This reverts the revert commit b1777b04dc.
The patch originally got reverted due to a crash:
https://bugs.chromium.org/p/chromium/issues/detail?id=1232798#c2
The underlying issue was that we were not using the stored values from
the modified memory recipes, but the out-of-date values directly from
the IR (accessed via the VPlan). This should be fixed in d995d6376. A
reduced version of the reproducer has been added in 93664503be.
This patch adds a VPFirstOrderRecurrencePHIRecipe, to further untangle
VPWidenPHIRecipe into distinct recipes for distinct use cases/lowering.
See D104989 for a new recipe for reduction phis.
This patch also introduces a new `FirstOrderRecurrenceSplice`
VPInstruction opcode, which is used to make the forming of the vector
recurrence value explicit in VPlan. This more accurately models def-uses
in VPlan and also simplifies code-generation. Now, the vector recurrence
values are created at the right place during VPlan-codegeneration,
rather than during post-VPlan fixups.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D105008
Resubmit after the following changes:
* Fix a latent bug related to unrolling with required epilogue (see e49d65f). I believe this is the cause of the prior PPC buildbot failure.
* Disable non-latch exits for epilogue vectorization to be safe (9ffa90d)
* Split out assert movement (600624a) to reduce churn if this gets reverted again.
Previous commit message (try 3)
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.
If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.
This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.
At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.
Note that this could probably be further improved by using information
from the original IV.
Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g
Part of a set of fixes required for PR50412.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D103255
Update isFirstOrderRecurrence to explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.
Fixes PR44286 (and another PR or two).
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D84951
This reverts commit 6d3e3ae8a9.
Still seeing PPC build bot failures, and one arm self host bot failing. I'm officially stumped, and need help from a bot owner to reduce.
Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll
Previous commit message...
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac). The original commit caused a PPC build bot failure we never really got to the bottom of. I can't reproduce the issue, and the bot owner was non-responsive. In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025. My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.
Original commit message follows...
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.
Differential Revision: https://reviews.llvm.org/D94892
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.
This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.
Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.
Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCI-ish prep work, but the changes are a bit too involved for me to feel comfortable tagging the change that way.
Differential Revision: https://reviews.llvm.org/D94892
This relates to the ongoing effort to support vectorization of multiple exit loops (see D93317).
The previous code assumed that LCSSA phis were always single entry before the vectorizer ran. This was correct, but only because the vectorizer allowed only a single exiting edge. There's nothing in the definition of LCSSA which requires single entry phis.
A common case where this comes up is with a loop with multiple exiting blocks which all reach a common exit block. (e.g. see the test updates)
Differential Revision: https://reviews.llvm.org/D93725
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94061
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93793
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Differential Revision: https://reviews.llvm.org/D78911
This version contains 2 fixes for reported issues:
1. Make sure we do not try to sink terminator instructions.
2. Make sure we bail out, if we try to sink an instruction that needs to
stay in place for another recurrence.
Original message:
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.
With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.
As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.
Fixes PR43398.
Reviewers: hsaito, dcaballe, Ayal, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D69228
It broke Chromium, causing "Instruction does not dominate all uses!" errors.
See https://bugs.chromium.org/p/chromium/issues/detail?id=1022297#c1 for a
reproducer.
> If the recurrence PHI node has a single user, we can sink any
> instruction without side effects, given that all users are dominated by
> the instruction computing the incoming value of the next iteration
> ('Previous'). We can sink instructions that may cause traps, because
> that only causes the trap to occur later, but not on any new paths.
>
> With the relaxed check, we also have to make sure that we do not have a
> direct cycle (meaning PHI user == 'Previous), which indicates a
> reduction relation, which potentially gets missed by
> ReductionDescriptor.
>
> As follow-ups, we can also sink stores, iff they do not alias with
> other instructions we move them across and we could also support sinking
> chains of instructions and multiple users of the PHI.
>
> Fixes PR43398.
>
> Reviewers: hsaito, dcaballe, Ayal, rengolin
>
> Reviewed By: Ayal
>
> Differential Revision: https://reviews.llvm.org/D69228
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.
With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.
As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.
Fixes PR43398.
Reviewers: hsaito, dcaballe, Ayal, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D69228