added a final newline to fooSynthProvider.py
new option to automatically save user input in InputReaderEZ
checking for NULL pointers in several new places
llvm-svn: 135916
- you can use a Python script to write a summary string for data-types, in one of
three ways:
-P option and typing the script a line at a time
-s option and passing a one-line Python script
-F option and passing the name of a Python function
these options all work for the "type summary add" command
your Python code (if provided through -P or -s) is wrapped in a function
that accepts two parameters: valobj (a ValueObject) and dict (an LLDB
internal dictionary object). if you use -F and give a function name,
you're expected to define the function on your own and with the right
prototype. your function, however defined, must return a Python string
- test case for the Python summary feature
- a few quirks:
Python summaries cannot have names, and cannot use regex as type names
both issues will be fixed ASAP
major redesign of type summary code:
- type summary working with strings and type summary working with Python code
are two classes, with a common base class SummaryFormat
- SummaryFormat classes now are able to actively format objects rather than
just aggregating data
- cleaner code to print descriptions for summaries
the public API now exports a method to easily navigate a ValueObject hierarchy
New InputReaderEZ and PriorityPointerPair classes
Several minor fixes and improvements
llvm-svn: 135238
not write output (prompts, instructions,etc.) if the CommandInterpreter
is in batch_mode.
Also, finish updating InputReaders to write to the asynchronous stream,
rather than using the Debugger's output file directly.
llvm-svn: 133162
command line driver, including the lldb prompt being output by
editline, the asynchronous process output & error messages, and
asynchronous messages written by target stop-hooks.
As part of this it introduces a new Stream class,
StreamAsynchronousIO. A StreamAsynchronousIO object is created with a
broadcaster, who will eventually broadcast the stream's data for a
listener to handle, and an event type indicating what type of event
the broadcaster will broadcast. When the Write method is called on a
StreamAsynchronousIO object, the data is appended to an internal
string. When the Flush method is called on a StreamAsynchronousIO
object, it broadcasts it's data string and clears the string.
Anything in lldb-core that needs to generate asynchronous output for
the end-user should use the StreamAsynchronousIO objects.
I have also added a new notification type for InputReaders, to let
them know that a asynchronous output has been written. This is to
allow the input readers to, for example, refresh their prompts and
lines, if desired. I added the case statements to all the input
readers to catch this notification, but I haven't added any code for
handling them yet (except to the IOChannel input reader).
llvm-svn: 130721
it logs the function calls, their arguments and the return values. This is not
complete or polished, but I am committing it now, at the request of someone who
really wants to use it, even though it's not really done. It currently does not
attempt to log all the functions, just the most important ones. I will be
making further adjustments to the API logging code over the next few days/weeks.
(Suggestions for improvements are welcome).
Update the Python build scripts to re-build the swig C++ file whenever
the python-extensions.swig file is modified.
Correct the help for 'log enable' command (give it the correct number & type of
arguments).
llvm-svn: 117349
to the debugger from GUI windows. Previously there was one global debugger
instance that could be accessed that had its own command interpreter and
current state (current target/process/thread/frame). When a GUI debugger
was attached, if it opened more than one window that each had a console
window, there were issues where the last one to setup the global debugger
object won and got control of the debugger.
To avoid this we now create instances of the lldb_private::Debugger that each
has its own state:
- target list for targets the debugger instance owns
- current process/thread/frame
- its own command interpreter
- its own input, output and error file handles to avoid conflicts
- its own input reader stack
So now clients should call:
SBDebugger::Initialize(); // (static function)
SBDebugger debugger (SBDebugger::Create());
// Use which ever file handles you wish
debugger.SetErrorFileHandle (stderr, false);
debugger.SetOutputFileHandle (stdout, false);
debugger.SetInputFileHandle (stdin, true);
// main loop
SBDebugger::Terminate(); // (static function)
SBDebugger::Initialize() and SBDebugger::Terminate() are ref counted to
ensure nothing gets destroyed too early when multiple clients might be
attached.
Cleaned up the command interpreter and the CommandObject and all subclasses
to take more appropriate arguments.
llvm-svn: 106615