This fixes an assertion when constant folding a GEP when the part of the offset
was in i32 (IndexSize, as per DataLayout) and part in the i64 (PointerSize) in
the newly created test case.
Differential Revision: https://reviews.llvm.org/D52609
llvm-svn: 345585
Summary:
The visitICmp analysis function would record compares of pointer types, as size 0. This causes the resulting memcmp() call to have the wrong total size.
Found with "self-build" of clang/LLVM on Windows.
Reviewers: christylee, trentxintong, courbet
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53536
llvm-svn: 345413
This patch adds support of `llvm.experimental.guard` intrinsics to non-trivial
simple loop unswitching. These intrinsics represent implicit control flow which
has pretty much the same semantics as usual conditional branches. The
algorithm of dealing with them is following:
- Consider guards as unswitching candidates;
- If a guard is considered the best candidate, turn it into a branch;
- Apply normal unswitching algorithm on this branch.
The patch has no compile time effect on code that does not contain any guards.
Differential Revision: https://reviews.llvm.org/D53744
Reviewed By: chandlerc
llvm-svn: 345387
We should be able to make all relevant checks before we actually start the non-trivial
unswitching, so that we could guarantee that once we have started the transform,
it will always succeed.
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D53747
llvm-svn: 345375
This work is to avoid regressions when we seperate FNeg from the FSub IR instruction.
Differential Revision: https://reviews.llvm.org/D53205
llvm-svn: 345146
LSR reassociates constants as unfolded offsets when the constants fit as
immediate add operands, which currently prevents such constants from being
combined later with loop invariant registers.
This patch modifies GenerateCombinations() to generate a second formula which
includes the unfolded offset in the combined loop-invariant register.
Differential Revision: https://reviews.llvm.org/D51861
llvm-svn: 345114
We need to update this code before introducing an 'fneg' instruction in IR,
so we might as well kill off the integer neg/not queries too.
This is no-functional-change-intended for scalar code and most vector code.
For vectors, we can see that the 'match' API allows for undef elements in
constants, so we optimize those cases better.
Ideally, there would be a test for each code diff, but I don't see evidence
of that for the existing code, so I didn't try very hard to come up with new
vector tests for each code change.
Differential Revision: https://reviews.llvm.org/D53533
llvm-svn: 345042
This pass could probably be modified slightly to allow
vector splat transforms for practically no cost, but
it only works on scalars for now. So the use of the
newer 'match' API should make no functional difference.
llvm-svn: 345030
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
are terminators without relying on the specific `TerminatorInst` type.
This required cleaning up two users of `InstVisitor`s usage of
`TerminatorInst` as well.
llvm-svn: 344503
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
This is the last interesting usage in all of LLVM's headers. The
remaining usages in headers are the core typesystem bits (Core.h,
instruction types, and InstVisitor) and as the return of
`BasicBlock::getTerminator`. The latter is the big remaining API point
that I'll remove after mass updates to user code.
llvm-svn: 344501
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
I've added a new test case that causes the scalarizer to try and use
dead-and-erased values - caused by the basic blocks not being in
domination order within the function. To fix this, instead of iterating
through the blocks in function order, I walk them in reverse post order.
Differential Revision: https://reviews.llvm.org/D52540
llvm-svn: 344128
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
This is the second in a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context. The first change being r344012.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make this patch.
This patch makes LocationSize into an actual type that wraps a uint64_t;
users are required to call getValue() in order to get the size now. If
the LocationSize has an Unknown size (e.g. if LocSize ==
MemoryLocation::UnknownSize), getValue() will assert.
This also adds DenseMap specializations for LocationInfo, which required
taking two more values from the set of values LocationInfo can
represent. Hence, heavy users of multi-exabyte arrays or structs may
observe slightly lower-quality code as a result of this change.
The intent is for getValue()s to be very close to a corresponding
hasValue() (which is often spelled `!= MemoryLocation::UnknownSize`).
Sadly, small diff context appears to crop that out sometimes, and the
last change in DSE does require a bit of nonlocal reasoning about
control-flow. :/
This also removes an assert, since it's now redundant with the assert in
getValue().
llvm-svn: 344013
This is one of a series of changes intended to make
https://reviews.llvm.org/D44748 more easily reviewable. Please see that
patch for more context.
Since I was requested to do all of this with post-commit review, this is
about as small as I can make it (beyond committing changes to these few
files separately, but they're incredibly similar in spirit, so...)
On its own, this change doesn't make a great deal of sense. I plan on
having a follow-up Real Soon Now(TM) to make the bits here make more
sense. :)
In particular, the next change in this series is meant to make
LocationSize an actual type, which you have to call .getValue() on in
order to get at the uint64_t inside. Hence, this change refactors code
so that:
- we only need to call the soon-to-come getValue() once in most cases,
and
- said call to getValue() happens very closely to a piece of code that
checks if the LocationSize has a value (e.g. if it's != UnknownSize).
llvm-svn: 344012
In r339636 the alias analysis rules were changed with regards to tail calls
and byval arguments. Previously, tail calls were assumed not to alias
allocas from the current frame. This has been updated, to not assume this
for arguments with the byval attribute.
This patch aligns TailCallElim with the new rule. Tail marking can now be
more aggressive and mark more calls as tails, e.g.:
define void @test() {
%f = alloca %struct.foo
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test2(%struct.foo* byval %f) {
call void @bar(%struct.foo* byval %f)
ret void
}
define void @test3(%struct.foo* byval %f) {
%agg.tmp = alloca %struct.foo
%0 = bitcast %struct.foo* %agg.tmp to i8*
%1 = bitcast %struct.foo* %f to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %0, i8* %1, i64 40, i1 false)
call void @bar(%struct.foo* byval %agg.tmp)
ret void
}
The problematic case where a byval parameter is captured by a call is still
handled correctly, and will not be marked as a tail (see PR7272).
llvm-svn: 343986
This patch turns LoopInterchange into a loop pass. It now only
considers top-level loops and tries to move the innermost loop to the
optimal position within the loop nest. By only looking at top-level
loops, we might miss a few opportunities the function pass would get
(e.g. if we have a loop nest of 3 loops, in the function pass
we might process loops at level 1 and 2 and move the inner most loop to
level 1, and then we process loops at levels 0, 1, 2 and interchange
again, because we now have a different inner loop). But I think it would
be better to handle such cases by picking the best inner loop from the
start and avoid re-visiting the same loops again.
The biggest advantage of it being a function pass is that it interacts
nicely with the other loop passes. Without this patch, there are some
performance regressions on AArch64 with loop interchanging enabled,
where no loops were interchanged, but we missed out on some other loop
optimizations.
It also removes the SimplifyCFG run. We are just changing branches, so
the CFG should not be more complicated, besides the additional 'unique'
preheaders this pass might create.
Reviewers: chandlerc, efriedma, mcrosier, javed.absar, xbolva00
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D51702
llvm-svn: 343308
This patch extends LoopInterchange to move LCSSA to the right place
after interchanging. This is required for LoopInterchange to become a
function pass.
An alternative to the manual moving of the PHIs, we could also re-form
the LCSSA phis for a set of interchanged loops, but that's more
expensive.
Reviewers: efriedma, mcrosier, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D52154
llvm-svn: 343132
This reverts commit bd7b44f35ee9fbe365eb25ce55437ea793b39346.
Reland r342994: disabled the optimization and explicitly enable it in test.
-mllvm -consthoist-min-num-to-rebase<unsigned>=0
[ConstHoist] Do not rebase single (or few) dependent constant
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 343053
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 342994
Summary:
The default target of the switch instruction may sometimes be an
"unreachable" block, when it is guaranteed that one of the cases is
always taken. The dominator tree concludes that such a switch
instruction does not have an immediate post dominator. This confuses
divergence analysis, which is unable to propagate sync dependence to
the targets of the switch instruction.
As a workaround, the AMDGPU target now invokes lower-switch as a
preISel pass. LowerSwitch is designed to handle the unreachable
default target correctly, allowing the divergence analysis to locate
the correct immediate dominator of the now-lowered switch.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits, simoll
Differential Revision: https://reviews.llvm.org/D52221
llvm-svn: 342722
Summary:
his code was in CGDecl.cpp and really belongs in LLVM's isBytewiseValue. Teach isBytewiseValue the tricks clang's isRepeatedBytePattern had, including merging undef properly, and recursing on more types.
clang part of this patch: D51752
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51751
llvm-svn: 342709
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Summary:
Before removing basic blocks that ipsccp has considered as dead
all uses of the basic block label must be removed. That is done
by calling ConstantFoldTerminator on the users. An exception
is when the branch condition is an undef value. In such
scenarios ipsccp is using some internal assumptions regarding
which edge in the control flow that should remain, while
ConstantFoldTerminator don't know how to fold the terminator.
The problem addressed here is related to ConstantFoldTerminator's
ability to rewrite a 'switch' into a conditional 'br'. In such
situations ConstantFoldTerminator returns true indicating that
the terminator has been rewritten. However, ipsccp treated the
true value as if the edge to the dead basic block had been
removed. So the code for resolving an undef branch condition
did not trigger, and we ended up with assertion that there were
uses remaining when deleting the basic block.
The solution is to resolve indeterminate branches before the
call to ConstantFoldTerminator.
Reviewers: efriedma, fhahn, davide
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52232
llvm-svn: 342632
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
Summary:
Adds LLVMAddUnifyFunctionExitNodesPass to expose
createUnifyFunctionExitNodesPass to the C and OCaml APIs.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52212
llvm-svn: 342476
A piece of logic in rewriteLoopExitValues has a weird check on number of
users which allowed an unprofitable transform in case if an instruction has
more than 6 users.
Differential Revision: https://reviews.llvm.org/D51404
Reviewed By: etherzhhb
llvm-svn: 342444
Summary:
EarlyCSE can make IR changes that will leave MemorySSA with accesses claiming to be optimized, but for which a subsequent MemorySSA run will yield a different optimized result.
Due to relying on AA queries, we can't fix this in general, unless we recompute MemorySSA.
Adding some tests to track this and a basic verify for future potential failures.
Reviewers: george.burgess.iv, gberry
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D51960
llvm-svn: 342422
As preparation for LoopInterchange becoming a loop pass, it needs to
preserve ScalarEvolution. Even though interchanging should not change
the trip count of the loop, it modifies loop entry, latch and exit
blocks.
I added -verify-scev to some loop interchange tests, but the verification does
not catch problems caused by missing invalidation of SE in loop interchange, as
the trip counts themselves do not change. So there might be potential to
make the SE verification covering more stuff in the future.
Reviewers: mkazantsev, efriedma, karthikthecool
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D52026
llvm-svn: 342209
This adds DebugCounter support to the PartiallyInlineLibCalls pass,
which should make debugging/automated bisection easier in the future.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50093
llvm-svn: 342172
Fix for https://bugs.llvm.org/show_bug.cgi?id=38912.
In GVNHoist::computeInsertionPoints() we iterate over the Value
Numbers and calculate the Iterated Dominance Frontiers without
clearing the IDFBlocks vector first. IDFBlocks ends up accumulating
an insane number of basic blocks, which bloats the compilation time
of SemaChecking.cpp with ubsan enabled.
Differential Revision: https://reviews.llvm.org/D51980
llvm-svn: 342055
Summary:
Update MemorySSA in old LoopUnswitch pass.
Actual dependency and update is disabled by default.
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45301
llvm-svn: 341984
There are 2 cases when we create PHI nodes:
* For the result of the call that was duplicated in the split blocks.
Those PHI nodes should have the debug location of the call.
* For values produced before the call. Those instructions need to be
duplicated in the split blocks and the PHI nodes should have the
debug locations of those instructions.
Fixes PR37962.
Reviewers: junbuml, gbedwell, vsk
Reviewed By: junbuml
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D51919
llvm-svn: 341970
Currently we re-use cached info from sub loops or traverse them
to populate AliasSetTracker. But after that we traverse all basic blocks
from the current loop. This is redundant work.
All what we need is traversing the all basic blocks from the loop except
those which are used to get the data from the cache.
This should improve compile time only.
Reviewers: mkazantsev, reames, kariddi, anna
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51715
llvm-svn: 341896
IndVarSimplify's design is somewhat odd in the way how it reports that
some transform has made a change. It has a `Changed` field which can
be set from within any function, which makes it hard to track whether or
not it was set properly after a transform was made. It leads to oversights
in setting this flag where needed, see example in PR38855.
This patch removes the `Changed` field, turns it into a local and unifies
the signatures of all relevant transform functions to return boolean value
which designates whether or not this transform has made a change.
Differential Revision: https://reviews.llvm.org/D51850
Reviewed By: skatkov
llvm-svn: 341893
I'd made exactly this same change before, but it appears to have been accidentally reverted in another change. (I'm assuming accidental since it was without comment or test case, and in an unrelated change.)
llvm-svn: 341892
When GVN propagates an equality by replacing one value with another it also
needs to invalidate the cached information for the value being replaced.
Differential Revision: https://reviews.llvm.org/D51218
llvm-svn: 341820
Currently, `rewriteFirstIterationLoopExitValues` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.
Differential Revision: https://reviews.llvm.org/D51779
Reviewed By: skatkov
llvm-svn: 341779
Currently, `sinkUnusedInvariants` does not set Changed flag even if it makes
changes in the IR. There is no clear evidence that it can cause a crash, but it
looks highly suspicious and likely invalid.
Differential Revision: https://reviews.llvm.org/D51777
Reviewed By: skatkov
llvm-svn: 341777
Currently eliminateInstructions only returns true if any instruction got
replaced. In the test case for this patch, we eliminate the trivially
dead calls, for which eliminateInstructions not do a replacement and the
function is not marked as changed, which is why the inliner crashes
while traversing the call graph.
Alternatively we could also change eliminateInstructions to return true
in case we mark instructions for deletion, but that's slightly more code
and doing it at the place where the replacement happens seems safer.
Fixes PR37517.
Reviewers: davide, mcrosier, efriedma, bjope
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D51169
llvm-svn: 341651
IndVars does not set `Changed` flag when it eliminates dead instructions. As result,
it may make IR modifications and report that it has done nothing. It leads to inconsistent
preserved analyzes results.
Differential Revision: https://reviews.llvm.org/D51770
Reviewed By: skatkov
llvm-svn: 341633
There is no need to create preheaders in the analysis stage, we only
need them when adjusting the branches. Also, the only cases we need to
create our own preheaders is when they have more than 1 predecessors or
PHI nodes (even with only 1 predecessor, we could have an LCSSA phi
node). I have simplified the conditions and added some assertions to be
sure. Because we know the inner and outer loop need to be tightly
nested, it is sufficient to check if the inner loop preheader is the
outer loop header to check if we need to create a new preheader.
Reviewers: efriedma, mcrosier, karthikthecool
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D51703
llvm-svn: 341533
Function rewriteLoopExitValues contains a check on isValidRewrite which
is needed to make sure that SCEV does not convert the pattern
`gep Base, (&p[n] - &p[0])` into `gep &p[n], Base - &p[0]`. This problem
has been fixed in SCEV long ago, so this check is just obsolete.
This patch converts it into an assertion to make sure that the SCEV will
not mess up this case in the future.
Differential Revision: https://reviews.llvm.org/D51582
Reviewed By: atrick
llvm-svn: 341516
Reland r341269. Use std::stable_sort when sorting constant condidates.
Reverting commit, r341365:
Revert r341269: [Constant Hoisting] Hoisting Constant GEP Expressions
One of the tests is failing 50% of the time when expensive checks are
enabled. Not sure how deep the problem is so just reverting while the
author can investigate so that the bots stop repeatedly failing and
blaming things incorrectly. Will respond with details on the original
commit.
Original commit, r341269:
[Constant Hoisting] Hoisting Constant GEP Expressions
Leverage existing logic in constant hoisting pass to transform constant GEP
expressions sharing the same base global variable. Multi-dimensional GEPs are
rewritten into single-dimensional GEPs.
https://reviews.llvm.org/D51396
Differential Revision: https://reviews.llvm.org/D51654
llvm-svn: 341417
Recent change to deleteDeadBlocksFromLoop was not enough to
fix all the problems related to dead blocks after nontrivial
unswitching of switches.
We need to delete all the dead blocks that were created during
unswitching, otherwise we will keep having problems with phi's
or dead blocks.
This change removes all the dead blocks that are reachable from the loop,
not trying to track whether these blocks are newly created by unswitching
or not. While not completely correct, we are unlikely to get loose but
reachable dead blocks that do not belong to our loop nest.
It does fix all the failures currently known, in particular PR38778.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D51519
llvm-svn: 341398
One of the tests is failing 50% of the time when expensive checks are
enabled. Not sure how deep the problem is so just reverting while the
author can investigate so that the bots stop repeatedly failing and
blaming things incorrectly. Will respond with details on the original
commit.
llvm-svn: 341365
This patch removes the function `expandSCEVIfNeeded` which behaves not as
it was intended. This function tries to make a lookup for exact existing expansion
and only goes to normal expansion via `expandCodeFor` if this lookup hasn't found
anything. As a result of this, if some instruction above the loop has a `SCEVConstant`
SCEV, this logic will return this instruction when asked for this `SCEVConstant` rather
than return a constant value. This is both non-profitable and in some cases leads to
breach of LCSSA form (as in PR38674).
Whether or not it is possible to break LCSSA with this algorithm and with some
non-constant SCEVs is still in question, this is still being investigated. I wasn't
able to construct such a test so far, so maybe this situation is impossible. If it is,
it will go as a separate fix.
Rather than do it, it is always correct to just invoke `expandCodeFor` unconditionally:
it behaves smarter about insertion points, and as side effect of this it will choose a
constant value for SCEVConstants. For other SCEVs it may end up finding a better insertion
point. So it should not be worse in any case.
NOTE: So far the only known case for which this transform may break LCSSA is mapping
of SCEVConstant to an instruction. However there is a suspicion that the entire algorithm
can compromise LCSSA form for other cases as well (yet not proved).
Differential Revision: https://reviews.llvm.org/D51286
Reviewed By: etherzhhb
llvm-svn: 341345
If we have a pair of binops feeding another pair of binops, rearrange the operands so
the matching pair are together because that allows easy factorization folds to happen
in instcombine:
((X << S) & Y) & (Z << S) --> ((X << S) & (Z << S)) & Y (reassociation)
--> ((X & Z) << S) & Y (factorize shift from 'and' ops optimization)
This is part of solving PR37098:
https://bugs.llvm.org/show_bug.cgi?id=37098
Note that there's an instcombine version of this patch attached there, but we're trying
to make instcombine have less responsibility to improve compile-time efficiency.
For reasons I still don't completely understand, reassociate does this kind of transform
sometimes, but misses everything in my motivating cases.
This patch on its own is gluing an independent cleanup chunk to the end of the existing
RewriteExprTree() loop. We can build on it and do something stronger to better order the
full expression tree like D40049. That might be an alternative to the proposal to add a
separate reassociation pass like D41574.
Differential Revision: https://reviews.llvm.org/D45842
llvm-svn: 341288
Leverage existing logic in constant hoisting pass to transform constant GEP
expressions sharing the same base global variable. Multi-dimensional GEPs are
rewritten into single-dimensional GEPs.
Differential Revision: https://reviews.llvm.org/D51396
llvm-svn: 341269
Splitting an alloca can decrease the alignment of GEPs into the
partition. Normally, rewriting accounts for this, but the code was
missing for uses of PHI nodes and select instructions.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38707 .
Differential Revision: https://reviews.llvm.org/D51335
llvm-svn: 341094
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.
Patch by: Simon Moll
Reviewed By: nhaehnle
Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50434
Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
rL340921 has been reverted by rL340923 due to linkage dependency
from Transform/Utils to Analysis which is not allowed. In this patch
this has been fixed, a new utility function moved to Analysis.
Differential Revision: https://reviews.llvm.org/D51152
llvm-svn: 341014
Teach LICM to hoist stores out of loops when the store writes to a location otherwise unused in the loop, writes a value which is invariant, and is guaranteed to execute if the loop is entered.
Worth noting is that this transformation is partially overlapping with the existing promotion transformation. Reasons this is worthwhile anyway include:
* For multi-exit loops, this doesn't require duplication of the store.
* It kicks in for case where we can't prove we exit through a normal exit (i.e. we may throw), but can prove the store executes before that possible side exit.
Differential Revision: https://reviews.llvm.org/D50925
llvm-svn: 340974
Summary:
Assert from PR38737 happens on the dead block inside the parent loop
after unswitching nontrivial switch in the inner loop.
deleteDeadBlocksFromLoop now takes extra care to detect/remove dead
blocks in all the parent loops in addition to the blocks from original
loop being unswitched.
Reviewers: asbirlea, chandlerc
Reviewed By: asbirlea
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51415
llvm-svn: 340955
We have multiple places in code where we try to identify whether or not
some instruction is a guard. This patch factors out this logic into a separate
utility function which works uniformly in all places.
Differential Revision: https://reviews.llvm.org/D51152
Reviewed By: fedor.sergeev
llvm-svn: 340921
This patch creates file GuardUtils which will contain logic for work with guards
that can be shared across different passes.
Differential Revision: https://reviews.llvm.org/D51151
Reviewed By: fedor.sergeev
llvm-svn: 340914
In the PR, LoopSink was trying to sink into a catchswitch block, which
doesn't have a valid insertion point.
Differential Revision: https://reviews.llvm.org/D51307
llvm-svn: 340900
In Thumb1, legal imm range is [0, 255] for ADD/SUB instructions. However, the
legal imm range for LD/ST in (R+Imm) addressing mode is [0, 127]. Imms in
[128, 255] are materialized by mov R, #imm, and LD/STs use them in (R+R)
addressing mode.
This patch checks if a constant is used as offset in (R+Imm), if so, it checks
isLegalAddressingMode passing the constant value as BaseOffset.
Differential Revision: https://reviews.llvm.org/D50931
llvm-svn: 340882
Fix for the out-of-memory error when compiling SemaChecking.cpp
with GVNHoist and ubsan enabled. I've used a cache for inserted
CHIs to avoid excessive memory usage.
Differential Revision: https://reviews.llvm.org/D50323
llvm-svn: 340818
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
`isExceptionalTermiantor` and implement it for opcodes as well following
the common pattern in `Instruction`.
Part of removing `TerminatorInst` from the `Instruction` type hierarchy
to make it easier to share logic and interfaces between instructions
that are both terminators and not terminators.
llvm-svn: 340699
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
Once the invariant_start is reached, we know that no instruction *after* it can modify the memory. So, if we can prove the location isn't read *between entry into the loop and the execution of the invariant_start*, we can execute the invariant_start before entering the loop.
Differential Revision: https://reviews.llvm.org/D51181
llvm-svn: 340617
This patch makes the DoesKMove argument non-optional, to force people
to think about it. Most cases where it is false are either code hoisting
or code sinking, where we pick one instruction from a set of
equal instructions among different code paths.
Reviewers: dberlin, nlopes, efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47475
llvm-svn: 340606
When GVN sets the incoming value for a phi to undef because the incoming block
is unreachable it needs to also invalidate the cached info for that phi in
MemoryDependenceAnalysis, otherwise later queries will return stale information.
Differential Revision: https://reviews.llvm.org/D51099
llvm-svn: 340529
This version of the patch fixes cleaning up ssa_copy intrinsics, so it does not
crash for instructions in blocks that have been marked unreachable.
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
Differential Revision: https://reviews.llvm.org/D45330
llvm-svn: 340525
Summary:
Add MemorySSA as a dependency to LoopSimplifyCFG and preserve it.
Disabled by default until all passes preserve MemorySSA.
Reviewers: bogner, chandlerc
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D50911
llvm-svn: 340445
Summary:
Add MemorySSA as a depency to LoopInstInstSimplify and preserve it.
Disabled by default until all passes preserve MemorySSA.
Reviewers: chandlerc
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D50906
llvm-svn: 340444
Guard widening should not spend efforts on dealing with guards with trivial true/false conditions.
Such guards can easily be eliminated by any further cleanup pass like instcombine. However we
should not unconditionally delete them because it may be profitable to widen other conditions
into such guards.
Differential Revision: https://reviews.llvm.org/D50247
Reviewed By: fedor.sergeev
llvm-svn: 340381
Currently we assign the same value number to two calls reading the same
memory location if we do not have MemoryDependence info. Without MemDep
Info we cannot guarantee that there is no store between the two calls, so we
have to assign a new number to the second call.
It also adds a new option EnableMemDep to enable/disable running
MemoryDependenceAnalysis and also renamed NoLoads to NoMemDepAnalysis to
be more explicit what it does. As it also impacts calls that read memory,
NoLoads is a bit confusing.
Reviewers: efriedma, sebpop, john.brawn, wmi
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D50893
llvm-svn: 340319
Volatility is not an aliasing property. We used to model volatile as if it had extremely conservative aliasing implications, but that hasn't been true for several years now. So, it doesn't make sense to be in AliasSet.
It also turns out the code is entirely a noop. Outside of the AST code to update it, there was only one user: load store promotion in LICM. L/S promotion doesn't need the check since it walks all the users of the address anyway. It already checks each load or store via !isUnordered which causes us to bail for volatile accesses. (Look at the lines immediately following the two remove asserts.)
There is the possibility of some small compile time impact here, but the only case which will get noticeably slower is a loop with a large number of loads and stores to the same address where only the last one we inspect is volatile. This is sufficiently rare it's not worth optimizing for..
llvm-svn: 340312
This patch teaches LICM to hoist guards from the loop if they are guaranteed to execute and
if there are no side effects that could prevent that.
Differential Revision: https://reviews.llvm.org/D50501
Reviewed By: reames
llvm-svn: 340256
NewGVN uses InstructionSimplify for simplifications of leaders of
congruence classes. It is not guaranteed that the metadata or other
flags/keywords (like nsw or exact) of the leader is available for all members
in a congruence class, so we cannot use it for simplification.
This patch adds a InstrInfoQuery struct with a boolean field
UseInstrInfo (which defaults to true to keep the current behavior as
default) and a set of helper methods to get metadata/keywords for a
given instruction, if UseInstrInfo is true. The whole thing might need a
better name, to avoid confusion with TargetInstrInfo but I am not sure
what a better name would be.
The current patch threads through InstrInfoQuery to the required
places, which is messier then it would need to be, if
InstructionSimplify and ValueTracking would share the same Query struct.
The reason I added it as a separate struct is that it can be shared
between InstructionSimplify and ValueTracking's query objects. Also,
some places do not need a full query object, just the InstrInfoQuery.
It also updates some interfaces that do not take a Query object, but a
set of optional parameters to take an additional boolean UseInstrInfo.
See https://bugs.llvm.org/show_bug.cgi?id=37540.
Reviewers: dberlin, davide, efriedma, sebpop, hiraditya
Reviewed By: hiraditya
Differential Revision: https://reviews.llvm.org/D47143
llvm-svn: 340031
Summary:
Currently, in LICM, we use the alias set tracker to identify if the
instruction (we're interested in hoisting) aliases with instruction that
modifies that memory location.
This patch adds an LICM alias analysis diagnostic tool that checks the
mod ref info of the instruction we are interested in hoisting/sinking,
with every instruction in the loop. Because of O(N^2) complexity this
is now only a diagnostic tool to show the limitation we have with the
alias set tracker and is OFF by default.
Test cases show the difference with the diagnostic analysis tool, where
we're able to hoist out loads and readonly + argmemonly calls from the
loop, where the alias set tracker analysis is not able to hoist these
instructions out.
Reviewers: reames, mkazantsev, fedor.sergeev, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50854
llvm-svn: 340026
Main value is just simplifying code. I'll further simply the argument handling case in a bit, but that involved a slightly orthogonal change so I went with the mildy ugly intermediate for this patch.
Note that the isSized check in the old LICM code was not carried across. It turns out that check was dead. a) no test exercised it, and b) langref and verifier had been updated to disallow unsized types used in loads.
llvm-svn: 339930
This is a second part of D49974 that handles widening of conditional branches that
have very likely `false` branch.
Differential Revision: https://reviews.llvm.org/D50040
Reviewed By: reames
llvm-svn: 339537
Try to improve the computed counts when it has been explicitly set by a pragma
or command line option. This moves the code around, so that first call to
computeUnrollCount to get a sensible count and override that if explicit unroll
and jam counts are specified.
Also added some extra debug messages for when unroll and jamming is disabled.
Differential Revision: https://reviews.llvm.org/D50075
llvm-svn: 339501
If we have an assume which is known to execute and whose operand is invariant, we can lift that into the pre-header. So long as we don't change which paths the assume executes on, this is a legal transformation. It's likely to be a useful canonicalization as other transforms only look for dominating assumes.
Differential Revision: https://reviews.llvm.org/D50364
llvm-svn: 339481
The motivating case is an otherwise dead loop with a fence in it. At the moment, this goes all the way through the optimizer and we end up emitting an entirely pointless loop on x86. This case may seem a bit contrived, but we've seen it in real code as the result of otherwise reasonable lowering strategies combined w/thread local memory optimizations (such as escape analysis).
To handle this simple case, we can teach LICM to hoist must execute fences when there is no other memory operation within the loop.
Differential Revision: https://reviews.llvm.org/D50489
llvm-svn: 339378
Summary:
LoopSimplifyCFG should update ScEv for all loops after a block is deleted.
If the deleted block "Succ" is part of L, then it is part of all parent loops, so forget topmost loop.
Reviewers: greened, mkazantsev, sanjoy
Subscribers: jlebar, javed.absar, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D50422
llvm-svn: 339363
This function is shared between both implementations. I am not sure if
Utils/Local.h is the best place though.
Reviewers: davide, dberlin, efriedma, xbolva00
Reviewed By: efriedma, xbolva00
Differential Revision: https://reviews.llvm.org/D47337
llvm-svn: 339138
Logic for tracking implicit control flow instructions was added to GVN to
perform PRE optimizations correctly. It appears that GVN is not the only
optimization that sometimes does PRE, so this logic is required in other
places (such as Jump Threading).
This is an NFC patch that encapsulates all ICF-related logic in a dedicated
utility class separated from GVN.
Differential Revision: https://reviews.llvm.org/D40293
llvm-svn: 339086
If there is a frequently taken branch dominated by a guard, and its condition is available
at the point of the guard, we can widen guard with condition of this branch and convert
the branch into unconditional:
guard(cond1)
if (cond2) {
// taken in 99.9% cases
// do something
} else {
// do something else
}
Converts to
guard(cond1 && cond2)
// do something
Differential Revision: https://reviews.llvm.org/D49974
Reviewed By: reames
llvm-svn: 338988
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
Summary:
Previously, in the NewPM pipeline, TailCallElim recalculates the DomTree when it modifies any instruction in the Function.
For example,
```
CallInst *CI = dyn_cast<CallInst>(&I);
...
CI->setTailCall();
Modified = true;
...
if (!Modified || ...)
return PreservedAnalyses::all();
```
After applying this patch, the DomTree only recalculates if needed (plus an extra insertEdge() + an extra deleteEdge() call).
When optimizing SQLite with `-passes="default<O3>"` pipeline of the newPM, the number of DomTree recalculation decreases by 6.2%, the number of nodes visited by DFS decreases by 2.9%. The time used by DomTree will decrease approximately 1%~2.5% after applying the patch.
Statistics:
```
Before the patch:
23010 dom-tree-stats - Number of DomTree recalculations
489264 dom-tree-stats - Number of nodes visited by DFS -- DomTree
After the patch:
21581 dom-tree-stats - Number of DomTree recalculations
475088 dom-tree-stats - Number of nodes visited by DFS -- DomTree
```
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49982
llvm-svn: 338954