First half of PR40800, this patch adds DAG undef handling to icmp instructions to match the behaviour in llvm::ConstantFoldCompareInstruction and SimplifyICmpInst, this permits constant folding of vector comparisons where some elements had been reduced to UNDEF (by SimplifyDemandedVectorElts etc.).
This involved a lot of tweaking to reduced tests as bugpoint loves to reduce icmp arguments to undef........
Differential Revision: https://reviews.llvm.org/D59363
llvm-svn: 356938
Summary:
In r355512 CGP was changed to build the DominatorTree only once per
function traversal, to avoid repeatedly building it each time it was
accessed. This solved one compile time issue but introduced another. In
the second case, we now were building the DT unnecessarily many times
when we performed many function traversals (i.e. more than once per
function when running CGP because of changes made each time).
Change to saving the DT in the CodeGenPrepare object, and building it
lazily when needed. It is reset whenever we need to rebuild it.
The case that exposed the issue there are 617 functions, and we walk
them (i.e. execute the "while (MadeChange)" loop in runOnFunction) a
total of 12083 times (so previously we were building the DT 12083
times). With this patch we only build the DT 844 times (average of 1.37
times per function). We dropped the total time to compile this file from
538.11s without this patch to 339.63s with it.
There is still an issue as CGP is taking much longer than all other
passes even with this patch, and before a recent compiler release cut at
r355392 the total time to this compile was only 97 sec with a huge
reduction in CGP time. I suspect that one of the other recent changes to
CGP led to iterating each function many more times on average, but I
need to do some more investigation.
Reviewers: spatel
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59696
llvm-svn: 356937
I think this is correct, but may not necessarily be the correct fix
for the assertion I'm really trying to solve. If a scheduling region
was found that only has dbg_value instructions, the RegPressure
tracker would end up in an inconsistent state because it would skip
over any debug instructions and point to an instruction outside of the
scheduling region. It may still be possible for this to happen if
there are some real schedulable instructions between dbg_values, but I
haven't managed to break this.
The testcase is extremely sensitive and I'm not sure how to make it
more resistent to future scheduler changes that would avoid stressing
this situation.
llvm-svn: 356926
An i16 bswap can be implemented with an i16 rotate by 8. We previously emitted
a shift and OR sequence that DAG combine should be able to turn back into
rotate. But we might as well go there directly. If rotate isn't legal,
LegalizeDAG should further legalize it to either the opposite rotate, or the
shift and OR pattern.
I don't know of any way to get the existing DAG combine reliance to fail. So
I don't know any way to add new tests for this that wouldn't have worked
previously.
llvm-svn: 356860
The AArch64 test was broken since the result register already had a
set register class, so this test was a no-op. The mapping verify call
would fail because the result size is not the same as the inputs like
in a copy or phi.
The AMDGPU testcases are half broken and introduce illegal VGPR->SGPR
copies which need much more work to handle correctly (same for phis),
but add them as a baseline.
llvm-svn: 356713
This adds support for scalarizing these intrinsics as well the X86TargetTransformInfo support to avoid scalarizing them in the cases X86 can handle.
I've omitted handling special cases for constant masks for this first pass. Though CodeGenPrepare can constant fold the branch conditions and remove some of the control flow anyway.
Fixes PR40994 and is covers most of PR3666. Might want to implement constant masks to close that.
Differential Revision: https://reviews.llvm.org/D59180
llvm-svn: 356687
SDNodes can only have 64k operands and for some inputs (e.g. large
number of stores), we can reach this limit when creating TokenFactor
nodes. This patch is a follow up to D56740 and updates a few more places
that potentially can create TokenFactors with too many operands.
Reviewers: efriedma, craig.topper, aemerson, RKSimon
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D59156
llvm-svn: 356668
This is probably a bigger limitation than necessary, but since we don't have any evidence yet
that this transform led to real-world perf improvements rather than regressions, I'm making a
quick, blunt fix.
In the motivating x86 example from:
https://bugs.llvm.org/show_bug.cgi?id=41129
...and shown in the regression test, we want to avoid an extra instruction in the dominating
block because that could be costly.
The x86 LSR test diff is reversing the changes from D57789. There's no evidence that 1 version
is any better than the other yet.
Differential Revision: https://reviews.llvm.org/D59602
llvm-svn: 356665
Machine DCE cannot remove a dead definition if there are non-dbg uses.
A use however can be in the same instruction:
dead %0 = INST %0
Such instructions sometimes created by Detect dead lanes pass.
Allow this instruction to be deleted despite the use if the only use
belongs to the same instruction.
Differential Revision: https://reviews.llvm.org/D59565
llvm-svn: 356619
This should be extended, but CGP does some strange things,
so I'm intentionally not changing the potential order of
any transforms yet.
llvm-svn: 356566
Nothing prevents entries from being bigger than the 16 bit size field in
Dwarf < 5. For entries that are too big, just emit an empty entry
instead of crashing.
This fixes PR41038.
Reviewers: probinson, aprantl, davide
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D59518
llvm-svn: 356514
This will allow targets more flexibility to replace the
register allocator core passes. In a future commit,
AMDGPU will run the core register assignment passes
twice, and will also want to disallow using the
standard -regalloc option.
llvm-svn: 356506
Do not actually allocate a register for an undef use. Previously we we
would create unnecessary reload instruction for undef uses where the
register wasn't live.
Patch by Matthias Braun
llvm-svn: 356501
The 2nd loop calculates spill costs but reports free registers as cost
0 anyway, so there is little benefit from having a separate early
loop.
Surprisingly this is not NFC, as many register are marked regDisabled
so the first loop often picks up later registers unnecessarily instead
of the first one available in the allocation order...
Patch by Matthias Braun
llvm-svn: 356499
The actual code change is fairly straight forward, but exercising it isn't. First, it turned out we weren't adding the appropriate flags in SelectionDAG. Second, it turned out that we've got some optimization gaps, so obvious test cases don't work.
My first attempt (in atomic-unordered.ll) points out a deficiency in our peephole-opt folding logic which I plan to fix separately. Instead, I'm exercising this through MachineLICM.
Differential Revision: https://reviews.llvm.org/D59375
llvm-svn: 356494
Add tests for wider atomic loads and stores. In the process, fix a crasher where we appearently handled unorder stores, but not loads, when lowering to cmpxchg idioms.
llvm-svn: 356482
In r311255 we added a case where we split vectors whose elements are
all derived from the same input vector so that we could shuffle it
more efficiently. In doing so, createBuildVecShuffle was taught to
adjust for the fact that all indices would be based off of the first
vector when this happens, but it's possible for the code that checked
that to fire incorrectly if we happen to have a BUILD_VECTOR of
extracts from subvectors and don't hit this new optimization.
Instead of trying to detect if we've split the vector by checking if
we have extracts from the same base vector, we can just pass that
information into createBuildVecShuffle, avoiding the miscompile.
Differential Revision: https://reviews.llvm.org/D59507
llvm-svn: 356476
These changes are related to PR37743 and include:
SelectionDAGBuilder::visitSelect handles the unary SelectPatternFlavor::SPF_ABS case to build ABS node.
Delete the redundant recognizer of the integer ABS pattern from the DAGCombiner.
Add promoting the integer ABS node in the LegalizeIntegerType.
Expand-based legalization of integer result for the ABS nodes.
Expand-based legalization of ABS vector operations.
Add some integer abs testcases for different typesizes for Thumb arch
Add the custom ABS expanding and change the SAD pattern recognizer for X86 arch: The i64 result of the ABS is expanded to:
tmp = (SRA, Hi, 31)
Lo = (UADDO tmp, Lo)
Hi = (XOR tmp, (ADDCARRY tmp, hi, Lo:1))
Lo = (XOR tmp, Lo)
The "detectZextAbsDiff" function is changed for the recognition of pattern with the ABS node. Given a ABS node, detect the following pattern:
(ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
Change integer abs testcases for codegen with the ABS node support for AArch64.
Indicate that the ABS is legal for the i64 type when the NEON is supported.
Change the integer abs testcases to show changing of codegen.
Add combine and legalization of ABS nodes for Thumb arch.
Extend 'matchSelectPattern' to recognize the ABS patterns with ICMP_SGE condition.
For discussion, see https://bugs.llvm.org/show_bug.cgi?id=37743
Patch by: @ikulagin (Ivan Kulagin)
Differential Revision: https://reviews.llvm.org/D49837
llvm-svn: 356468
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.
The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.
For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.
This is a recommit of r356442 with trivial fixes for the failing tests.
Differential Revision: https://reviews.llvm.org/D56587
llvm-svn: 356451
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.
The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.
For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.
Differential Revision: https://reviews.llvm.org/D56587
llvm-svn: 356442
After review comments, it was preferred to not teach MachineIRBuilder about
non-generic instructions beyond using buildInstr().
For AArch64 I've changed the buildCopy() calls to buildInstr() + a
separate addReg() call.
This also relaxes the MachineIRBuilder's COPY checking more because it may
not always have a SrcOp given to it.
llvm-svn: 356396
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389
Delete temporarily constructed node uses for analysis after it's use,
holding onto original input nodes. Ideally this would be rewritten
without making nodes, but this appears relatively complex.
Reviewers: spatel, RKSimon, craig.topper
Subscribers: jdoerfert, hiraditya, deadalnix, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57921
llvm-svn: 356382
Summary:
Look past bitcasts when looking for parameter debug values that are
described by frame-index loads in `EmitFuncArgumentDbgValue()`.
In the attached test case we would be left with an undef `DBG_VALUE`
for the parameter without this patch.
A similar fix was done for parameters passed in registers in D13005.
This fixes PR40777.
Reviewers: aprantl, vsk, jmorse
Reviewed By: aprantl
Subscribers: bjope, javed.absar, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D58831
llvm-svn: 356363
AMDGPU would like to use these MVTs.
Differential Revision: https://reviews.llvm.org/D58901
Change-Id: I6125fea810d7cc62a4b4de3d9904255a1233ae4e
llvm-svn: 356351
AMDGPU would like to have MVTs for v3i32, v3f32, v5i32, v5f32. This
commit does not add them, but makes preparatory changes:
* Exclude non-legal non-power-of-2 vector types from ComputeRegisterProp
mechanism in TargetLoweringBase::getTypeConversion.
* Cope with SETCC and VSELECT for odd-width i1 vector when the other
vectors are legal type.
Some of this patch is from Matt Arsenault, also of AMD.
Differential Revision: https://reviews.llvm.org/D58899
Change-Id: Ib5f23377dbef511be3a936211a0b9f94e46331f8
llvm-svn: 356350
Fold (x & ~y) | y and it's four commuted variants to x | y. This pattern
can in particular appear when a vselect c, x, -1 is expanded to
(x & ~c) | (-1 & c) and combined to (x & ~c) | c.
This change has some overlap with D59066, which avoids creating a
vselect of this form in the first place during uaddsat expansion.
Differential Revision: https://reviews.llvm.org/D59174
llvm-svn: 356333
This is a subset of what was proposed in:
D59006
...and may overlap with test changes from:
D59174
...but it seems like a good general optimization to turn selects
into bitwise-logic when possible because we never know exactly
what can happen at this stage of DAG combining depending on how
the target has defined things.
Differential Revision: https://reviews.llvm.org/D59066
llvm-svn: 356332
rL356292 reduces the size of scalar_to_vector if we know the upper bits are undef - which means that shuffles may find they are suddenly referencing scalar_to_vector elements other than zero - so make sure we handle this as undef.
llvm-svn: 356327
Summary:
In the new wasm EH proposal, `rethrow` takes an `except_ref` argument.
This change was missing in r352598.
This patch adds `llvm.wasm.rethrow.in.catch` intrinsic. This is an
intrinsic that's gonna eventually be lowered to wasm `rethrow`
instruction, but this intrinsic can appear only within a catchpad or a
cleanuppad scope. Also this intrinsic needs to be invokable - otherwise
EH pad successor for it will not be correctly generated in clang.
This also adds lowering logic for this intrinsic in
`SelectionDAGBuilder::visitInvoke`. This routine is basically a
specialized and simplified version of
`SelectionDAGBuilder::visitTargetIntrinsic`, but we can't use it
because if is only for `CallInst`s.
This deletes the previous `llvm.wasm.rethrow` intrinsic and related
tests, which was meant to be used within a `__cxa_rethrow` library
function. Turned out this needs some more logic, so the intrinsic for
this purpose will be added later.
LateEHPrepare takes a result value of `catch` and inserts it into
matching `rethrow` as an argument.
`RETHROW_IN_CATCH` is a pseudo instruction that serves as a link between
`llvm.wasm.rethrow.in.catch` and the real wasm `rethrow` instruction. To
generate a `rethrow` instruction, we need an `except_ref` argument,
which is generated from `catch` instruction. But `catch` instrutions are
added in LateEHPrepare pass, so we use `RETHROW_IN_CATCH`, which takes
no argument, until we are able to correctly lower it to `rethrow` in
LateEHPrepare.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59352
llvm-svn: 356316
This relaxes some asserts about sizes, and adds an optional subreg parameter
to buildCopy().
Also update AArch64 instruction selector to use this in places where we
previously used MachineInstrBuilder manually.
Differential Revision: https://reviews.llvm.org/D59434
llvm-svn: 356304
Summary:
This is a fix to bug 41052:
https://bugs.llvm.org/show_bug.cgi?id=41052
While trying to optimize a memory instruction in a dead basic block, we end up registering the same phi for replacement twice. This patch avoids registering more than the first replacement candidate for a phi.
Patch by: JesperAntonsson
Reviewers: skatkov, aprantl
Reviewed By: aprantl
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59358
llvm-svn: 356260
This is almost the same as:
rL355345
...and should prevent any potential crashing from examples like:
https://bugs.llvm.org/show_bug.cgi?id=41064
...although the bug was masked by:
rL355823
...and I'm not sure how to repro the problem after that change.
llvm-svn: 356218
This has been a very painful missing feature that has made producing
reduced testcases difficult. In particular the various registers
determined for stack access during function lowering were necessary to
avoid undefined register errors in a large percentage of
cases. Implement a subset of the important fields that need to be
preserved for AMDGPU.
Most of the changes are to support targets parsing register fields and
properly reporting errors. The biggest sort-of bug remaining is for
fields that can be initialized from the IR section will be overwritten
by a default initialized machineFunctionInfo section. Another
remaining bug is the machineFunctionInfo section is still printed even
if empty.
llvm-svn: 356215
Building on the work done in D57601, now that we can distinguish between atomic and volatile memory accesses, go ahead and allow code motion of unordered atomics. As seen in the diffs, this allows much better folding of memory operations into using instructions. (Mostly done by the PeepholeOpt pass.)
Note: I have not reviewed all callers of hasOrderedMemoryRef since one of them - isSafeToMove - is very widely used. I'm relying on the documented semantics of each method to judge correctness.
Differential Revision: https://reviews.llvm.org/D59345
llvm-svn: 356170
This is consistent with what SelectionDAG does and is much easier to
work with than the extract sequence with an artificial wide register.
For the AMDGPU control flow intrinsics, this was producing an s128 for
the i64, i1 tuple return. Any legalization that should apply to a real
s128 value would badly obscure the direct values that need to be seen.
llvm-svn: 356147
getConstantVRegVal used to only look for G_CONSTANT when looking at
unboxing the value of a vreg. However, constants are sometimes not
directly used and are hidden behind trunc, s|zext or copy chain of
computation.
In particular this may be introduced by the legalization process that
doesn't want to simplify these patterns because it can lead to infine
loop when legalizing a constant.
To circumvent that problem, add a new variant of getConstantVRegVal,
named getConstantVRegValWithLookThrough, that allow to look through
extensions.
Differential Revision: https://reviews.llvm.org/D59227
llvm-svn: 356116
Adding a "NumFunctionsVisited" for collecting the visited function number.
It can be used to collect function pass rate in some tests,
the pass rate = (NumberVisited - NumberReset)/NumberVisited.
e.g. it can be used for caculating GlobalISel pass rate in Test-Suite.
Patch by Tianyang Zhu (zhutianyang)
Differential Revision: https://reviews.llvm.org/D59285
llvm-svn: 356114
Summary:
A number of optimizations are inhibited by single-use TokenFactors not
being merged into the TokenFactor using it. This makes we consider if
we can do the merge immediately.
Most tests changes here are due to the change in visitation causing
minor reorderings and associated reassociation of paired memory
operations.
CodeGen tests with non-reordering changes:
X86/aligned-variadic.ll -- memory-based add folded into stored leaq
value.
X86/constant-combiners.ll -- Optimizes out overlap between stores.
X86/pr40631_deadstore_elision -- folds constant byte store into
preceding quad word constant store.
Reviewers: RKSimon, craig.topper, spatel, efriedma, courbet
Reviewed By: courbet
Subscribers: dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, eraman, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59260
llvm-svn: 356068
First step towards PR40800 - I intend to move the float case in a separate future patch.
I had to tweak the (overly reduced) thumb2 test and the x86 widening test change is annoying (no longer rematerializable) but we should address this separately.
Differential Revision: https://reviews.llvm.org/D59244
llvm-svn: 356040
Every time a physical register reference was parsed, this would
initialize a string map for every register in in target, and discard
it for the next. The same applies for the other fields initialized
from target information.
Follow along with how the function state is tracked, and add a new
tracking class for target information.
The string->register class/register bank for some reason were kept
separately, so track them in the same place.
llvm-svn: 355970
The existing statepoint lowering code does something odd; it adds machine memory operands post instruction selection. This was copied from the stackmap/patchpoint implementation, but appears to be non-idiomatic.
This change is largely NFC. It moves the MMO creation logic into SelectionDAG building. It ends up not quite being NFC because the size of the stack slot is reflected in the MMO. The old code blindly used pointer size for the MMO size, which appears to have always been incorrect for larger values. It just happened nothing actually relied on the MMOs, so it worked out okay.
For context, I'm planning on removing the MOVolatile flag from these in a future commit, and then removing the MOStore flag from deopt spill slots in a separate one. Doing so is motivated by a small test case where we should be able to better schedule spill slots, but don't do so due to a memory use/def implied by the statepoint.
Differential Revision: https://reviews.llvm.org/D59106
llvm-svn: 355953
Expand MULO with constant power of two operand into a shift. The
overflow is checked with (x << shift) >> shift == x, where the right
shift will be logical for umulo and arithmetic for smulo (with
exception for multiplications by signed_min).
Differential Revision: https://reviews.llvm.org/D59041
llvm-svn: 355937
Targets can potentially emit more efficient code if they know address
computations never overflow. For example ILP32 code on AArch64 (which only has
64-bit address computation) can ignore the possibility of overflow with this
extra information.
llvm-svn: 355926
Change from original commit: move test (that uses an X86 triple) into the X86
subdirectory.
Original description:
Gating vectorizing reductions on *all* fastmath flags seems unnecessary;
`reassoc` should be sufficient.
Reviewers: tvvikram, mkuper, kristof.beyls, sdesmalen, Ayal
Reviewed By: sdesmalen
Subscribers: dcaballe, huntergr, jmolloy, mcrosier, jlebar, bixia, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57728
llvm-svn: 355889
Summary:
Swift now generates PDBs for debugging on Windows. llvm and lldb
need a language enumerator value too properly handle the output
emitted by swiftc.
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59231
llvm-svn: 355882
Overloaded intrinsics aren't necessarily safe for instruction selection. One
such intrinsic is aarch64.neon.addp.*.
This is a temporary workaround to ensure that we always fall back on that
intrinsic. Eventually this will be replaced with a proper solution.
https://bugs.llvm.org/show_bug.cgi?id=40968
Differential Revision: https://reviews.llvm.org/D59062
llvm-svn: 355865
Fixes https://bugs.llvm.org/show_bug.cgi?id=36796.
Implement basic legalizations (PromoteIntRes, PromoteIntOp,
ExpandIntRes, ScalarizeVecOp, WidenVecOp) for VECREDUCE opcodes.
There are more legalizations missing (esp float legalizations),
but there's no way to test them right now, so I'm not adding them.
This also includes a few more changes to make this work somewhat
reasonably:
* Add support for expanding VECREDUCE in SDAG. Usually
experimental.vector.reduce is expanded prior to codegen, but if the
target does have native vector reduce, it may of course still be
necessary to expand due to legalization issues. This uses a shuffle
reduction if possible, followed by a naive scalar reduction.
* Allow the result type of integer VECREDUCE to be larger than the
vector element type. For example we need to be able to reduce a v8i8
into an (nominally) i32 result type on AArch64.
* Use the vector operand type rather than the scalar result type to
determine the action, so we can control exactly which vector types are
supported. Also change the legalize vector op code to handle
operations that only have vector operands, but no vector results, as
is the case for VECREDUCE.
* Default VECREDUCE to Expand. On AArch64 (only target using VECREDUCE),
explicitly specify for which vector types the reductions are supported.
This does not handle anything related to VECREDUCE_STRICT_*.
Differential Revision: https://reviews.llvm.org/D58015
llvm-svn: 355860
As a fix for https://bugs.llvm.org/show_bug.cgi?id=40986 ("excessive compile
time building opencollada"), this patch makes sure that no phys reg is hinted
more than once from getRegAllocationHints().
This handles the case were many virtual registers are assigned to the same
physreg. The previous compile time fix (r343686) in weightCalcHelper() only
made sure that physical/virtual registers are passed no more than once to
addRegAllocationHint().
Review: Dimitry Andric, Quentin Colombet
https://reviews.llvm.org/D59201
llvm-svn: 355854
Summary:
Extract the functionality of eliminating unreachable basic blocks
within a function, previously encapsulated within the
-unreachableblockelim pass, and make it available as a function within
BlockUtils.h. No functional change intended other than making the logic
reusable.
Exposing this logic makes it easier to implement
https://reviews.llvm.org/D59068, which fixes coroutines bug
https://bugs.llvm.org/show_bug.cgi?id=40979.
Reviewers: mkazantsev, wmi, davidxl, silvas, davide
Reviewed By: davide
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59069
llvm-svn: 355846
Inserting an overflowing arithmetic intrinsic can increase register
pressure by producing two values at a point where only one is needed,
while the second use maybe several blocks away. This increase in
pressure is likely to be more detrimental on performance than
rematerialising one of the original instructions.
So, check that the arithmetic and compare instructions are no further
apart than their immediate successor/predecessor.
Differential Revision: https://reviews.llvm.org/D59024
llvm-svn: 355823
The control flow here cannot ever use the uninitialized value, but it's
too hard for the compiler to figure that out. Clang warns:
llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp:2600:28: error: variable 'CarrySum' is used uninitialized whenever 'for' loop exits because its condition is false [-Werror,-Wsometimes-uninitialized]
for (unsigned i = 2; i < Factors.size(); ++i)
^~~~~~~~~~~~~~~~~~
llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp:2604:26: note: uninitialized use occurs here
CarrySumPrevDstIdx = CarrySum;
^~~~~~~~
llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp:2600:28: note: remove the condition if it is always true
for (unsigned i = 2; i < Factors.size(); ++i)
^~~~~~~~~~~~~~~~~~
llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp:2583:22: note: initialize the variable 'CarrySum' to silence this warning
unsigned CarrySum;
^
= 0
llvm-svn: 355818
Narrow Scalar G_MUL for MIPS32.
Revisit NarrowScalar implementation in LegalizerHelper.
Introduce new helper function multiplyRegisters.
It performs generic multiplication of values held in multiple registers.
Generated instructions use only types NarrowTy and i1.
Destination can be same or two times size of the source.
Differential Revision: https://reviews.llvm.org/D58824
llvm-svn: 355814
Includes a fix to emit a CheckOpcode for build_vector when immAllZerosV/immAllOnesV is used as a pattern root. This means it can't be used to look through bitcasts when used as a root, but that's probably ok. This extra CheckOpcode will ensure that the first match in the isel table will be a SwitchOpcode which is needed by the caching optimization in the ISel Matcher.
Original commit message:
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355784
This saves needing to call getInt32 ourselves. Making the code a little shorter.
The test changes are because insert/extract use getInt64 internally. Shouldn't be a functional issue.
This cleanup because I plan to write similar code for expandload/compressstore.
llvm-svn: 355767
There are special cases in the scalarization for constant masks. If we hit one of the special cases we don't need to reset the iteration.
Noticed while starting work on adding expandload/compressstore to this pass.
llvm-svn: 355754
r44412 fixed a huge compile time regression but it needed ModifiedDT flag to be
maintained correctly in optimizations in optimizeBlock() and optimizeInst().
Function optimizeSelectInst() does not update the flag.
This patch propagates the flag in optimizeSelectInst() back to
optimizeBlock().
This patch also removes ModifiedDT in CodeGenPrepare class (which is not used).
The property of ModifiedDT is now recorded in a ref parameter.
Differential Revision: https://reviews.llvm.org/D59139
llvm-svn: 355751
This avoids breaking possible value dependencies when sorting loads by
offset.
AMDGPU has some load instructions that write into the high or low bits
of the destination register, and have a tied input for the other input
bits. These can easily have the same base pointer, but be a swizzle so
the high address load needs to come first. This was inserting glue
forcing the opposite ordering, producing a cycle the InstrEmitter
would assert on. It may be potentially expensive to look for the
dependency between the other loads, so just skip any where this could
happen.
Fixes bug 40936 by reverting r351379, which added a hacky attempt to
fix this by adding chains in this case, which I think was just working
around broken glue before the InstrEmitter. The core of the patch is
re-implementing the fix for that problem.
llvm-svn: 355728
many valnos.
Recently we found compile time out problem in several cases when
SpeculativeLoadHardening was enabled. The significant compile time was spent
in register coalescing pass, where register coalescer tried to join many other
live intervals with some very large live intervals with many valnos.
Specifically, every time JoinVals::mapValues is called, computeAssignment will
be called by getNumValNums() times of the target live interval. If the large
live interval has N valnos and has N copies associated with it, trying to
coalescing those copies will at least cost N^2 complexity.
The patch adds some limit to the effort trying to join those very large live
intervals with others. By default, for live interval with > 100 valnos, and
when it has been coalesced with other live interval by more than 100 times,
we will stop coalescing for the live interval anymore. That put a compile
time cap for the N^2 algorithm and effectively solves the compile time
problem we saw.
Differential revision: https://reviews.llvm.org/D59143
llvm-svn: 355714
Summary:
The logic in the -unreachableblockelim pass does the following:
1. It traverses the function it's given in depth-first order and
creates a set of basic blocks that are unreachable from the
function's entry node.
2. It iterates over each of those unreachable blocks and (1) removes any
successors' references to the dead block, and (2) replaces any uses of
instructions from the dead block with null.
The logic in (2) above is identical to what the `llvm::DeleteDeadBlocks`
function from `BasicBlockUtils.h` does. The only difference is that
`llvm::DeleteDeadBlocks` replaces uses of instructions from dead blocks
not with null, but with undef.
Replace the duplicate logic in the -unreachableblockelim pass with a
call to `llvm::DeleteDeadBlocks`. This results in less code but no
functional change (NFC).
Reviewers: mkazantsev, wmi, davidxl, silvas, davide
Reviewed By: davide
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59064
llvm-svn: 355634
Restore a reverted commit, with the silly mistake fixed. Sorry for the previous breakage.
Be consistent about how we treat atomics in non-zero address spaces. If we get to the backend, we tend to lower them as if in address space 0. Do the same if we need to insert a libcall instead.
Differential Revision: https://reviews.llvm.org/D58760
llvm-svn: 355540
Move the x86 combine from D58974 into the DAGCombine VSELECT code and update the SELECT version to use the isBooleanFlip helper as well.
Requested by @spatel on D59006
llvm-svn: 355533