BasicAA GEP decomposition currently performs all calculation on the
maximum pointer size, but at least 64-bit, with an option to double
the size. The code comment claims that this improves analysis power
when working with uint64_t indices on 32-bit systems. However, I don't
see how this can be, at least while maintaining correctness:
When working on canonical code, the GEP indices will have GEP index
size. If the original code worked on uint64_t with a 32-bit size_t,
then there will be truncs inserted before use as a GEP index. Linear
expression decomposition does not look through truncs, so this will
be an opaque value as far as GEP decomposition is concerned. Working
on a wider pointer size does not help here (or have any effect at all).
When working on non-canonical code (before first InstCombine), the
GEP indices are implicitly truncated to GEP index size. The BasicAA
code currently just ignores this fact completely, and pretends that
this truncation doesn't happen. This is incorrect and will be
addressed by D110977.
I believe that for correctness reasons, it is important to work on
the actual GEP index size to properly model potential overflow.
BasicAA tries to patch over the fact that it uses the wrong size
(see adjustToPointerSize), but it only does that in limited cases
(only for constant values, and not all of them either). I'd like to
move this code towards always working on the correct size, and
dropping these artificial pointer size adjustments is the first step
towards that.
Differential Revision: https://reviews.llvm.org/D110657
Motivated by the discussion in D38499, this patch updates BasicAA to support
arbitrary pointer sizes by switching most remaining non-APInt calculations to
use APInt. The size of these APInts is set to the maximum pointer size (maximum
over all address spaces described by the data layout string).
Most of this translation is straightforward, but this patch contains a fix for
a bug that revealed itself during this translation process. In order for
test/Analysis/BasicAA/gep-and-alias.ll to pass, which is run with 32-bit
pointers, the intermediate calculations must be performed using 64-bit
integers. This is because, as noted in the patch, when GetLinearExpression
decomposes an expression into C1*V+C2, and we then multiply this by Scale, and
distribute, to get (C1*Scale)*V + C2*Scale, it can be the case that, even
through C1*V+C2 does not overflow for relevant values of V, (C2*Scale) can
overflow. If this happens, later logic will draw invalid conclusions from the
(base) offset value. Thus, when initially applying the APInt conversion,
because the maximum pointer size in this test is 32 bits, it started failing.
Suspicious, I created a 64-bit version of this test (included here), and that
failed (miscompiled) on trunk for a similar reason (the multiplication can
overflow).
After fixing this overflow bug, the first test case (at least) in
Analysis/BasicAA/q.bad.ll started failing. This is also a 32-bit test, and was
relying on having 64-bit intermediate values to have BasicAA return an accurate
result. In order to fix this problem, and because I believe that it is not
uncommon to use i64 indexing expressions in 32-bit code (especially portable
code using int64_t), it seems reasonable to always use at least 64-bit
integers. In this way, we won't regress our analysis capabilities (and there's
a command-line option added, so experimenting with this should be easy).
As pointed out by Eli during the review, there are other potential overflow
conditions that this patch does not address. Fixing those is left to follow-up
work.
Patch by me with contributions from Michael Ferguson (mferguson@cray.com).
Differential Revision: https://reviews.llvm.org/D38662
llvm-svn: 350220
In BasicAA GEP operand values get adjusted ("wrap-around") based on the
pointersize. Otherwise, in non-64b modes, AA could report false negatives.
However, a wrap-around is valid only for a fully evaluated expression.
It had been introduced to fix an alias problem in
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160118/326163.html.
This commit restricts the wrap-around to constant gep operands only where the
value is known at compile-time.
llvm-svn: 284908