This avoids the InlineAdvisor carrying the responsibility of deleting
Function objects. We use LazyCallGraph::Node objects instead, which are
stable in memory for the duration of the Module-wide performance of CGSCC
passes started under the same ModuleToPostOrderCGSCCPassAdaptor (which
is the case here)
Differential Revision: https://reviews.llvm.org/D116964
This prepares it for the regalloc work. Part of it is making model
evaluation accross 'development' and 'release' scenarios more reusable.
This patch:
- extends support to tensors of any shape (not just scalars, like we had
in the inliner -Oz case). While the tensor shape can be anything, we
assume row-major layout and expose the tensor as a buffer.
- exposes the NoInferenceModelRunner, which we use in the 'development'
mode to keep the evaluation code path consistent and simplify logging,
as we'll want to reuse it in the regalloc case.
Differential Revision: https://reviews.llvm.org/D115306
This avoids unnecessary re-calculation of module-wide features in the
MLInlineAdvisor. In cases where function passes don't invalidate
functions (and, thus, don't invalidate the module), but we re-process a
CGSCC, we currently refreshed module features unnecessarily. The
overhead of fetching cached results (albeit they weren't themselves
invalidated) was noticeable in certain modules' compilations.
We don't want to just invalidate the advisor object, though, via the
analysis manager, because we'd then need to re-create expensive state
(like the model evaluator in the ML 'development' mode).
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D113644
This change yields an additional 2% size reduction on an internal search
binary, and an additional 0.5% size reduction on fuchsia.
Differential Revision: https://reviews.llvm.org/D104751
This reverts commit d97f776be5.
The original problem was due to build failures in shared lib builds. D95079
moved ImportedFunctionsInliningStatistics under Analysis, unblocking
this.
When using 2 InlinePass instances in the same CGSCC - one for other
mandatory inlinings, the other for the heuristic-driven ones - the order
in which the ImportedFunctionStats would be output-ed would depend on
the destruction order of the inline passes, which is not deterministic.
This patch moves the ImportedFunctionStats responsibility to the
InlineAdvisor to address this problem.
Differential Revision: https://reviews.llvm.org/D94982
Expanding from D94808 - we ensure the same InlineAdvisor is used by both
InlinerPass instances. The notion of mandatory inlining is moved into
the core InlineAdvisor: advisors anyway have to handle that case, so
this change also factors out that a bit better.
Differential Revision: https://reviews.llvm.org/D94825
Enable performing mandatory inlinings upfront, by reusing the same logic
as the full inliner, instead of the AlwaysInliner. This has the
following benefits:
- reduce code duplication - one inliner codebase
- open the opportunity to help the full inliner by performing additional
function passes after the mandatory inlinings, but before th full
inliner. Performing the mandatory inlinings first simplifies the problem
the full inliner needs to solve: less call sites, more contextualization, and,
depending on the additional function optimization passes run between the
2 inliners, higher accuracy of cost models / decision policies.
Note that this patch does not yet enable much in terms of post-always
inline function optimization.
Differential Revision: https://reviews.llvm.org/D91567
(This reverts commit a5e0194709, and
corrects author).
Rename the pass to be able to extend it to function properties other than inliner features.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D82044
Rename the pass to be able to extend it to function properties other than inliner features.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D82044
Outside of compiler-rt (where it's arguably an anti-pattern too),
LLVM tries to keep its build files as simple as possible. See e.g.
llvm/docs/SupportLibrary.rst, "Code Organization".
Differential Revision: https://reviews.llvm.org/D84243