This is a potentially large perf win for AVX1 targets because of the way we
auto-vectorize to 256-bit but then expect the backend to legalize/optimize
for the half-implemented AVX1 ISA.
On the motivating example from PR37428 (even though this patch doesn't solve
the vector shift issue):
https://bugs.llvm.org/show_bug.cgi?id=37428
...there's a 16% speedup when compiling with "-mavx" (perf tested on Haswell)
because we eliminate the remaining 256-bit vblendv ops.
I added comments on a couple of tests that require further work. If we have
256-bit logic ops separating the vselect and extract, we should probably narrow
everything to 128-bit, but that requires a larger pattern match.
Differential Revision: https://reviews.llvm.org/D62969
llvm-svn: 362797
This is intended to enable the use of an immediate blend or
more optimal instruction. But if the passthru is zero we don't
need any additional instructions.
llvm-svn: 362675
As suggested in D62498 - collectConcatOps() matches both
concat_vectors and insert_subvector patterns, and we see
more test improvements by using the more general match.
llvm-svn: 362620
We already handle the case where we combine shuffle(extractsubvector(x),extractsubvector(x)), this relaxes the requirement to permit different sources as long as they have the same value type.
This causes a couple of cases where the VPERMV3 binary shuffles occur at a wider width than before, which I intend to improve in future commits - but as only the subvector's mask indices are defined, these will broadcast so we don't see any increase in constant size.
llvm-svn: 362599
-Use early returns to reduce indentation
-Replace multipe ifs with a switch.
-Replace an assert with an llvm_unreachable default in the switch.
-Check that the FP type we're going to use for the
X86ISD::FAND/FOR/FXOR is legal rather than checking that the
integer type matches the width of a legal scalar fp type. This all
runs after legalization so it shouldn't really matter, but making
sure we're using a valid type in the X86ISD node is really
whats important.
llvm-svn: 362565
This shows up as a side issue to the main problem for the AVX target example from PR37428:
https://bugs.llvm.org/show_bug.cgi?id=37428 - https://godbolt.org/z/7tpRa3
But as we can see in the pile of existing test diffs, it's actually a widespread problem
that affects any AVX or later target. Apart from a couple of oddballs, I think these are
all improvements for the reasons stated in the code comment: we do not want to enable YMM
unnecessarily (avoid vzeroupper and frequency throttling) and some cores split 256-bit
stores anyway.
We could say that MergeConsecutiveStores() is going overboard on some of these examples,
but that won't solve the problem completely. But that is a reason I'm proposing this as
a lowering rather than a combine: we will infinite loop fighting the merge code if we try
this earlier.
Differential Revision: https://reviews.llvm.org/D62498
llvm-svn: 362524
As discussed on D62777 - we should be able to use this in more SSE41+ cases as well but that requires us to separate it from the OR(AND(),ANDN()) matcher.
llvm-svn: 362504
Move this combine from x86 into generic DAGCombine, which currently only manages cases where the bitcast is between types of the same scalarsize.
Differential Revision: https://reviews.llvm.org/D59188
llvm-svn: 362324
The LoadExt table defaults to all combinations being Legal. For
vector types, only src VTs with an i1 element type were ever changed.
So we don't need to mark them legal manually.
llvm-svn: 362170
We already have good codegen for (vXiY *ext(vXi1 bitcast(iX))) cases, this patch uses it for loads of vXi1 types as well - changing the load into a iX integer load, and bitcasting so that combineToExtendBoolVectorInReg can then use it.
Differential Revision: https://reviews.llvm.org/D62449
llvm-svn: 362081
This patch add the ISD::LRINT and ISD::LLRINT along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lrint/llrint generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D62017
llvm-svn: 361875
This shows up as a side issue to the main problem for the AVX target example from PR37428:
https://bugs.llvm.org/show_bug.cgi?id=37428 - https://godbolt.org/z/7tpRa3
But as we can see in the pile of existing test diffs, it's actually a widespread problem
that affects any AVX or later target. Apart from a couple of oddballs, I think these are
all improvements for the reasons stated in the code comment: we do not want to enable YMM
unnecessarily (avoid vzeroupper and frequency throttling) and some cores split 256-bit
stores anyway.
We could say that MergeConsecutiveStores() is going overboard on some of these examples,
but that won't solve the problem completely. But that is the reason I'm proposing this as
a lowering rather than a combine: we will infinite loop fighting the merge code if we try
this earlier.
Differential Revision: https://reviews.llvm.org/D62498
llvm-svn: 361822
Forking this out of the discussion in D62498
(and assuming that will be committed later, so adding the helper function here).
The LangRef says:
"the backend should never split or merge target-legal volatile load/store instructions."
Differential Revision: https://reviews.llvm.org/D62506
llvm-svn: 361815
We were only testing for direct SETCC results - this allows us to peek through AND/OR/XOR combinations of the comparison results as well.
There's a missing SEXT(PACKSS) fold that I need to investigate for v8i1 cases before I can enable it there as well.
llvm-svn: 361716
If we have a known non-nan operand, place it in the second operand
of fmin/fmax that is returned if either operand is nan.
Differential Revision: https://reviews.llvm.org/D62448
llvm-svn: 361704
This patch adds the overridable TargetLowering::getTargetConstantFromLoad function which allows targets to return any constant value loaded by a LoadSDNode node - only X86 makes use of this so far but everything should be in place for other targets.
computeKnownBits then uses this function to improve codegen, notably vector code after legalization.
A future commit will do the same for ComputeNumSignBits but computeKnownBits sees the bigger benefit.
This required a couple of fixes:
* SimplifyDemandedBits must early-out for getTargetConstantFromLoad cases to prevent infinite loops of constant regeneration (similar to what we already do for BUILD_VECTOR).
* Fix a DAGCombiner::visitTRUNCATE issue as we had trunc(shl(v8i32),v8i16) <-> shl(trunc(v8i16),v8i32) infinite loops after legalization on AVX512 targets.
Differential Revision: https://reviews.llvm.org/D61887
llvm-svn: 361620
Fix for https://bugs.llvm.org/show_bug.cgi?id=41971. Make the
combineVectorSizedSetCCEquality() transform more conservative by
checking that the bitcast to the vector type will be cheap/free
for both operands. I'm considering it cheap if it's a constant,
a load or already a vector. I've dropped the explicit check for
f128 because it should fall out naturally (in the cases where
it'd be detrimental).
Differential Revision: https://reviews.llvm.org/D62220
llvm-svn: 361352
Same as what we do for vector reductions in combineHorizontalPredicateResult, use movmsk+cmp for scalar (and(extract(x,0),extract(x,1)) reduction patterns.
llvm-svn: 361052
Summary:
This refactors four pieces of code that create SDNodes for references to
symbols:
- normal global address lowering (LEA, MOV, etc)
- callee global address lowering (CALL)
- external symbol address lowering (LEA, MOV, etc)
- external symbol address lowering (CALL)
Each of these pieces of code need to:
- classify the reference
- lower the symbol
- emit a RIP wrapper if needed
- emit a load if needed
- add offsets if needed
I think handling them all in one place will make the code easier to
maintain in the future.
Reviewers: craig.topper, RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61690
llvm-svn: 360952
This patch add the ISD::LROUND and ISD::LLROUND along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lround/llround generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
llvm-svn: 360889
They encode the same way, but OR32mi8Locked sets hasUnmodeledSideEffects set
which should be stronger than the mayLoad/mayStore on LOCK_OR32mi8. I think
this makes sense since we are using it as a fence.
This also seems to hide the operation from the speculative load hardening pass
so I've reverted r360511.
llvm-svn: 360747
This was the portion split off D58632 so that it could follow the redzone API cleanup. Note that I changed the offset preferred from -8 to -64. The difference should be very minor, but I thought it might help address one concern which had been previously raised.
Differential Revision: https://reviews.llvm.org/D61862
llvm-svn: 360719
D61068 handled vector shifts, this patch does the same for scalars where there are similar number of pipes for shifts as bit ops - this is true almost entirely for AMD targets where the scalar ALUs are well balanced.
This combine avoids AND immediate mask which usually means we reduce encoding size.
Some tests show use of (slow, scaled) LEA instead of SHL in some cases, but thats due to particular shift immediates - shift+mask generate these just as easily.
Differential Revision: https://reviews.llvm.org/D61830
llvm-svn: 360684
This is a follow on to D58632, with the same logic. Given a memory operation which needs ordering, but doesn't need to modify any particular address, prefer to use a locked stack op over an mfence.
Differential Revision: https://reviews.llvm.org/D61863
llvm-svn: 360649
Returning SDValue() makes the caller think that nothing happened and it will
end up executing the Expand path. This generates extra nodes that will need to
be pruned as dead code.
Returning an ISD::MERGE_VALUES will tell the caller that we'd like to make a
change and it will take care of replacing uses. This will prevent falling into
the Expand path.
llvm-svn: 360627
These are updates to match how isel table would emit a LOCK_OR32mi8 node.
-Use i32 for the immediate zero even though only 8 bits are encoded.
-Use i16 for segment register.
-Use LOCK_OR32mi8 for idempotent atomic operations in 32-bit mode to match
64-bit mode. I'm not sure why OR32mi8Locked and LOCK_OR32mi8 both exist. The
only difference seems to be that OR32mi8Locked is marked as UnmodeledSideEffects=1.
-Emit an extra i32 result for the flags output.
I don't know if the types here really matter just noticed it was inconsistent
with normal behavior.
llvm-svn: 360619
Summary:
X86TargetLowering::LowerAsmOperandForConstraint had better support than
TargetLowering::LowerAsmOperandForConstraint for arbitrary depth
getelementpointers for "i", "n", and "s" extended inline assembly
constraints. Hoist its support from the derived class into the base
class.
Link: https://github.com/ClangBuiltLinux/linux/issues/469
Reviewers: echristo, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, E5ten, kees, jyknight, nemanjai, javed.absar, eraman, hiraditya, jsji, llvm-commits, void, craig.topper, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61560
llvm-svn: 360604
Fixes the regression noted in D61782 where a VZEXT_MOVL was being inserted because we weren't discriminating between 'zeroable' and 'all undef' for the upper elts.
Differential Revision: https://reviews.llvm.org/D61782
llvm-svn: 360596
Now that we can use HADD/SUB for scalar additions from any pair of extracted elements (D61263), we can relax the one use limit as we will be able to merge multiple uses into using the same HADD/SUB op.
This exposes a couple of missed opportunities in LowerBuildVectorv4x32 which will be committed separately.
Differential Revision: https://reviews.llvm.org/D61782
llvm-svn: 360594