We could just merge all umin into umin_seq, but that is likely
a pessimization, so don't do that, but pretend that we did
for the purpose of deduplication.
Having the same operand more than once doesn't change the outcome here,
neither reduction-wise nor poison-wise.
We must keep the first instance specifically though.
Two crashes have been reported. This change disables the new logic while leaving the new node in tree. Hopefully, that's enough to allow investigation without breakage while avoiding massive churn.
As discussed in https://github.com/llvm/llvm-project/issues/53020 / https://reviews.llvm.org/D116692,
SCEV is forbidden from reasoning about 'backedge taken count'
if the branch condition is a poison-safe logical operation,
which is conservatively correct, but is severely limiting.
Instead, we should have a way to express those
poison blocking properties in SCEV expressions.
The proposed semantics is:
```
Sequential/in-order min/max SCEV expressions are non-commutative variants
of commutative min/max SCEV expressions. If none of their operands
are poison, then they are functionally equivalent, otherwise,
if the operand that represents the saturation point* of given expression,
comes before the first poison operand, then the whole expression is not poison,
but is said saturation point.
```
* saturation point - the maximal/minimal possible integer value for the given type
The lowering is straight-forward:
```
compare each operand to the saturation point,
perform sequential in-order logical-or (poison-safe!) ordered reduction
over those checks, and if reduction returned true then return
saturation point else return the naive min/max reduction over the operands
```
https://alive2.llvm.org/ce/z/Q7jxvH (2 ops)
https://alive2.llvm.org/ce/z/QCRrhk (3 ops)
Note that we don't need to check the last operand: https://alive2.llvm.org/ce/z/abvHQS
Note that this is not commutative: https://alive2.llvm.org/ce/z/FK9e97
That allows us to handle the patterns in question.
Reviewed By: nikic, reames
Differential Revision: https://reviews.llvm.org/D116766
This ports the logic we generate in instcombine for a single use x.with.overflow check for use in SCEV's analysis. The result is that we can prove trip counts for many checks, and (through existing logic) often discharge them.
Motivation comes from compiling a simple example with -ftrapv.
Differential Revision: https://reviews.llvm.org/D116499
This patch updates applyLoopGuards to first collect all conditions and
then applies them in reverse order. This ensures the SCEVs with the
shortest dependency chains are constructed first, limiting the required
stack size.
This fixes a crash reported in D113578.
Note that the order conditions are applied can impact the accuracy of
the result, mostly due to missing min/max simplifications when
constructing SCEVs.
The changed test highlights the impact of the evaluation order. I will
follow up with a SCEV patch to improve min/max simplifications to get
the same results for both orders.
Fixes verification failure reported at:
https://reviews.llvm.org/rGc9f9be0381d1
The issue is that getSCEVAtScope() might compute a result without
inserting it in the ValuesAtScopes map in degenerate cases,
specifically if the ValuesAtScopes entry is invalidated during the
calculation. Arguably we should still insert the result if no
existing placeholder is found, but for now just tweak the logic
to only update ValuesAtScopesUsers if ValuesAtScopes is updated.
Track which SCEVs are used as ExactNotTaken counts in
BackedgeTakenInfo structures, so we can directly determine which
loops need to be invalidated, rather than iterating over all BECounts.
This gives a small compile-time improvement on average, but the
motivation here is more to ensure there are no degenerate cases,
if the number of backedge taken counts is large.
Differential Revision: https://reviews.llvm.org/D114784
ValuesAtScopes maps a SCEV and a Loop to another SCEV. While we
invalidate entries if the left-hand SCEV is invalidated, we
currently don't do this for the right-hand SCEV. Fix this by
tracking users in a reverse map and using it for invalidation.
This is conceptually the same change as D114738, but using the
reverse map to avoid performance issues.
Differential Revision: https://reviews.llvm.org/D114788
Fix assertion failure reported on D113349 by removing the assert.
While the produced expression should be equivalent, it may not
be strictly the same, e.g. due to lazy nowrap flag updates. Similar
to what the main createSCEV() code does, simply retain the old
value map entry if one already exists.
With the recently introduced tracking as well as D113349, we can
greatly simplify forgetSymbolicName(). In fact, we can simply
replace it with forgetMemoizedResults().
What forgetSymbolicName() used to do is to walk the IR use-def
chain to find all SCEVs that mention the SymbolicName. However,
thanks to use tracking, we can now determine the relevant SCEVs
in a more direct way. D113349 is needed to also clear out the
actual IR to SCEV mapping in ValueExprMap.
Differential Revision: https://reviews.llvm.org/D114263
After backedge taken counts have been calculated, we want to
invalidate all addrecs and dependent expressions in the loop,
because we might compute better results with the newly available
backedge taken counts. Previously this was done with a forgetLoop()
style use-def walk. With recent improvements to SCEV invalidation,
we can instead directly invalidate any SCEVs using addrecs in this
loop. This requires a great deal less subtlety to avoid invalidating
more than necessary, and in particular gets rid of the hack from
D113349. The change is similar to D114263 in spirit.
Relative to the previous landing attempt, this introduces an additional
flag on forgetMemoizedResults() to not remove SCEVUnknown phis from
the value map. The invalidation after BECount calculation wants to
leave these alone and skips them in its own use-def walk, but we can
still end up invalidating them via forgetMemoizedResults() if there
is another IR value with the same SCEV. This is intended as a temporary
workaround only, and the need for this should go away once the
getBackedgeTakenInfo() invalidation is refactored in the spirit of
D114263.
-----
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Relative to the previous landing attempt, this makes
insertValueToMap() resilient against the value already being
present in the map -- previously I only checked this for the
createSimpleAffineAddRec() case, but the same issue can also
occur for the general createNodeForPHI(). In both cases, the
addrec may be constructed and added to the map in a recursive
query trying to create said addrec. In this case, this happens
due to the invalidation when the BE count is computed, which
ends up clearing out the symbolic name as well.
-----
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Accum is guaranteed to be defined outside L (via Loop::isLoopInvariant
checks above). I think that should guarantee that the more powerful
ScalarEvolution::isLoopInvariant also determines that the value is loop
invariant.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114634
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Revert "[SCEV] Defer all work from ea12c2cb as late as possible"
Revert "[SCEV] Defer loop property checks from ea12c2cb as late as possible"
This reverts commit 734abbad79 and 1a5666acb2.
Both of these changes were speculative attempts to address a compile time regression. Neither worked, and both complicated the code in undesirable ways.
This is a second speculative compile time optimization to address a reported regression. My actual suspicion is that availability of no-self-wrap is making some *other* bit of code trigger, but let's rule this out.
This change moves logic which we'd added specifically for less than tests so that it applies to equalities and greater than tests as well. The basic idea is that if we can show an IV cycles infinitely through the same series on self-wrap, and that the exit condition must be taken to prevent UB, we can conclude that it must be taken before self-wrap and thus infer said flag.
The motivation here is simple loops with unsigned induction variables w/non-one steps and inequality tests. A toy example would be:
for (unsigned i = 0; i != N; i += 2) { body; }
If body contains no side effects, and this is a mustprogress function, we can assume that this must be a finite loop and thus that the exit count is N/2.
Differential Revision: https://reviews.llvm.org/D103991
The initial two cases require a SCEVConstant as RHS. Pull up the condition
to check and swap SCEVConstants from below. Also remove a redundant
check & swap if RHS is SCEVUnknown.
This solves the same crash as in D104503, but with a different approach.
The test case test_non_dom demonstrates a case where scev-aa crashes today. (If exercised either by -eval-aa or -licm.) The basic problem is that SCEV-AA expects to be able to compute a pointer difference between two SCEVs for any two pair of pointers we do an alias query on. For (valid, but out of scope) reasons, we can end up asking whether expressions in different sub-loops can alias each other. This results in a subtraction expression being formed where neither operand dominates the other.
The approach this patch takes is to leverage the "defining scope" notion we introduced for flag semantics to detect and disallow the formation of the problematic SCEV. This ends up being relatively straight forward on that new infrastructure. This change does hint that we should probably be verifying a similar property for all SCEVs somewhere, but I'll leave that to a follow on change.
Differential Revision: D114112
Similar other cases in the current function (e.g. when the step is 1 or
-1), applying loop guards can lead to tighter upper bounds for the
backedge-taken counts.
Fixes PR52464.
Reviewed By: reames, nikic
Differential Revision: https://reviews.llvm.org/D113578
There are multiple possible ways to represent the X - urem X, Y pattern. SCEV was not canonicalizing, and thus, depending on which you analyzed, you could get different results. The sub representation appears to produce strictly inferior results in practice, so I decided to canonicalize to the Y * X/Y version.
The motivation here is that runtime unroll produces the sub X - (and X, Y-1) pattern when Y is a power of two. SCEV is thus unable to recognize that an unrolled loop exits because we don't figure out that the new unrolled step evenly divides the trip count of the unrolled loop. After instcombine runs, we convert the the andn form which SCEV recognizes, so essentially, this is just fixing a nasty pass ordering dependency.
The ARM loop hardware interaction in the test diff is opague to me, but the comments in the review from others knowledge of the infrastructure appear to indicate these are improvements in loop recognition, not regressions.
Differential Revision: https://reviews.llvm.org/D114018
So far, applying loop guard information has been restricted to
SCEVUnknown. In a few cases, like PR40961 and PR52464, this leads to
SCEV failing to determine tight upper bounds for the backedge taken
count.
This patch adjusts SCEVLoopGuardRewriter and applyLoopGuards to support
re-writing ZExt expressions.
This is a first step towards fixing PR40961 and PR52464.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D113577
attempts
Prevent the selection of IVs that have a SCEV containing an undef. Also
prevent salvaging attempts for values for which a SCEV could not be
created by ScalarEvolution and have only SCEVUknown.
Reviewed by: Orlando
Differential Revision: https://reviews.llvm.org/D111810
The basic idea here is that given a zero extended narrow IV, we can prove the inner IV to be NUW if we can prove there's a value the inner IV must take before overflow which must exit the loop.
Differential Revision: https://reviews.llvm.org/D109457
Data references in a loop should not access elements over the
statically allocated size. So we can infer a loop max trip count
from this undefined behavior.
Reviewed By: reames, mkazantsev, nikic
Differential Revision: https://reviews.llvm.org/D109821
It it now sufficient to track only direct addrec users of a loop,
and let the SCEVUsers mechanism track and invalidate transitive users.
Differential Revision: https://reviews.llvm.org/D112875
This function is used at least in 2 places, to it makes sense to make it separate.
Differential Revision: https://reviews.llvm.org/D112516
Reviewed By: reames
Following discussion in D110390, it seems that we are suffering from unability
to traverse users of a SCEV being invalidated. The result of that is that ScalarEvolution's
inner caches may store obsolete data about SCEVs even if their operands are
forgotten. It creates problems when we try to verify the contents of those caches.
It's also a frequent situation when messing with cache causes very sneaky and
hard-to-analyze bugs related to corruption of memory when dealing with cached
data. They are lurking there because ScalarEvolution's veirfication is not powerful
enough and misses many problematic cases. I plan to make SCEV's verification
much stricter in follow-ups, and this requires dangling-pointers-free caches.
This patch makes sure that, whenever we forget cached information for a SCEV,
we also forget it for all SCEVs that (transitively) use it.
This may have negative compile time impact. It's a sacrifice we are more
than willing to make to enforce correctness. We can also save some time by
reworking invokers of forgetMemoizedResults (maybe we can forget multiple
SCEVs with single query).
Differential Revision: https://reviews.llvm.org/D111533
Reviewed By: reames
Make sure that, for every living SCEV, we have all its direct
operand tracking it as their user.
Differential Revision: https://reviews.llvm.org/D112402
Reviewed By: reames
Always insert values into ExprValueMap, and instead skip using them
in SCEVExpander if poison-generating flags have been lost. This
ensures that all values that are in ValueExprMap are also in
ExprValueMap, so we can use the latter to invalidate the former.
This change is probably not entirely NFC for the case where
originally the SCEV had no nowrap flags but they were inferred
later, in which case that would now allow reusing the existing
value for expansion.
Differential Revision: https://reviews.llvm.org/D112389
Mass forgetMemoizedResults can be done more efficiently than bunch
of individual invocations of helper because we can traverse maps being
updated just once, rather than doing this for each invidivual SCEV.
Should be NFC and supposedly improves compile time.
Differential Revision: https://reviews.llvm.org/D112294
Reviewed By: reames