Commit Graph

17 Commits

Author SHA1 Message Date
Florian Hahn 23c2f2e6b2
[LV] Mark increment of main vector loop induction variable as NUW.
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.

If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.

This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.

At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.

Note that this could probably be further improved by using information
from the original IV.

Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g

Part of a set of fixes required for PR50412.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D103255
2021-06-07 10:47:52 +01:00
Roman Lebedev b46c085d2b
[NFCI] SCEVExpander: emit intrinsics for integral {u,s}{min,max} SCEV expressions
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.

This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.

Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.

Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
2021-03-06 21:52:46 +03:00
Amara Emerson 322d0afd87 [llvm][mlir] Promote the experimental reduction intrinsics to be first class intrinsics.
This change renames the intrinsics to not have "experimental" in the name.

The autoupgrader will handle legacy intrinsics.

Relevant ML thread: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

Differential Revision: https://reviews.llvm.org/D88787
2020-10-07 10:36:44 -07:00
David Green ff86acbb79 [LV] Regenerate test. NFC
This just reruns the update script to add the new
[[LOOP0:!llvm.loop !.*]] checks to remove them from
other diffs.
2020-10-05 13:46:15 +01:00
Sanjay Patel e50059f6b6 [x86] form reduction intrinsics from vectorizers instead of raw IR
Motivating examples are seen in the PhaseOrdering tests based on:
https://bugs.llvm.org/show_bug.cgi?id=43953#c2 - if we have
intrinsics there, some pass can fold them.

The intrinsics are still named "experimental" at this point, but
if there is no fallout from this patch, that will be a good
indicator that it is safe to finalize them.

Differential Revision: https://reviews.llvm.org/D80867
2020-06-05 12:38:49 -04:00
Sjoerd Meijer 9529597cf4 Recommit #2: "[LV] Induction Variable does not remain scalar under tail-folding."
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:

If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.
2020-05-13 13:50:09 +01:00
Benjamin Kramer f936457f80 Revert "Recommit "[LV] Induction Variable does not remain scalar under tail-folding.""
This reverts commit ae45b4dbe7. It
causes miscompilations, test case on the mailing list.
2020-05-08 14:49:10 +02:00
Sjoerd Meijer ae45b4dbe7 Recommit "[LV] Induction Variable does not remain scalar under tail-folding."
With 3 llvm regr tests fixed/updated that I had missed.
2020-05-07 11:52:20 +01:00
Sjoerd Meijer 20d67ffeae Revert "[LV] Induction Variable does not remain scalar under tail-folding."
This reverts commit 617aa64c84.

while I investigate buildbot failures.
2020-05-07 09:29:56 +01:00
Sjoerd Meijer 617aa64c84 [LV] Induction Variable does not remain scalar under tail-folding.
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.

Differential Revision: https://reviews.llvm.org/D78911
2020-05-07 09:15:23 +01:00
Petr Hosek e28fca29fe Revert "[IRBuilder] Fold consistently for or/and whether constant is LHS or RHS"
This reverts commit r365260 which broke the following tests:

    Clang :: CodeGenCXX/cfi-mfcall.cpp
    Clang :: CodeGenObjC/ubsan-nullability.m
    LLVM :: Transforms/LoopVectorize/AArch64/pr36032.ll

llvm-svn: 365284
2019-07-07 22:12:01 +00:00
Philip Reames 9812668d77 [IRBuilder] Fold consistently for or/and whether constant is LHS or RHS
Without this, we have the unfortunate property that tests are dependent on the order of operads passed the CreateOr and CreateAnd functions.  In actual usage, we'd promptly optimize them away, but it made tests slightly more verbose than they should have been.

llvm-svn: 365260
2019-07-06 04:28:00 +00:00
Keno Fischer a1a4adf4b9 [SCEV] Add explicit representations of umin/smin
Summary:
Currently we express umin as `~umax(~x, ~y)`. However, this becomes
a problem for operands in non-integral pointer spaces, because `~x`
is not something we can compute for `x` non-integral. However, since
comparisons are generally still allowed, we are actually able to
express `umin(x, y)` directly as long as we don't try to express is
as a umax. Support this by adding an explicit umin/smin representation
to SCEV. We do this by factoring the existing getUMax/getSMax functions
into a new function that does all four. The previous two functions were
largely identical.

Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D50167

llvm-svn: 360159
2019-05-07 15:28:47 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Roman Tereshin 02320eee6b Revert "[SCEV][NFC] Check NoWrap flags before lexicographical comparison of SCEVs"
This reverts r319889.

Unfortunately, wrapping flags are not a part of SCEV's identity (they
do not participate in computing a hash value or in equality
comparisons) and in fact they could be assigned after the fact w/o
rebuilding a SCEV.

Grep for const_cast's to see quite a few of examples, apparently all
for AddRec's at the moment.

So, if 2 expressions get built in 2 slightly different ways: one with
flags set in the beginning, the other with the flags attached later
on, we may end up with 2 expressions which are exactly the same but
have their operands swapped in one of the commutative N-ary
expressions, and at least one of them will have "sorted by complexity"
invariant broken.

2 identical SCEV's won't compare equal by pointer comparison as they
are supposed to.

A real-world reproducer is added as a regression test: the issue
described causes 2 identical SCEV expressions to have different order
of operands and therefore compare not equal, which in its turn
prevents LoadStoreVectorizer from vectorizing a pair of consecutive
loads.

On a larger example (the source of the test attached, which is a
bugpoint) I have seen even weirder behavior: adding a constant to an
existing SCEV changes the order of the existing terms, for instance,
getAddExpr(1, ((A * B) + (C * D))) returns (1 + (C * D) + (A * B)).

Differential Revision: https://reviews.llvm.org/D40645

llvm-svn: 340777
2018-08-27 21:41:37 +00:00
Evgeny Stupachenko f1c058d99b Fix r326154 buildbots test fail
Summary:

Add specific mtriples to tests added in r326154.

From: Evgeny Stupachenko <evstupac@gmail.com>
                         <evgeny.v.stupachenko@intel.com>
llvm-svn: 326158
2018-02-27 01:33:11 +00:00