to a
comparison between %a and 1. This still allows us to get rid of the arithmetic
shift (%shr).

llvm-svn: 217950
2014-09-17 11:32:31 +00:00
Tilmann Scheller 40fc9595c8 [InstCombine] Remove redundant test case.
Patch by Sonam Kumari!

Differential Revision: http://reviews.llvm.org/D5284

llvm-svn: 217865
2014-09-16 08:50:10 +00:00
Hal Finkel 93873cc10e Check for all known bits on ret in InstCombine
From a combination of @llvm.assume calls (and perhaps through other means, such
as range metadata), it is possible that all bits of a return value might be
known. Previously, InstCombine did not check for this (which is understandable
given assumptions of constant propagation), but means that we'd miss simple
cases where assumptions are involved.

llvm-svn: 217346
2014-09-07 21:28:34 +00:00
Hal Finkel 15aeaaf24a Add additional patterns for @llvm.assume in ValueTracking
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.

r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:

assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
                       can propagate inverted known bits from the a to v.

assume(v | b = a) :    For those bits in b that are known to be zero, we can
                       propagate known bits from the a to v.

assume(~(v | b) = a):  For those bits in b that are known to be zero, we can
                       propagate inverted known bits from the a to v.

assume(v ^ b = a) :    For those bits in b that are known to be zero, we can
		       propagate known bits from the a to v. For those bits in
		       b that are known to be one, we can propagate inverted
                       known bits from the a to v.

assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
		       propagate inverted known bits from the a to v. For those
		       bits in b that are known to be one, we can propagate
                       known bits from the a to v.

assume(v << c = a) :   For those bits in a that are known, we can propagate them
                       to known bits in v shifted to the right by c.

assume(~(v << c) = a) : For those bits in a that are known, we can propagate
                        them inverted to known bits in v shifted to the right by c.

assume(v >> c = a) :   For those bits in a that are known, we can propagate them
                       to known bits in v shifted to the right by c.

assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
                        them inverted to known bits in v shifted to the right by c.

assume(v >=_s c) where c is non-negative: The sign bit of v is zero

assume(v >_s c) where c is at least -1: The sign bit of v is zero

assume(v <=_s c) where c is negative: The sign bit of v is one

assume(v <_s c) where c is non-positive: The sign bit of v is one

assume(v <=_u c): Transfer the known high zero bits

assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
                 of 2, transfer one more)

A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.

llvm-svn: 217343
2014-09-07 19:21:07 +00:00
Hal Finkel 60db05896a Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

llvm-svn: 217342
2014-09-07 18:57:58 +00:00
David Majnemer 6fe6ea740c InstCombine: Remove a special case pattern
The special case did not work when run under -reassociate and can easily
be expressed by a further generalization of an existing pattern.

llvm-svn: 217227
2014-09-05 06:09:24 +00:00
David Majnemer d2df50196f Revert "Revert two GEP-related InstCombine commits"
This reverts commit r216698 which reverted r216523 and r216598.

We would attempt to perform the transformation even if the match()
failed because, as a side effect, it would set V.  This would trick us
into believing that we correctly found a place to correctly apply the
transform.

An additional test case was added to getelementptr.ll so that we might
not regress in the future.

llvm-svn: 216890
2014-09-01 21:10:02 +00:00
David Majnemer 5e96f1b4c8 InstCombine: Try harder to combine icmp instructions
consider: (and (icmp X, Y), (and Z, (icmp A, B)))
It may be possible to combine (icmp X, Y) with (icmp A, B).
If we successfully combine, create an 'and' instruction with Z.

This fixes PR20814.

N.B. There is room for improvement after this change but I'm not
convinced it's worth chasing yet.

llvm-svn: 216814
2014-08-30 06:18:20 +00:00
David Majnemer 400e725bde Revert two GEP-related InstCombine commits
This reverts commit r216523 and r216598; people have reported
regressions.

llvm-svn: 216698
2014-08-29 00:06:43 +00:00
David Majnemer 76d06bc613 InstSimplify: Move a transform from InstCombine to InstSimplify
Several combines involving icmp (shl C2, %X) C1 can be simplified
without introducing any new instructions.  Move them to InstSimplify;
while we are at it, make them more powerful.

llvm-svn: 216642
2014-08-28 03:34:28 +00:00
David Majnemer 22ccfc4484 InstCombine: Combine gep X, (Y-X) to Y
We try to perform this transform in InstSimplify but we aren't always
able to.  Sometimes, we need to insert a bitcast if X and Y don't have
the same time.

llvm-svn: 216598
2014-08-27 20:08:37 +00:00
David Majnemer 54e97d5dc0 InstCombine: Optimize GEP's involving ptrtoint better
We supported transforming:
(gep i8* X, -(ptrtoint Y))

to:
(inttoptr (sub (ptrtoint X), (ptrtoint Y)))

However, this only fired if 'X' had type i8*.  Generalize this to
support various types of different sizes.  This results in much better
CodeGen, especially for pointers to packed structs.

llvm-svn: 216523
2014-08-27 05:16:04 +00:00
David Majnemer 0ffccf7fb5 InstCombine: Properly optimize or'ing bittests together
CFE, with -03, would turn:
bool f(unsigned x) {
  bool a = x & 1;
  bool b = x & 2;
  return a | b;
}

into:
  %1 = lshr i32 %x, 1
  %2 = or i32 %1, %x
  %3 = and i32 %2, 1
  %4 = icmp ne i32 %3, 0

This sort of thing exposes a nasty pathology in GCC, ICC and LLVM.

Instead, we would rather want:
  %1 = and i32 %x, 3
  %2 = icmp ne i32 %1, 0

Things get a bit more interesting in the following case:
  %1 = lshr i32 %x, %y
  %2 = or i32 %1, %x
  %3 = and i32 %2, 1
  %4 = icmp ne i32 %3, 0

Replacing it with the following sequence is better:
  %1 = shl nuw i32 1, %y
  %2 = or i32 %1, 1
  %3 = and i32 %2, %x
  %4 = icmp ne i32 %3, 0

This sequence is preferable because %1 doesn't involve %x and could
potentially be hoisted out of loops if it is invariant; only perform
this transform in the non-constant case if we know we won't increase
register pressure.

llvm-svn: 216343
2014-08-24 09:10:57 +00:00
David Majnemer 49775e0173 InstCombine: Don't unconditionally preserve 'nuw' when shrinking constants
Consider:
  %add = add nuw i32 %a, -16777216
  %and = and i32 %add, 255

Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nuw' from the
instruction.

llvm-svn: 216273
2014-08-22 17:11:04 +00:00
David Majnemer 0e6c986696 InstCombine: sub nsw %x, C -> add nsw %x, -C if C isn't INT_MIN
We can preserve nsw during this transform if -C won't overflow.

llvm-svn: 216269
2014-08-22 16:41:23 +00:00
David Majnemer 42b83a5e36 InstCombine: Don't unconditionally preserve 'nsw' when shrinking constants
Consider:
  %add = add nsw i32 %a, -16777216
  %and = and i32 %add, 255

Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nsw' from the
instruction.

This fixes PR20377.

llvm-svn: 216261
2014-08-22 07:56:32 +00:00
David Majnemer 5d1aeba2ea InstCombine: Fold ((A | B) & C1) ^ (B & C2) -> (A & C1) ^ B if C1^C2=-1
Adapted from a patch by Richard Smith, test-case written by me.

llvm-svn: 216157
2014-08-21 05:14:48 +00:00
Yi Jiang 1a4e73d7bf New InstCombine pattern: (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) to (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) under certain condition
llvm-svn: 216135
2014-08-20 22:55:40 +00:00
David Majnemer 42158f3eea InstCombine: Annotate sub with nuw when we prove it's safe
We can prove that a 'sub' can be a 'sub nuw' if the left-hand side is
negative and the right-hand side is non-negative.

llvm-svn: 216045
2014-08-20 07:17:31 +00:00
David Majnemer 57d5bc8849 InstCombine: Annotate sub with nsw when we prove it's safe
We can prove that a 'sub' can be a 'sub nsw' under certain conditions:
- The sign bits of the operands is the same.
- Both operands have more than 1 sign bit.

The subtraction cannot be a signed overflow in either case.

llvm-svn: 216037
2014-08-19 23:36:30 +00:00
Mayur Pandey 960507beb4 InstCombine: ((A & ~B) ^ (~A & B)) to A ^ B
Proof using CVC3 follows:
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR((A & ~B),(~A & B)) = BVXOR(A,B);
$ cvc3 t.cvc
Valid.

Differential Revision: http://reviews.llvm.org/D4898

llvm-svn: 215974
2014-08-19 08:19:19 +00:00
Owen Anderson a4428aa484 Remove an InstCombine that transformed patterns like (x * uitofp i1 y) to (select y, x, 0.0) when the multiply has fast math flags set.
While this might seem like an obvious canonicalization, there is one subtle problem with it.  The result of the original expression
is undef when x is NaN (remember, fast math flags), but the result of the select is always defined when x is NaN.  This means that the
new expression is strictly more defined than the original one.  One unfortunate consequence of this is that the transform is not reversible!
It's always legal to make increase the defined-ness of an expression, but it's not legal to reduce it.  Thus, targets that prefer the original
form of the expression cannot reverse the transform to recover it.  Another way to think of it is that the transform has lost source-level
information (the fast math flags), which is undesirable.

llvm-svn: 215825
2014-08-17 03:51:29 +00:00
David Majnemer f9a095d606 InstCombine: Combine mul with div.
We can combne a mul with a div if one of the operands is a multiple of
the other:

%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
  =>
%ret = mul nsw %a, (C1 / C2)

This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.

Consider this small example:

define i32 @f(i32 %a) {
  %mul = mul nuw i32 %a, 14
  %div = udiv exact i32 %mul, 7
  ret i32 %div
}

which gets CodeGen'd to:

    imull       $14, %edi, %eax
    imulq       $613566757, %rax, %rcx
    shrq        $32, %rcx
    subl        %ecx, %eax
    shrl        %eax
    addl        %ecx, %eax
    shrl        $2, %eax
    retq

We can now transform this into:
define i32 @f(i32 %a) {
  %shl = shl nuw i32 %a, 1
  ret i32 %shl
}

which gets CodeGen'd to:

    leal        (%rdi,%rdi), %eax
    retq

This fixes PR20681.

llvm-svn: 215815
2014-08-16 08:55:06 +00:00
David Majnemer 698dca0b95 InstCombine: ((A | ~B) ^ (~A | B)) to A ^ B
Proof using CVC3 follows:
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR((A | ~B),(~A |B)) = BVXOR(A,B);
$ cvc3 t.cvc
Valid.

Patch by Mayur Pandey!

Differential Revision: http://reviews.llvm.org/D4883

llvm-svn: 215621
2014-08-14 06:46:25 +00:00
David Majnemer f1eda23514 Added InstCombine Transform for ((B | C) & A) | B -> B | (A & C)
Transform ((B | C) & A) | B --> B | (A & C)

Z3 Link: http://rise4fun.com/Z3/hP6p

Patch by Sonam Kumari!

Differential Revision: http://reviews.llvm.org/D4865

llvm-svn: 215619
2014-08-14 06:41:38 +00:00
Karthik Bhat a4a4db91be InstCombine: Combine (xor (or %a, %b) (xor %a, %b)) to (add %a, %b)
Correctness proof of the transform using CVC3-

$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR(A | B, BVXOR(A,B) ) = A & B;

$ cvc3 t.cvc
Valid.

llvm-svn: 215524
2014-08-13 05:13:14 +00:00
Matt Arsenault 4815f09bbe Allwo bitcast + struct GEP transform to work with addrspacecast
llvm-svn: 215467
2014-08-12 19:46:13 +00:00
David Majnemer ab07f00c64 InstCombine: Combine (add (and %a, %b) (or %a, %b)) to (add %a, %b)
What follows bellow is a correctness proof of the transform using CVC3.

$ < t.cvc
A, B : BITVECTOR(32);

QUERY BVPLUS(32, A & B, A | B) = BVPLUS(32, A, B);

$ cvc3 < t.cvc
Valid.

llvm-svn: 215400
2014-08-11 22:32:02 +00:00
Suyog Sarda 56c9a87035 This patch implements transform for pattern "(A & ~B) ^ (~A) -> ~(A & B)".
Differential Revision: http://reviews.llvm.org/D4653

llvm-svn: 214479
2014-08-01 05:07:20 +00:00
Suyog Sarda 1c6c2f69f7 This patch implements transform for pattern "(A | B) & ((~A) ^ B) -> (A & B)".
Differential Revision: http://reviews.llvm.org/D4628

llvm-svn: 214478
2014-08-01 04:59:26 +00:00
Suyog Sarda 52324c82cc This patch implements transform for pattern "( A & (~B)) | (A ^ B) -> (A ^ B)"
Differential Revision: http://reviews.llvm.org/D4652

llvm-svn: 214477
2014-08-01 04:50:31 +00:00
Suyog Sarda 16d646594e This patch implements transform for pattern "(A & B) | ((~A) ^ B) -> (~A ^ B)".
Patch Credit to Ankit Jain !

Differential Revision: http://reviews.llvm.org/D4655

llvm-svn: 214476
2014-08-01 04:41:43 +00:00
David Majnemer a92687d636 InstCombine: Correctly propagate NSW/NUW for x-(-A) -> x+A
We can only propagate the nsw bits if both subtraction instructions are
marked with the appropriate bit.

N.B.  We only propagate the nsw bit in InstCombine because the nuw case
is already handled in InstSimplify.

This fixes PR20189.

llvm-svn: 214385
2014-07-31 04:49:29 +00:00
Rafael Espindola 464fe024c5 Use "weak alias" instead of "alias weak"
Before this patch we had

@a = weak global ...
but
@b = alias weak ...

The patch changes aliases to look more like global variables.

Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.

The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.

llvm-svn: 214355
2014-07-30 22:51:54 +00:00
David Majnemer 42af3601c2 InstCombine: Simplify (A ^ B) or/and (A ^ B ^ C)
While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B).  Our existing patterns fail once
this happens.

To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.

What follows bellow is a correctness proof of the transform using CVC3.

$ cat t.cvc
A, B, C : BITVECTOR(64);

QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;

QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;

$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.

llvm-svn: 214342
2014-07-30 21:26:37 +00:00
Hal Finkel f5867a79c5 Canonicalization for @llvm.assume
Adds simple logical canonicalization of assumption intrinsics to instcombine,
currently:
 - invariant(a && b) -> invariant(a); invariant(b)
 - invariant(!(a || b)) -> invariant(!a); invariant(!b)

llvm-svn: 213977
2014-07-25 21:45:17 +00:00
Suyog Sarda 3a8c2c1e6c This patch implements optimization as mentioned in PR19753: Optimize comparisons with "ashr/lshr exact" of a constanst.
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.

It implements : 
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))

Differential Revision: http://reviews.llvm.org/D4068
 

llvm-svn: 213678
2014-07-22 19:19:36 +00:00
Suyog Sarda b60ec909ca Added InstCombine transform for pattern "(A & B) ^ (A ^ B) -> (A | B)"
Patch idea by Ankit Jain !

Differential Revision: http://reviews.llvm.org/D4618

llvm-svn: 213677
2014-07-22 18:30:54 +00:00
Suyog Sarda d64faf6cae Added InstCombine Transform for patterns:
"((~A & B) | A) -> (A | B)" and "((A & B) | ~A) -> (~A | B)"

Original Patch credit to Ankit Jain !!

Differential Revision: http://reviews.llvm.org/D4591

llvm-svn: 213676
2014-07-22 18:09:41 +00:00
Hal Finkel ccc7090671 Make use of the align parameter attribute for all pointer arguments
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.

And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).

There are (at least) two benefits to doing this:
 - It allows enhancing alignment based on the pointer alignment after inlining callees.
 - It allows simplification of pointer arithmetic.

llvm-svn: 213670
2014-07-22 16:58:55 +00:00