Summary: Poisoning applied to only class members, and before dtors for base class invoked
Implement poisoning of only class members in dtor, as opposed to also
poisoning fields inherited from base classes. Members are poisoned
only once, by the last dtor for a class. Skip poisoning if class has
no fields.
Verify emitted code for derived class with virtual destructor sanitizes
its members only once.
Removed patch file containing extraneous changes.
Reviewers: eugenis, kcc
Differential Revision: http://reviews.llvm.org/D11951
Simplified test cases for use-after-dtor
Summary: Simplified test cases to focus on one feature at time.
Tests updated to align with new emission order for sanitizing
callback.
Reviewers: eugenis, kcc
Differential Revision: http://reviews.llvm.org/D12003
llvm-svn: 244933
Verify emitted code for derived class with virtual destructor sanitizes its members only once.
Changed emission order for dtor callback, so only the last dtor for a class emits the sanitizing callback, while ensuring that class members are poisoned before base class destructors are invoked.
Skip poisoning of members, if class has no fields.
Removed patch file containing extraneous changes.
Summary: Poisoning applied to only class members, and before dtors for base class invoked
Reviewers: eugenis, kcc
Differential Revision: http://reviews.llvm.org/D11951
llvm-svn: 244819
Summary: In addition to checking compiler flags, the front-end also examines the attributes of the destructor definition to ensure that the SanitizeMemory attribute is attached.
Reviewers: eugenis, kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D11727
refactored test into new file, revised how function attribute examined
modified test to examine default dtor with and without attribute
removed attribute check
llvm-svn: 243912
- Make it a proper random access iterator with a little help from iterator_adaptor_base
- Clean up users of magic dereferencing. The iterator should behave like an Expr **.
- Make it an implementation detail of Stmt. This allows inlining of the assertions.
llvm-svn: 242608
We now use the sanitizer special case list to decide which types to blacklist.
We also support a special blacklist entry for types with a uuid attribute,
which are generally COM types whose virtual tables are defined externally.
Differential Revision: http://reviews.llvm.org/D11096
llvm-svn: 242286
The fix is to remove duplicate copy-initialization of the only memcpy-able struct member and to correct the address of aggregately initialized members in destructors' calls during stack unwinding (in order to obtain address of struct member by using GEP instead of 'bitcast').
Differential Revision: http://reviews.llvm.org/D10990
llvm-svn: 242127
Under the -fsanitize-memory-use-after-dtor (disabled by default) insert
an MSan runtime library call at the end of every destructor.
Patch by Naomi Musgrave.
llvm-svn: 242097
tools/clang/test/CodeGen/packed-nest-unpacked.c contains this test:
struct XBitfield {
unsigned b1 : 10;
unsigned b2 : 12;
unsigned b3 : 10;
};
struct YBitfield {
char x;
struct XBitfield y;
} __attribute((packed));
struct YBitfield gbitfield;
unsigned test7() {
// CHECK: @test7
// CHECK: load i32, i32* getelementptr inbounds (%struct.YBitfield, %struct.YBitfield* @gbitfield, i32 0, i32 1, i32 0), align 4
return gbitfield.y.b2;
}
The "align 4" is actually wrong. Accessing all of "gbitfield.y" as a single
i32 is of course possible, but that still doesn't make it 4-byte aligned as
it remains packed at offset 1 in the surrounding gbitfield object.
This alignment was changed by commit r169489, which also introduced changes
to bitfield access code in CGExpr.cpp. Code before that change used to take
into account *both* the alignment of the field to be accessed within the
current struct, *and* the alignment of that outer struct itself; this logic
was removed by the above commit.
Neglecting to consider both values can cause incorrect code to be generated
(I've seen an unaligned access crash on SystemZ due to this bug).
In order to always use the best known alignment value, this patch removes
the CGBitFieldInfo::StorageAlignment member and replaces it with a
StorageOffset member specifying the offset from the start of the surrounding
struct to the bitfield's underlying storage. This offset can then be combined
with the best-known alignment for a bitfield access lvalue to determine the
alignment to use when accessing the bitfield's storage.
Differential Revision: http://reviews.llvm.org/D11034
llvm-svn: 241916
We were previously creating bit set entries at virtual table offset
sizeof(void*) unconditionally under the Microsoft C++ ABI. This is incorrect
if RTTI data is disabled; in that case the "address point" is at offset
0. This change modifies bit set emission to take into account whether RTTI
data is being emitted.
Also make a start on a blacklisting scheme for records.
Differential Revision: http://reviews.llvm.org/D11048
llvm-svn: 241845
The fix is to emit cleanup for arrays of memcpy-able objects in struct if an exception is thrown later during copy-construction.
Differential Revision: http://reviews.llvm.org/D10989
llvm-svn: 241670
Skip calls to HasTrivialDestructorBody() in the case where the
destructor is never invoked. Alternatively, Richard proposed to change
Sema to declare a trivial destructor for anonymous union member, which
seems too wasteful.
Differential Revision: http://reviews.llvm.org/D10508
llvm-svn: 240742
Member pointers in the MS ABI are made complicated due to the following:
- Virtual methods in the most derived class (MDC) might live in a
vftable in a virtual base.
- There are four different representations of member pointer: single
inheritance, multiple inheritance, virtual inheritance and the "most
general" representation.
- Bases might have a *more* general representation than classes which
derived from them, a most surprising result.
We believed that we could treat all member pointers as-if they were a
degenerate case of the multiple inheritance model. This fell apart once
we realized that implementing standard member pointers using this ABI
requires referencing members with a non-zero vbindex.
On a bright note, all but the virtual inheritance model operate rather
similarly. The virtual inheritance member pointer representation
awkwardly requires a virtual base adjustment in order to refer to
entities in the MDC.
However, the first virtual base might be quite far from the start of the
virtual base. This means that we must add a negative non-virtual
displacement.
However, things get even more complicated. The most general
representation interprets vbindex zero differently from the virtual
inheritance model: it doesn't reference the vbtable at all.
It turns out that this complexity can increase for quite some time:
consider a derived to base conversion from the most general model to the
multiple inheritance model...
To manage this complexity we introduce a concept of "normalized" member
pointer which allows us to treat all three models as the most general
model. Then we try to figure out how to map this generalized member
pointer onto the destination member pointer model. I've done my best to
furnish the code with comments explaining why each adjustment is
performed.
This fixes PR23878.
llvm-svn: 240384
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Testcase provided, in the PR, by Christian Shelton and
reduced by David Majnemer.
PR: 23584
Differential Revision: http://reviews.llvm.org/D10508
Reviewed by: rnk
llvm-svn: 240242
This causes programs compiled with this flag to print a diagnostic when
a control flow integrity check fails instead of aborting. Diagnostics are
printed using UBSan's runtime library.
The main motivation of this feature over -fsanitize=vptr is fidelity with
the -fsanitize=cfi implementation: the diagnostics are printed under exactly
the same conditions as those which would cause -fsanitize=cfi to abort the
program. This means that the same restrictions apply regarding compiling
all translation units with -fsanitize=cfi, cross-DSO virtual calls are
forbidden, etc.
Differential Revision: http://reviews.llvm.org/D10268
llvm-svn: 240109
-fprofile-instr-generate does not emit counter increment intrinsics
for Dtor_Deleting and Dtor_Complete destructors with assigned
counters. This causes unnecessary [-Wprofile-instr-out-of-date]
warnings during profile-use runs even if the source has never been
modified since profile collection.
Patch by Betul Buyukkurt. Thanks!
llvm-svn: 237804
The RegionCounter type does a lot of legwork, but most of it is only
meaningful within the implementation of CodeGenPGO. The uses elsewhere
in CodeGen generally just want to increment or read counters, so do
that directly.
llvm-svn: 235664
This uses the same class metadata currently used for virtual call and
cast checks.
The new flag is -fsanitize=cfi-nvcall. For consistency, the -fsanitize=cfi-vptr
flag has been renamed -fsanitize=cfi-vcall.
Differential Revision: http://reviews.llvm.org/D8756
llvm-svn: 233874
This scheme checks that pointer and lvalue casts are made to an object of
the correct dynamic type; that is, the dynamic type of the object must be
a derived class of the pointee type of the cast. The checks are currently
only introduced where the class being casted to is a polymorphic class.
Differential Revision: http://reviews.llvm.org/D8312
llvm-svn: 232241
This patch introduces the -fsanitize=cfi-vptr flag, which enables a control
flow integrity scheme that checks that virtual calls take place using a vptr of
the correct dynamic type. More details in the new docs/ControlFlowIntegrity.rst
file.
It also introduces the -fsanitize=cfi flag, which is currently a synonym for
-fsanitize=cfi-vptr, but will eventually cover all CFI checks implemented
in Clang.
Differential Revision: http://reviews.llvm.org/D7424
llvm-svn: 230055
We would synthesize memcpy intrinsics when emitting calls to trivial C++
constructors but we wouldn't take into account the alignment of the
destination.
llvm-svn: 228061
It is common for COM interface classes to be marked as 'novtable' to
tell the compiler that constructors and destructors should not reference
virtual function tables.
This commit implements this feature in clang.
llvm-svn: 227796
This was causing some trouble for otherwise dead code removed in r225085
(reverted in r225361). The location being set for function arguments was
leaking out to the call which wasn't setting its own location (so a
quality bug turned into a crasher with r225085). Fix this so r225085 can
be recommitted.
llvm-svn: 226382
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
This particularly helps the fidelity of ASan reports (which can occur
even in these examples - if, for example, one uses placement new over a
buffer of insufficient size - now ASan will correctly identify which
member's initialization went over the end of the buffer).
This doesn't cover all types of members - more coming.
llvm-svn: 223726
Summary:
When -fsanitize-address-field-padding=1 is present
don't emit memcpy for copy constructor.
Thanks Nico for the extra test case.
Test Plan: regression tests
Reviewers: thakis, rsmith
Reviewed By: rsmith
Subscribers: rsmith, cfe-commits
Differential Revision: http://reviews.llvm.org/D6515
llvm-svn: 223563
We currently use i32 (...)** as the type of the vptr field in the LLVM
struct type. LLVM's GlobalOpt prefers any bitcasts to be on the side of
the data being stored rather than on the pointer being stored to.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D5916
llvm-svn: 223267
Consider this program:
struct A {
virtual void operator-() { printf("base\n"); }
};
struct B final : public A {
virtual void operator-() override { printf("derived\n"); }
};
int main() {
B* b = new B;
-static_cast<A&>(*b);
}
Before this patch, clang saw the virtual call to A::operator-(), figured out
that it can be devirtualized, and then just called A::operator-() directly,
without going through the vtable. Instead, it should've looked up which
operator-() the call devirtualizes to and should've called that.
For regular virtual member calls, clang gets all this right already. So
instead of giving EmitCXXOperatorMemberCallee() all the logic that
EmitCXXMemberCallExpr() already has, cut the latter function into two pieces,
call the second piece EmitCXXMemberOrOperatorMemberCallExpr(), and use it also
to generate code for calls to virtual member operators.
This way, virtual overloaded operators automatically don't get devirtualized
if they have covariant returns (like it was done for regular calls in r218602),
etc.
This also happens to fix (or at least improve) codegen for explicit constructor
calls (`A a; a.A::A()`) in MS mode with -fsanitize-address-field-padding=1.
(This adjustment for virtual operator calls seems still wrong with the MS ABI.)
llvm-svn: 223185
Get rid of ugly SanitizerOptions class thrust into LangOptions:
* Make SanitizeAddressFieldPadding a regular language option,
and rely on default behavior to initialize/reset it.
* Make SanitizerBlacklistFile a regular member LangOptions.
* Introduce the helper class "SanitizerSet" to represent the
set of enabled sanitizers and make it a member of LangOptions.
It is exactly the entity we want to cache and modify in CodeGenFunction,
for instance. We'd also be able to reuse SanitizerSet in
CodeGenOptions for storing the set of recoverable sanitizers,
and in the Driver to represent the set of sanitizers
turned on/off by the commandline flags.
No functionality change.
llvm-svn: 221653
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
SanitizerOptions is not even a POD now, so having global variable of
this type, is not nice. Instead, provide a regular constructor and clear()
method, and let each CodeGenFunction has its own copy of SanitizerOptions
it uses.
llvm-svn: 220920
Summary:
The general approach is to add extra paddings after every field
in AST/RecordLayoutBuilder.cpp, then add code to CTORs/DTORs that poisons the paddings
(CodeGen/CGClass.cpp).
Everything is done under the flag -fsanitize-address-field-padding.
The blacklist file (-fsanitize-blacklist) allows to avoid the transformation
for given classes or source files.
See also https://code.google.com/p/address-sanitizer/wiki/IntraObjectOverflow
Test Plan: run SPEC2006 and some of the Chromium tests with -fsanitize-address-field-padding
Reviewers: samsonov, rnk, rsmith
Reviewed By: rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D5687
llvm-svn: 219961
This change adds UBSan check to upcasts. Namely, when we
perform derived-to-base conversion, we:
1) check that the pointer-to-derived has suitable alignment
and underlying storage, if this pointer is non-null.
2) if vptr-sanitizer is enabled, and we perform conversion to
virtual base, we check that pointer-to-derived has a matching vptr.
llvm-svn: 219642
It's possible to construct cases where the first field we are trying to
copy is in the middle of an IR field. In some complicated cases, we
would fail to use an appropriate offset inside the object. Earlier
builds of clang seemed to miscompile the code by copying an insufficient
number of bytes. Up until now, we would assert: the copying offset was
insufficiently aligned.
This fixes PR21232.
llvm-svn: 219524
There are situations when clang knows that the C1 and C2 constructors
or the D1 and D2 destructors are identical. We already optimize some
of these cases, but cannot optimize it when the GlobalValue is
weak_odr.
The problem with weak_odr is that an old TU seeing the same code will
have a C1 and a C2 comdat with the corresponding symbols. We cannot
suddenly start putting the C2 symbol in the C1 comdat as we cannot
guarantee that the linker will not pick a .o with only C1 in it.
The solution implemented by GCC is to expand the ABI to have a comdat
whose name uses a C5/D5 suffix and always has both symbols. That is
what this patch implements.
llvm-svn: 217874
We assumed that the incoming this argument would be the last argument.
However, this is not true under the MS ABI.
This fixes PR20897.
llvm-svn: 217642
Summary:
This patch implements a new UBSan check, which verifies
that function arguments declared to be nonnull with __attribute__((nonnull))
are actually nonnull in runtime.
To implement this check, we pass FunctionDecl to CodeGenFunction::EmitCallArgs
(where applicable) and if function declaration has nonnull attribute specified
for a certain formal parameter, we compare the corresponding RValue to null as
soon as it's calculated.
Test Plan: regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits, rnk
Differential Revision: http://reviews.llvm.org/D5082
llvm-svn: 217389
There were code paths that are duplicated for constructors and destructors just
because we have both CXXCtorType and CXXDtorsTypes.
This patch introduces an unified enum and reduces code deplication a bit.
llvm-svn: 217383
Summary:
This is a first small step towards passing generic "Expr" instead of
ArgBeg/ArgEnd pair into EmitCallArgs() family of methods. Having "Expr" will
allow us to get the corresponding FunctionDecl and its ParmVarDecls,
thus allowing us to alter CodeGen depending on the function/parameter
attributes.
No functionality change.
Test Plan: regression test suite
Reviewers: rnk
Reviewed By: rnk
Subscribers: aemerson, cfe-commits
Differential Revision: http://reviews.llvm.org/D4915
llvm-svn: 216214
they're somehow missing a body. Looks like this was left behind when the loop
was generalized, and it's not been problematic before because without modules,
a used, implicit special member function declaration must be a definition.
This was resulting in us trying to emit a constructor declaration rather than
a definition, and producing a constructor missing its member initializers.
llvm-svn: 214473
This implements the central part of support for dllimport/dllexport on
classes: allowing the attribute on class declarations, inheriting it
to class members, and forcing emission of exported members. It's based
on Nico Rieck's patch from http://reviews.llvm.org/D1099.
This patch doesn't propagate dllexport to bases that are template
specializations, which is an interesting problem. It also doesn't
look at the rules when redeclaring classes with different attributes,
I'd like to do that separately.
Differential Revision: http://reviews.llvm.org/D3877
llvm-svn: 209908
When a non-trivial parameter is present, clang now gathers up all the
parameters that lack inreg and puts them into a packed struct. MSVC
always aligns each parameter to 4 bytes and no more, so this is a pretty
simple struct to lay out.
On win64, non-trivial records are passed indirectly. Prior to this
change, clang was incorrectly using byval on win64.
I'm able to self-host a working clang with this change and additional
LLVM patches.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2636
llvm-svn: 200597
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
Fixes PR18435, where we generated a base ctor instead of a complete
ctor, and so failed to construct virtual bases when constructing the
complete object.
llvm-svn: 199160
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
Unlike Itanium's VTTs, the 'most derived' boolean or bitfield is the
last parameter for non-variadic constructors, rather than the second.
For variadic constructors, the 'most derived' parameter comes after the
'this' parameter. This affects constructor calls and constructor decls
in a variety of places.
Reviewers: timurrrr
Differential Revision: http://llvm-reviews.chandlerc.com/D2405
llvm-svn: 197518
Summary:
MSVC destroys arguments in the callee from left to right. Because C++
objects have to be destroyed in the reverse order of construction, Clang
has to construct arguments from right to left and destroy arguments from
left to right.
This patch fixes the ordering by reversing the order of evaluation of
all call arguments under the MS C++ ABI.
Fixes PR18035.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2275
llvm-svn: 196402
deallocation function (and the corresponding unsized deallocation function has
been declared), emit a weak discardable definition of the function that
forwards to the corresponding unsized deallocation.
This allows a C++ standard library implementation to provide both a sized and
an unsized deallocation function, where the unsized one does not just call the
sized one, for instance by putting both in the same object file within an
archive.
llvm-svn: 194055
CodeGenABITypes is a wrapper built on top of CodeGenModule that exposes
some of the functionality of CodeGenTypes (held by CodeGenModule),
specifically methods that determine the LLVM types appropriate for
function argument and return values.
I addition to CodeGenABITypes.h, CGFunctionInfo.h is introduced, and the
definitions of ABIArgInfo, RequiredArgs, and CGFunctionInfo are moved
into this new header from the private headers ABIInfo.h and CGCall.h.
Exposing this functionality is one part of making it possible for LLDB
to determine the actual ABI locations of function arguments and return
values, making it possible for it to determine this for any supported
target without hard-coding ABI knowledge in the LLDB code.
llvm-svn: 193717
The general strategy is to create template versions of the conversion function and static invoker and then during template argument deduction of the conversion function, create the corresponding call-operator and static invoker specializations, and when the conversion function is marked referenced generate the body of the conversion function using the corresponding static-invoker specialization. Similarly, Codegen does something similar - when asked to emit the IR for a specialized static invoker of a generic lambda, it forwards emission to the corresponding call operator.
This patch has been reviewed in person both by Doug and Richard. Richard gave me the LGTM.
A few minor changes:
- per Richard's request i added a simple check to gracefully inform that captures (init, explicit or default) have not been added to generic lambdas just yet (instead of the assertion violation).
- I removed a few lines of code that added the call operators instantiated parameters to the currentinstantiationscope. Not only did it not handle parameter packs, but it is more relevant in the patch for nested lambdas which will follow this one, and fix that problem more comprehensively.
- Doug had commented that the original implementation strategy of using the TypeSourceInfo of the call operator to create the static-invoker was flawed and allowed const as a member qualifier to creep into the type of the static-invoker. I currently kludge around it - but after my initial discussion with Doug, with a follow up session with Richard, I have added a FIXME so that a more elegant solution that involves the use of TrivialTypeSourceInfo call followed by the correct wiring of the template parameters to the functionprototypeloc is forthcoming.
Thanks!
llvm-svn: 191634