GCC tries to shorten system headers in depfiles using its real path
(resolving components like ".." and following symlinks). Mimic this
feature to ensure that the Ninja build tool detects the correct
dependencies when a symlink changes directory levels, see
https://github.com/ninja-build/ninja/issues/1330
An option to disable this feature is added in case "these changed header
paths may conflict with some compilation environments", see
https://gcc.gnu.org/ml/gcc-patches/2012-09/msg00287.html
Note that the original feature request for GCC
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52974) also included paths
preprocessed output (-E) and diagnostics. That is not implemented now
since I am not sure if it breaks something else.
Differential Revision: https://reviews.llvm.org/D37954
llvm-svn: 316193
It'd be better that they are #cmakedefine01 rather than #cmakedefine.
(#if FOO rather than #if defined(FOO))
Then we can find missing #include "clang/Config/config.h" in the future.
Differential Revision: https://reviews.llvm.org/D35541
llvm-svn: 316061
This comes up when pre-processing standalone .s files containing
hash-prefixed comments. The pre-processor should skip the unknown
directive and not emit an extra newline as we were doing.
Fixes PR34950
llvm-svn: 315953
Currently all the consecutive bitfields are wrapped as a large integer unless there is unamed zero sized bitfield in between. The patch provides an alternative manner which makes the bitfield to be accessed as separate memory location if it has legal integer width and is naturally aligned. Such separate bitfield may split the original consecutive bitfields into subgroups of consecutive bitfields, and each subgroup will be wrapped as an integer. Now This is all controlled by an option -ffine-grained-bitfield-accesses. The alternative of bitfield access manner can improve the access efficiency of those bitfields with legal width and being aligned, but may reduce the chance of load/store combining of other bitfields, so it depends on how the bitfields are defined and actually accessed to choose when to use the option. For now the option is off by default.
Differential revision: https://reviews.llvm.org/D36562
llvm-svn: 315915
This feature is not (yet) approved by the C++ committee, so this is liable to
be reverted or significantly modified based on committee feedback.
No functionality change intended for existing code (a new type must be defined
in namespace std to take advantage of this feature).
llvm-svn: 315662
Summary:
It was previsouly set only in ASTUnit, but it should be set for all client of
PrecompiledPreamble.
Reviewers: erikjv, bkramer, klimek
Reviewed By: bkramer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D38617
llvm-svn: 315212
Move the logic for determining the `wchar_t` type information into the
driver. Rather than passing the single bit of information of
`-fshort-wchar` indicate to the frontend the desired type of `wchar_t`
through a new `-cc1` option of `-fwchar-type` and indicate the
signedness through `-f{,no-}signed-wchar`. This replicates the current
logic which was spread throughout Basic into the
`RenderCharacterOptions`.
Most of the changes to the tests are to ensure that the frontend uses
the correct type. Add a new test set under `test/Driver/wchar_t.c` to
ensure that we calculate the proper types for the various cases.
llvm-svn: 315126
to have child entries describing the template parameters. This will
be on by default for SCE tuning.
Differential Revision: https://reviews.llvm.org/D14358
llvm-svn: 314444
This patch fixes broken preamble-skipping when the preamble region includes a byte order mark (BOM). Previously, parsing would fail if preamble PCH generation was enabled and a BOM was present.
This also fixes preamble invalidation when a BOM appears or disappears. This may seem to be an obscure edge case, but it happens regularly with IDEs that pass buffer overrides that never (or always) have a BOM, yet the underlying file from the initial parse that generated a PCH might (or might not) have a BOM.
I've included a test case for these scenarios.
Differential Revision: https://reviews.llvm.org/D37491
llvm-svn: 313796
Summary:
The CompilerInstance should create its default VFS from its CompilerInvocation. Right now the
user has to manually create the VFS before creating the FileManager even though
`-ivfsoverlay file.yaml` was passed via the CompilerInvocation (which is exactly how we worked
around this issue in `FrontendAction.cpp` so far).
This patch uses the invocation's VFS by default and also tests this behavior now from the
point of view of a program that uses the clang API.
Reviewers: benlangmuir, v.g.vassilev
Reviewed By: v.g.vassilev
Subscribers: mgorny, cfe-commits, v.g.vassilev
Differential Revision: https://reviews.llvm.org/D37416
llvm-svn: 313049
When using a virtual file-system (VFS) and a preamble file (PCH) is generated,
it is generated on-disk in the real file-system instead of in the VFS (which
makes sense, since the VFS is read-only). However, when subsequently reading
the generated PCH, the frontend passes through the VFS it has been given --
resulting in an error and a failed parse (since the VFS doesn't contain the
PCH; the real filesystem does).
This patch fixes that by detecting when a VFS is being used for a parse that
needs to work with a PCH file, and creating an overlay VFS that includes the
PCH file from the real file-system.
This allows tests to be written which make use of both PCH files and a VFS.
Differential Revision: https://reviews.llvm.org/D37474
llvm-svn: 312917
This fixes a possible crash on certain kinds of corrupted AST file, but
checking in an AST file corrupted in just the right way will be a maintenance
nightmare because the format changes frequently.
llvm-svn: 312851
When we have enabled cache for global completions we did not have
diagnostics for Bar and could not complete Ba as in provided code
example.
template <typename T>
struct Foo { T member; };
template<typename T> using Bar = Foo<T>;
int main() {
Ba
}
(This is the fixed version of r 311442, which was reverted in r311445.)
Patch by Ivan Donchevskii!
Differential Revision: https://reviews.llvm.org/D35355
llvm-svn: 312780
Summary:
That is, instead of "1 error generated", we now say "1 error generated
when compiling for sm_35".
This (partially) solves a usability foogtun wherein e.g. users call a
function that's only defined on sm_60 when compiling for sm_35, and they
get an unhelpful error message.
Reviewers: tra
Subscribers: sanjoy, cfe-commits
Differential Revision: https://reviews.llvm.org/D37548
llvm-svn: 312736
Extend the -fmodule-file option to support the [<name>=]<file> value format.
If the name is omitted, then the old semantics is preserved (the module file
is loaded whether needed or not). If the name is specified, then the mapping
is treated as just another prebuilt module search mechanism, similar to
-fprebuilt-module-path, and the module file is only loaded if actually used
(e.g., via import). With one exception: this mapping also overrides module
file references embedded in other modules (which can be useful if module files
are moved/renamed as often happens during remote compilation).
This override semantics requires some extra work: we now store the module name
in addition to the file name in the serialized AST representation.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D35020
llvm-svn: 312220
Extend the -fmodule-file option to support the [<name>=]<file> value format.
If the name is omitted, then the old semantics is preserved (the module file
is loaded whether needed or not). If the name is specified, then the mapping
is treated as just another prebuilt module search mechanism, similar to
-fprebuilt-module-path, and the module file is only loaded if actually used
(e.g., via import). With one exception: this mapping also overrides module
file references embedded in other modules (which can be useful if module files
are moved/renamed as often happens during remote compilation).
This override semantics requires some extra work: we now store the module name
in addition to the file name in the serialized AST representation.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D35020
llvm-svn: 312105
Summary:
An implementation of ubsan runtime library suitable for use in production.
Minimal attack surface.
* No stack traces.
* Definitely no C++ demangling.
* No UBSAN_OPTIONS=log_file=/path (very suid-unfriendly). And no UBSAN_OPTIONS in general.
* as simple as possible
Minimal CPU and RAM overhead.
* Source locations unnecessary in the presence of (split) debug info.
* Values and types (as in A+B overflows T) can be reconstructed from register/stack dumps, once you know what type of error you are looking at.
* above two items save 3% binary size.
When UBSan is used with -ftrap-function=abort, sometimes it is hard to reason about failures. This library replaces abort with a slightly more informative message without much extra overhead. Since ubsan interface in not stable, this code must reside in compiler-rt.
Reviewers: pcc, kcc
Subscribers: srhines, mgorny, aprantl, krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D36810
llvm-svn: 312029
If a TS module name has more than one component (e.g., foo.bar) then we
erroneously activated the submodule semantics when encountering a module
declaration in the module implementation unit (e.g., 'module foo.bar;').
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D35678
llvm-svn: 312007
This patch adds a flag -fclang-abi-compat that can be used to request that
Clang attempts to be ABI-compatible with some older version of itself.
This is provided on a best-effort basis; right now, this can be used to undo
the ABI change in r310401, reverting Clang to its prior C++ ABI for pass/return
by value of class types affected by that change, and to undo the ABI change in
r262688, reverting Clang to using integer registers rather than SSE registers
for passing <1 x long long> vectors. The intent is that we will maintain this
backwards compatibility path as we make ABI-breaking fixes in future.
The reversion to the old behavior for r310401 is also applied to the PS4 target
since that change is not part of its platform ABI (which is essentially to do
whatever Clang 3.2 did).
llvm-svn: 311823
In ASTUnit::LoadFromASTFile, the context object is set up using
default-constructed LangOptions (which only later get populated). As the
language options are used in the constructor of PrintingPolicy, this
needs to be updated explicitly after the language options are available.
Patch by Johann Klähn!
Differential Revision: https://reviews.llvm.org/D35271
llvm-svn: 311787
Summary: With accurate sample profile, we can do more aggressive size optimization. For some size-critical application, this can reduce the text size by 20%
Reviewers: davidxl, rsmith
Reviewed By: davidxl, rsmith
Subscribers: mehdi_amini, eraman, sanjoy, cfe-commits
Differential Revision: https://reviews.llvm.org/D37091
llvm-svn: 311707
When we have enabled cache for global completions we did not have
diagnostics for Bar and could not complete Ba as in provided code
example.
template <typename T>
struct Foo { T member; };
template<typename T> using Bar = Foo<T>;
int main() {
Ba
}
Patch by Ivan Donchevskii!
Differential Revision: https://reviews.llvm.org/D35355
llvm-svn: 311442
Summary:
Augment SanitizerCoverage to insert maximum stack depth tracing for
use by libFuzzer. The new instrumentation is enabled by the flag
-fsanitize-coverage=stack-depth and is compatible with the existing
trace-pc-guard coverage. The user must also declare the following
global variable in their code:
thread_local uintptr_t __sancov_lowest_stack
https://bugs.llvm.org/show_bug.cgi?id=33857
Reviewers: vitalybuka, kcc
Reviewed By: vitalybuka
Subscribers: kubamracek, hiraditya, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D36839
llvm-svn: 311186
Summary:
Two PrecompiledPreambles, used in parallel on separate threads,
could be writing preamble to the same temporary file.
Reviewers: bkramer, krasimir, klimek
Reviewed By: klimek
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D36529
llvm-svn: 310618
This helps some tools that do things based on the output's extension.
For example, we got reports from users on Windows that have a tool that scan a
build output dir (but skip .obj files). The tool would keep the "foo.obj-12345"
file open, and then when clang tried to rename the temp file to the final
output filename, that would fail. By making the tempfile end in ".obj.tmp",
tools like this could now have a rule to ignore .tmp files.
This is a less ambitious reland of https://reviews.llvm.org/D36238https://reviews.llvm.org/D36413
llvm-svn: 310376
OpenCL 2.0 atomic builtin functions have a scope argument which is ideally
represented as synchronization scope argument in LLVM atomic instructions.
Clang supports translating Clang atomic builtin functions to LLVM atomic
instructions. However it currently does not support synchronization scope
of LLVM atomic instructions. Without this, users have to use LLVM assembly
code to implement OpenCL atomic builtin functions.
This patch adds OpenCL 2.0 atomic builtin functions as Clang builtin
functions, which supports generating LLVM atomic instructions with
synchronization scope operand.
Currently only constant memory scope argument is supported. Support of
non-constant memory scope argument will be added later.
Differential Revision: https://reviews.llvm.org/D28691
llvm-svn: 310082
This helps some tools that do things based on the output's extension.
For example, we got reports from users on Windows that have a tool that scan a
build output dir (but skip .obj files). The tool would keep the "foo.obj-12345"
file open, and then when clang tried to rename the temp file to the final
output filename, that would fail. By making the tempfile end in ".obj", tools
like this will now skip the temp files as well.
https://reviews.llvm.org/D36238
llvm-svn: 309984
This option when combined with -mgpopt and -membedded-data places all
uninitialized constant variables in the read-only section.
Reviewers: atanasyan, nitesh.jain
Differential Revision: https://reviews.llvm.org/D35917
llvm-svn: 309940
LLVM_ENABLE_MODULES is sensitive of -D. Move them into config.h.
FIXME: It'd be better that they are #cmakedefine01 rather than #cmakedefine.
(#if FOO rather than #if defined(FOO))
Then we can find missing #include "clang/Config/config.h" in the future.
Differential Revision: https://reviews.llvm.org/D35527
llvm-svn: 308277
- Extracted the reading of the tokens out into a separate function.
- Replace 'Argument' with 'Parameter' when referring to the identifiers of the macro definition (as opposed to the supplied arguments - MacroArgs - during the macro invocation).
This is in preparation for submitting patches for review to implement __VA_OPT__ which will otherwise just keep lengthening the HandleDefineDirective function and making it less comprehensible.
I will also directly update some extra clang tooling that is broken by the change from Argument to Parameter.
Hopefully the bots will stay appeased.
Thanks!
llvm-svn: 308190
- Extracted the reading of the tokens out into a separate function.
- Replace 'Argument' with 'Parameter' when referring to the identifiers of the macro definition (as opposed to the supplied arguments - MacroArgs - during the macro invocation).
This is in preparation for submitting patches for review to implement __VA_OPT__ which will otherwise just keep lengthening the HandleDefineDirective function and making it less comprehensible.
Thanks!
llvm-svn: 308157
the serialised diagnostics
Clang should avoid calling report_fatal_error when the file with the serialised
diagnostics is empty. This commit changes Clang's serialised diagnostic reader,
now it reports an appropriate error instead of crashing.
rdar://31939877
Differential Revision: https://reviews.llvm.org/D35069
llvm-svn: 307384
Summary:
Changed EABIVersion type from string to llvm::EABI.
It seems it was just a typo and this is intended implementation.
Differential Revision: https://reviews.llvm.org/D34595
llvm-svn: 306953
Summary:
Un-revert https://reviews.llvm.org/D34868, but with a slight tweak to the
documentation to fix an error -- I had used the wrong syntax for a link.
llvm-svn: 306948
Summary:
Depends on https://reviews.llvm.org/D34867.
Add a Clang frontend option to enable optimization remark hotness
thresholds, which were added to LLVM in https://reviews.llvm.org/D34867.
This prevents diagnostics that do not meet a minimum hotness
threshold from being output. When generating optimization remarks for large
codebases with a ton of cold code paths, this option can be used
to limit the optimization remark output at a reasonable size.
Discussion of this change can be read here:
http://lists.llvm.org/pipermail/llvm-dev/2017-June/114377.html
Reviewers: anemet, davidxl, hfinkel
Reviewed By: anemet
Subscribers: fhahn, cfe-commits
Differential Revision: https://reviews.llvm.org/D34868
llvm-svn: 306945
basic block vectorizer. This vectorizer has had no known users for many,
many years and is completely surpassed by the normal
'-fvectorize-slp'-controlled SLP vectorizer in LLVM.
Hal proposed this back in 2014 to no objections:
http://lists.llvm.org/pipermail/llvm-dev/2014-November/079091.html
While this patch completely removes the flag, Joerg is working on
a patch that will add it back in a way that warns users and ignores the
flag in a clear and well factored way (so that we can keep doing this
going forward).
Differential Revision: https://reviews.llvm.org/D34846
llvm-svn: 306786
We use this when running a preprocessor-only action on an AST file in order to
avoid paying the runtime cost of loading the extra information.
llvm-svn: 306760
a c++17 aligned allocation/deallocation function that is unavailable in
the standard library on Apple platforms.
The aligned functions are implemented only in the following versions or
later versions of the OSes, so clang issues diagnostics if the deployment
target being targeted is older than these:
macosx: 10.13
ios: 11.0
tvos: 11.0
watchos: 4.0
The diagnostics are issued whenever the aligned functions are selected
except when the selected function has a definition in the same file.
If there is a user-defined function available somewhere else, option
-Wno-aligned-allocation-unavailable can be used to silence the
diagnostics.
rdar://problem/32664169
Differential Revision: https://reviews.llvm.org/D34574
llvm-svn: 306722
Summary: Device offloading requires the specification of an additional flag containing the triple of the //other// architecture the code is being compiled on if such an architecture exists. If compiling for the host, the auxiliary triple flag will contain the triple describing the device and vice versa.
Reviewers: arpith-jacob, sfantao, caomhin, carlo.bertolli, ABataev, Hahnfeld, jlebar, hfinkel, tstellar
Reviewed By: Hahnfeld
Subscribers: rengolin, cfe-commits
Differential Revision: https://reviews.llvm.org/D29339
llvm-svn: 306689
Summary: It used to always call into the RealFileSystem before.
Reviewers: bkramer, krasimir, klimek, bruno
Reviewed By: klimek
Subscribers: bruno, cfe-commits
Differential Revision: https://reviews.llvm.org/D34469
llvm-svn: 306549
This reverts commit r305688 meaning it reintroduces r305684. To repeat:
[NFC] Refactor DiagnosticRenderer to use FullSourceLoc
Move the DiagnosticRenderer and its dependents to using FullSourceLocs
instead of a SourceLocation and SourceManager pointer. The changeset is
rather large but entirely mechanical.
This is step one to allow DiagnosticRenderer to take either
llvm::SMLocs or clang::SourceLocations.
This breaks clang-tidy and clng-query which will be fixed in a commit
soon after.
Patch by Sanne Wouda
Differential Revision: https://reviews.llvm.org/D31709
llvm-svn: 306384
modules to preprocessing of nested .pcm files.
Making those module files available results in loading more .pcm files than
necessary, and potentially in misbehavior if a module makes itself visible
during its own compilation (as parts of that module that have not yet been
processed would then become visible).
llvm-svn: 306320
Restore the `-gz` option to the driver with some minor tweaks to handle
the additional case for `-Wa,--compress-debug-sections`.
This intends to make the compression of the debug information
controllable from the driver. The following is the behaviour:
-gz enable compression (ambiguous for format, will default to zlib-gnu)
-gz=none disable compression
-gz=zlib-gnu enable compression (deprecated GNU style zlib compression)
-gz=zlib enable compression (zlib based compression)
Although -Wa,-compress-debug-sections works, it should be discouraged
when using the driver to invoke the assembler. However, we permit the
assembler to accept the GNU as style argument --compress-debug-sections
to maintain compatibility.
Note, -gz/-gz= does *NOT* imply -g. That is, you need to additionally
specific -g for debug information to be generated.
llvm-svn: 306115
Summary:
Prior to this change, using `-fdiagnostics-show-hotness` with a sampling
profile specified via `-fprofile-sample-use=` would result in the Clang
frontend emitting a warning: "argument '-fdiagnostics-show-hotness' requires
profile-guided optimization information". Of course, a sampling profile
*is* profile-guided optimization information, so the warning is misleading.
Furthermore, despite the warning, hotness was displayed based on the data in
the sampling profile.
Prevent the warning from being emitted when a sampling profile is used, and
add a test that verifies this.
Reviewers: anemet, davidxl
Reviewed By: davidxl
Subscribers: danielcdh, cfe-commits
Differential Revision: https://reviews.llvm.org/D34082
llvm-svn: 306079
-frewrite-imports mode.
This could end up accumulating a very large amount of intermediate state. Clear
it out after each module file is processed.
llvm-svn: 305764
Move the DiagnosticRenderer and its dependents to using FullSourceLocs
instead of a SourceLocation and SourceManager pointer. The changeset is
rather large but entirely mechanical.
This is step one to allow DiagnosticRenderer to take either
llvm::SMLocs or clang::SourceLocations.
Patch by Sanne Wouda
Review: https://reviews.llvm.org/D31709
Change-Id: If351a112cdf6718e2d3ef6721b8da9c6376b32dd
llvm-svn: 305684
for preprocessing
r300667 added support for editor placeholder to Clang. That commit didn’t take
into account that users who use Clang for preprocessing only (-E) will get the
"editor placeholder in source file" error when preprocessing their source
(PR33394). This commit ensures that Clang doesn't lex editor placeholders when
running a preprocessor only action.
rdar://32718000
Differential Revision: https://reviews.llvm.org/D34256
llvm-svn: 305576
Summary:
It seems -flto must be either "thin" or "full". I think the use of
containValue is just a typo.
Reviewers: ruiu, tejohnson
Subscribers: mehdi_amini, inglorion
Differential Revision: https://reviews.llvm.org/D34055
llvm-svn: 305392
cc1as does not currently access the "--" version of this flag. At the
very least this needs to be fixed and proper test cases need to be
added.
Simple reproducer:
clang -Wa,--compress-debug-sections /tmp/test.cc
Result:
error: unknown argument: '--compress-debug-sections'
llvm-svn: 305182
These options control the behaviour of the compression of debug info
sections on ELF targets. Our behaviour slightly diverges from the
behaviour of GCC. `-gz` maps to the `-compress-debug-sections` rather
than `-compress-debug-sections=zlib` or
`-compress-debug-sections=zlib-gnu`. This small divergence allows us to
be compatible across versions of binutils (=zlib support was introduced
in 2.26, while earlier versions only support =zlib-gnu). This also
allows users to not have to worry about the version of the assembler
they may be using if they are not using the IAS. Previously, users
would have had to go through the internal option
`-compress-debug-sectionss` and pass that through to the assembler,
which is no longer needed.
llvm-svn: 305165
If specified, when preprocessing, the contents of imported .pcm files will be
included in preprocessed output. The resulting preprocessed file can then be
compiled standalone without the module sources or .pcm files.
llvm-svn: 305116
as part of a compilation.
This is intended for two purposes:
1) Writing self-contained test cases for modules: we can now write a single
source file test that builds some number of module files on the side and
imports them.
2) Debugging / test case reduction. A single-source testcase is much more
amenable to reduction, compared to a VFS tarball or .pcm files.
llvm-svn: 305101
Cache filename - SourceLocation pairs to speed up preamble loading and
global completion. This is especially relevant for windows, where
preamble loading takes a while.
Patch by Ivan Donchevskii!
Differential Revision: http://reviews.llvm.org/D33493
llvm-svn: 305061
No-one was using this, and it's not meaningful in general -- FrontendActions
can be run on inputs that don't have a corresponding source file. The current
frontend input can be obtained by asking the FrontendAction if any future
action actually needs it.
llvm-svn: 305045
This is useful for parsing a single file, as a fast/inaccurate 'mode' that can still provide declarations from the file, like the classes and their methods.
llvm-svn: 305044
This is tied with the LLVM side of the change to expose the debug
information compression types to clang. We now track the compression
type as an enumeration rather than a boolean. We still use the same
value (GNU) that we did previously. This is in preparation to support
passing down the compression type and switch it based on the command
line.
llvm-svn: 305039
replay the steps taken to create the AST file with the preprocessor-only action
installed to produce preprocessed output.
This can be used to produce the preprocessed text for an existing .pch or .pcm
file.
llvm-svn: 304726
This patch adds support for a `header` declaration in a module map to specify
certain `stat` information (currently, size and mtime) about that header file.
This has two purposes:
- It removes the need to eagerly `stat` every file referenced by a module map.
Instead, we track a list of unresolved header files with each size / mtime
(actually, for simplicity, we track submodules with such headers), and when
attempting to look up a header file based on a `FileEntry`, we check if there
are any unresolved header directives with that `FileEntry`'s size / mtime and
perform deferred `stat`s if so.
- It permits a preprocessed module to be compiled without the original files
being present on disk. The only reason we used to need those files was to get
the `stat` information in order to do header -> module lookups when using the
module. If we're provided with the `stat` information in the preprocessed
module, we can avoid requiring the files to exist.
Unlike most `header` directives, if a `header` directive with `stat`
information has no corresponding on-disk file the enclosing module is *not*
marked unavailable (so that behavior is consistent regardless of whether we've
resolved a header directive, and so that preprocessed modules don't get marked
unavailable). We could actually do this for all `header` directives: the only
reason we mark the module unavailable if headers are missing is to give a
diagnostic slightly earlier (rather than waiting until we actually try to build
the module / load and validate its .pcm file).
Differential Revision: https://reviews.llvm.org/D33703
llvm-svn: 304515
This patch makes it an error to have a mismatch between the enabled
sanitizers in a CU, and in any module being imported into the CU. Only
mismatches between non-modular sanitizers are treated as errors.
This patch also includes non-modular sanitizers in module hashes, in
order to ensure module rebuilds occur when -fsanitize=X is toggled on
and off for non-modular sanitizers, and to cut down on module rebuilds
when the option is toggled for modular sanitizers.
This fixes a longstanding issue with implicit modules and sanitizers,
which Duncan originally diagnosed.
When building with implicit modules it's possible to hit a scenario
where modules are built without -fsanitize=address, and are subsequently
imported into CUs with -fsanitize=address enabled. This causes strange
failures at runtime. The case Duncan found affects libcxx, since its
vector implementation behaves differently when ASan is enabled.
Implicit module builds should "just work" when -fsanitize=X is toggled
on and off across multiple compiler invocations, which is what this
patch does.
Differential Revision: https://reviews.llvm.org/D32724
llvm-svn: 304463
to the original module map.
Also use the path and name of the original module map when emitting that
information into the .pcm file. The upshot of this is that the produced .pcm
file will track information for headers in their original locations (where the
module was preprocessed), not relative to whatever directory the preprocessed
module map was in when it was built.
llvm-svn: 304346
A suspended translation unit uses significantly less memory but on the
other side does not support any other calls than
clang_reparseTranslationUnit to resume it or
clang_disposeTranslationUnit to dispose it completely.
This helps IDEs to reduce the memory footprint. The data that is freed
by a call to clang_suspendTranslationUnit will be re-generated on the
next (re)parse anyway. Used with a preamble, this allows pretty fast
resumption of the translation unit for further use (compared to disposal
of the translation unit and a parse from scratch).
Patch by Nikolai Kosjar!
llvm-svn: 304212
Previously, a preamble only included #if blocks (and friends like
ifdef) if there was a corresponding #endif before any declaration or
definition. The problem is that any header file that uses include guards
will not have a preamble generated, which can make code-completion very
slow.
To prevent errors about unbalanced preprocessor conditionals in the
preamble, and unbalanced preprocessor conditionals after a preamble
containing unfinished conditionals, the conditional stack is stored
in the pch file.
This fixes PR26045.
Differential Revision: http://reviews.llvm.org/D15994
llvm-svn: 304207
Amongst other, this will help LTO to correctly handle/honor files
compiled with O0, helping debugging failures.
It also seems in line with how we handle other options, like how
-fnoinline adds the appropriate attribute as well.
Differential Revision: https://reviews.llvm.org/D28404
llvm-svn: 304127
Summary: This patch is needed so that Libc++ can actually tess if Clang supports coroutines, instead of just paying lip service with a partial implementation. Otherwise the libc++ test suite will fail against older versions of Clang
Reviewers: GorNishanov, rsmith
Reviewed By: GorNishanov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33536
llvm-svn: 303867
There's a Microsoft header in the Windows SDK which won't
compile with clang because it uses an operator name (and)
as a field name. This patch allows that file to compile by
setting the option which disables operator names.
The header which doesn't compile <Query.h> C:/Program Files (x86)/
Windows Kits/10/include/10.0.14393.0/um\Query.h:259:40:
error: expected member name or ';' after declaration specifiers
/* [case()] */ NODERESTRICTION or;
~~~~~~~~~~~~~~~ ^
1 error generated.
Contributed for Melanie Blower
Differential Revision:https://reviews.llvm.org/D33505
llvm-svn: 303798
Now FixedCompilationDatabase::loadFromCommandLine has no means to report
which error occurred if it fails to create compilation object. This is
a block for implementing D33013, because after that change driver will
refuse to create compilation if command line contains erroneous options.
This change adds additional argument to loadFromCommandLine, which is
assigned error message text if compilation object was not created. This is
the same way as other methods of CompilationDatabase report failure.
Differential Revision: https://reviews.llvm.org/D33272
llvm-svn: 303741
When a diagnostic includes a highlighted range spanning multiple lines, clang
now supports printing out multiple lines of context if necessary to show the
highlighted ranges. This is not yet exposed in the driver, but can be enabled
by "-Xclang -fcaret-diagnostics-max-lines -Xclang N".
This is experimental until we can find out whether it works well in practice,
and if so, what a good default for the maximum number of lines is.
llvm-svn: 303589
This allows #line directives to appear in system headers that have code
that clang would normally warn on. This is compatible with GCC, which is
easy to test by running `gcc -E`.
Fixes PR30752
llvm-svn: 303582
Summary:
OnDiskData.TemporaryFiles is filled only by ASTUnit::addTemporaryFile, which is
dead. Also these files are used nowhere in the frontend nor in libclang.
Reviewers: bkramer, ilya-biryukov
Reviewed By: bkramer, ilya-biryukov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33270
llvm-svn: 303265
This feature is subtly broken when the linker is gold 2.26 or
earlier. See the following bug for details:
https://sourceware.org/bugzilla/show_bug.cgi?id=19002
Since the decision needs to be made at compilation time, we can not
test the linker version. The flag is off by default on ELF targets,
and on otherwise.
llvm-svn: 302591
To support this, an optional marker "#pragma clang module contents" is
recognized in module map files, and the rest of the module map file from that
point onwards is treated as the source of the module. Preprocessing a module
map produces the input module followed by the marker and then the preprocessed
contents of the module.
Ignoring line markers, a preprocessed module might look like this:
module A {
header "a.h"
}
#pragma clang module contents
#pragma clang module begin A
// ... a.h ...
#pragma clang module end
The preprocessed output generates line markers, which are not accepted by the
module map parser, so -x c++-module-map-cpp-output should be used to compile
such outputs.
A couple of major parts do not work yet:
1) The files that are listed in the module map must exist on disk, in order to
build the on-disk header -> module lookup table in the PCM file. To fix
this, we need the preprocessed output to track the file size and other stat
information we might use to build the lookup table.
2) Declaration ownership semantics don't work properly yet, since mapping from
a source location to a module relies on mapping from FileIDs to modules,
which we can't do if module transitions can occur in the middle of a file.
llvm-svn: 302309
These pragmas are intended to simulate the effect of entering or leaving a file
with an associated module. This is not completely implemented yet: declarations
between the pragmas will not be attributed to the correct module, but macro
visibility is already functional.
Modules named by #pragma clang module begin must already be known to clang (in
some module map that's either loaded or on the search path).
llvm-svn: 302098
Many of our supported configurations support modules but do not have any
first-class syntax to perform a module import. This leaves us with a problem:
there is no way to represent the expansion of a #include that imports a module
in the -E output for such languages. (We don't want to just leave it as a
#include because that requires the consumer of the preprocessed source to have
the same file system layout and include paths as the creator.)
This patch adds a new pragma:
#pragma clang module import MODULE.NAME.HERE
that imports a module, and changes -E and -frewrite-includes to use it when
rewriting a #include that maps to a module import. We don't make any attempt
to use a native language syntax import if one exists, to get more consistent
output. (If in the future, @import and #include have different semantics in
some way, the pragma will track the #include semantics.)
llvm-svn: 301725
action to the general FrontendAction infrastructure.
This permits applying -E, -ast-dump, -fsyntax-only, and so on to a module map
compilation. (The -E form is not currently especially useful yet as there's no
good way to take the output and use it to actually build a module.)
In order to support this, -cc1 now accepts -x <lang>-module-map in all cases
where it accepts -x <lang> for a language we can parse (not ir/ast). And for
uniformity, we also accept -x <lang>-header for all such languages (we used
to reject for cuda and renderscript), and -x <lang>-cpp-output for all such
languages (we used to reject for c, cl, and renderscript).
(None of these new alternatives are accepted by the driver yet, so no
user-visible changes.)
llvm-svn: 301610
If a file search involves a header map, suppress
-Wnonportable-include-path. It's firing lots of false positives for
framework authors internally, and it's not trivial to fix.
Consider a framework called "Foo" with a main (installed) framework header
"Foo/Foo.h". It's atypical for "Foo.h" to actually live inside a
directory called "Foo" in the source repository. Instead, the
build system generates a header map while building the framework.
If Foo.h lives at the top-level of the source repository (common), and
the git repo is called ssh://some.url/foo.git, then the header map will
have something like:
Foo/Foo.h -> /Users/myname/code/foo/Foo.h
where "/Users/myname/code/foo" is the clone of ssh://some.url/foo.git.
After #import <Foo/Foo.h>, the current implementation of
-Wnonportable-include-path will falsely assume that Foo.h was found in a
nonportable way, because of the name of the git clone (.../foo/Foo.h).
However, that directory name was not involved in the header search at
all.
This commit adds an extra parameter to Preprocessor::LookupFile and
HeaderSearch::LookupFile to track if the search used a header map,
making it easy to suppress the warning. Longer term, once we find a way
to avoid the false positive, we should turn the warning back on.
rdar://problem/28863903
llvm-svn: 301592
The UnknownPragmaHandlers added by DoPrintPreprocessedInput conflict with the
real PragmaHandlers from clang::Parser because they try to handle the same
#pragma directives. This makes it impossible to use a Preprocessor (that was
previously passed to DoPrintPreprocessedInput), as an Preprocessor for a
clang::Parser instance which is what we currently do in cling.
This patch removes the added UnknownPragmaHandler to avoid conflicts these
conflicts and leave the PragmaHandlers of the Preprocessors in a the same state
as before calling DoPrintPreprocessedInput.
Patch by Raphael Isemann (D32486)!
llvm-svn: 301563
Don't list deprecated -std= values (c++0x etc). Only produce one line of output
per standard, even if we know it by multiple names.
In passing, add missing -std=gnu++03 alias (supported by GCC), and add new
spelling '-std=cl1.0' for OpenCL 1.0 for consistency with the other values,
with the same meaning as the preexisting '-std=cl'.
llvm-svn: 301507
We already prohibited this in most cases (in r130710), but had some bugs in our
enforcement of this rule. Specifically, this prevents the following
combinations:
* -x c -std=clN.M, which would previously effectively act as if -x cl were
used, despite the input being a C source file. (-x cl -std=cNN continues
to be disallowed.)
* -x c++ -std=cuda, which would previously select C++98 + CUDA, despite that
not being a C++ standard. (-x cuda -std=c++NN is still permitted, and
selects CUDA with the given C++ standard as its base language.
-x cuda -std=cuda is still supported with the meaning of CUDA + C++98.)
* -x renderscript -std=c++NN, which would previously form a hybrid "C++ with
RenderScript extensions" language. We could support such a thing, but
shouldn't do so by accident.
llvm-svn: 301497
This reverts commit r301449. It breaks the build with:
MacroPPCallbacks.h:114:50: error: non-virtual member function marked 'override' hides virtual member function
llvm-svn: 301469
Summary:
The PPCallbacks::MacroUndefined callback is currently insufficient for clients that need to track the MacroDirectives.
This patch adds an additional argument to PPCallbacks::MacroUndefined that is the undef MacroDirective.
Reviewers: bruno, manmanren
Reviewed By: bruno
Subscribers: nemanjai, cfe-commits
Differential Revision: https://reviews.llvm.org/D29923
llvm-svn: 301449
Since Split DWARF needs to name the actual .dwo file that is generated,
it can't be known at the time the llvm::Module is produced as it may be
merged with other Modules before the object is generated and that object
may be generated with any name.
By passing the Split DWARF file name when LLVM is producing object code
the .dwo file name in the object file can match correctly.
The support for Split DWARF for implicit modules remains the same -
using metadata to store the dwo name and dwo id so that potentially
multiple skeleton CUs referring to different dwo files can be generated
from one llvm::Module.
llvm-svn: 301063
Summary:
Libc++ currently implements the `ATOMIC_<TYPE>_LOCK_FREE` macros using the `__GCC_ATOMIC_<TYPE>_LOCK_FREE` macros. However these are not available when MSVC compatibility is enabled even though C11 `_Atomic` is. This prevents libc++ from correctly implementing `ATOMIC_<TYPE>_LOCK_FREE`.
This patch adds an alternative spelling `__CLANG_ATOMIC_<TYPE>_LOCK_FREE` that is enabled with `-fms-compatibility`.
Reviewers: rsmith, aaron.ballman, majnemer, zturner, compnerd, jfb, rnk
Reviewed By: rsmith
Subscribers: BillyONeal, smeenai, jfb, cfe-commits, dschuff
Differential Revision: https://reviews.llvm.org/D32265
llvm-svn: 300914
This commit teaches Clang to recognize editor placeholders that are produced
when an IDE like Xcode inserts a code-completion result that includes a
placeholder. Now when the lexer sees a placeholder token, it emits an
'editor placeholder in source file' error and creates an identifier token
that represents the placeholder. The parser/sema can now recognize the
placeholders and can suppress the diagnostics related to the placeholders. This
ensures that live issues in an IDE like Xcode won't get spurious diagnostics
related to placeholders.
This commit also adds a new compiler option named '-fallow-editor-placeholders'
that silences the 'editor placeholder in source file' error. This is useful
for an IDE like Xcode as we don't want to display those errors in live issues.
rdar://31581400
Differential Revision: https://reviews.llvm.org/D32081
llvm-svn: 300667
The driver needs to know whether it's building a module interface or
implementation unit because it affects which outputs it produces and how it
builds the command pipeline. But the frontend doesn't need to know and should
not care: all it needs to know is what action it is being asked to perform on
the input.
(This is in preparation for permitting -emit-obj to be used on a module
interface unit to produce object code without going via a "full" PCM file.)
llvm-svn: 300611
Remove the restriction where this is only valid with C++
rdar://problem/29055656
Differential Revision: https://reviews.llvm.org/D31781
llvm-svn: 300108
This allows using and testing these two features separately. (noteably,
debug info is, so far as I know, always a win (basically). But function
modular codegen is currently a loss for highly optimized code - where
most of the linkonce_odr definitions are optimized away, so providing
weak_odr definitions is only overhead)
llvm-svn: 300104
This isn't need anymore and modules options -fbuild-session-file and
-fmodules-validate-once-per-build-session already provide a sane
mechanism to validate the system headers.
rdar://problem/19767523
llvm-svn: 300027
Summary:
The refactoring introduced a regression in the flag processing for
-fxray-instruction-threshold which causes it to not get passed properly.
This change should restore the previous behaviour.
Reviewers: rnk, pelikan
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31491
llvm-svn: 299126
Summary:
The -fxray-always-instrument= and -fxray-never-instrument= flags take
filenames that are used to imbue the XRay instrumentation attributes
using a whitelist mechanism (similar to the sanitizer special cases
list). We use the same syntax and semantics as the sanitizer blacklists
files in the implementation.
As implemented, we respect the attributes that are already defined in
the source file (i.e. those that have the
[[clang::xray_{always,never}_instrument]] attributes) before applying
the always/never instrument lists.
Reviewers: rsmith, chandlerc
Subscribers: jfb, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30388
llvm-svn: 299041
FPContractModeKind is the codegen option flag which is already ternary (off,
on, fast). This makes it universally the type for the contractable info
across the front-end:
* In FPOptions (i.e. in the Sema + in the expression nodes).
* In LangOpts::DefaultFPContractMode which is the option that initializes
FPOptions in the Sema.
Another way to look at this change is that before fp-contractable on/off were
the only states handled to the front-end:
* For "on", FMA folding was performed by the front-end
* For "fast", we simply forwarded the flag to TargetOptions to handle it in
LLVM
Now off/on/fast are all exposed because for fast we will generate
fast-math-flags during CodeGen.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
---
This is a recommit of r299027 with an adjustment to the test
CodeGenCUDA/fp-contract.cu. The test assumed that even
though -ffp-contract=on is passed FE-based folding of FMA won't happen.
This is obviously wrong since the user is asking for this explicitly with the
option. CUDA is different that -ffp-contract=fast is on by default.
The test used to "work" because contract=fast and contract=on were maintained
separately and we didn't fold in the FE because contract=fast was on due to
the target-default. This patch consolidates the contract=on/fast/off state
into a ternary state hence the change in behavior.
---
Differential Revision: https://reviews.llvm.org/D31167
llvm-svn: 299033
FPContractModeKind is the codegen option flag which is already ternary (off,
on, fast). This makes it universally the type for the contractable info
across the front-end:
* In FPOptions (i.e. in the Sema + in the expression nodes).
* In LangOpts::DefaultFPContractMode which is the option that initializes
FPOptions in the Sema.
Another way to look at this change is that before fp-contractable on/off were
the only states handled to the front-end:
* For "on", FMA folding was performed by the front-end
* For "fast", we simply forwarded the flag to TargetOptions to handle it in
LLVM
Now off/on/fast are all exposed because for fast we will generate
fast-math-flags during CodeGen.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
Differential Revision: https://reviews.llvm.org/D31167
llvm-svn: 299027
Summary:
When a PCH is included via -include-pch, clang should treat the
current TU as dependent on the sourcefile that the PCH was generated from.
This is currently _partly_ accomplished by InitializePreprocessor calling
AddImplicitIncludePCH to synthesize an implicit #include of the sourcefile,
into the preprocessor's Predefines buffer.
For FrontendActions such as PreprocessOnlyAction (which is, curiously, what the
driver winds up running one of in response to a plain clang -M) this is
sufficient: the preprocessor cranks over its Predefines and emits a dependency
reference to the initial sourcefile.
For other FrontendActions (for example -emit-obj or -fsyntax-only) the
Predefines buffer is reset to the suggested predefines buffer from the PCH, so
the dependency edge is lost. The result is that clang emits a .d file in those
cases that lacks a reference to the .h file responsible for the input (and in
Swift's case, our .swiftdeps file winds up not including a reference to the
source file for a PCH bridging header.)
This patch fixes the problem by taking a different tack: ignoring the
Predefines buffer (which seems a bit like a hack anyways) and directly
attaching the CompilerInstance's DependencyCollectors (and legacy
DependencyFileGenerator) to the ASTReader for the external AST.
This approach is similar to the one chosen in earlier consultation with Bruno
and Ben, and I think it's the least-bad solution, given several options.
Reviewers: bruno, benlangmuir, doug.gregor
Reviewed By: bruno, doug.gregor
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31378
llvm-svn: 299009
Sema holds the current FPOptions which is adjusted by 'pragma STDC
FP_CONTRACT'. This then gets propagated into expression nodes as they are
built.
This encapsulates FPOptions so that this propagation happens opaquely rather
than directly with the fp_contractable on/off bit. This allows controlled
transitioning of fp_contractable to a ternary value (off, on, fast). It will
also allow adding more fast-math flags later.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
Differential Revision: https://reviews.llvm.org/D31166
llvm-svn: 298877
The flag CXXOperatorNames was overwritten unconditionally
after being set for OpenCL.
There seems to be no necessity to set it, so removing the line.
llvm-svn: 298709
Summary:
Clang companion patch to LLVM patch D31027, which adds support
for emitting minimized bitcode file for use in the thin link step.
Add a cc1 option -fthin-link-bitcode=<file> to trigger this behavior.
Depends on D31027.
Reviewers: mehdi_amini, pcc
Subscribers: cfe-commits, Prazek
Differential Revision: https://reviews.llvm.org/D31050
llvm-svn: 298639
and into TargetInfo::adjust so that it gets called in more places
throughout the compiler (AST serialization in particular).
Should fix PPC modules after removing of faltivec.
llvm-svn: 298487
The alias was only ever used on darwin and had some issues there,
and isn't used in practice much. Also fixes a problem with -mno-altivec
not turning off -maltivec.
Also add a diagnostic for faltivec/fno-altivec that directs users to use
maltivec options and include the altivec.h file explicitly.
llvm-svn: 298449
In doing so, clean up the MD5 interface a little. Most
existing users only care about the lower 8 bytes of an MD5,
but for some users that care about the upper and lower,
there wasn't a good interface. Furthermore, consumers
of the MD5 checksum were required to handle endianness
details on their own, so it seems reasonable to abstract
this into a nicer interface that just gives you the right
value.
Differential Revision: https://reviews.llvm.org/D31105
llvm-svn: 298322
This reverts commit r298185, effectively reapplying r298165, after fixing the
new unit tests (PR32338). The memory buffer generator doesn't null-terminate
the MemoryBuffer it creates; this version of the commit informs getMemBuffer
about that to avoid the assert.
Original commit message follows:
----
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298278
Duncan's r298165 introduced the PCMCache mechanism, which guarantees
that locks aren't necessary anymore for correctness but only for
performance, by avoiding building it twice when possible.
Change the logic to avoid an error but actually build the module in case
the timeout happens. Instead of an error, still emit a remark for
debugging purposes.
rdar://problem/30297862
llvm-svn: 298175
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298165
This fixes lookup mismatches that could happen when the module cache
path contained a '/./' component.
<rdar://problem/30413458>
Differential Revision: https://reviews.llvm.org/D30915
llvm-svn: 297790
Change ASTFileSignature from a random 32-bit number to the hash of the
PCM content.
- Move definition ASTFileSignature to Basic/Module.h so Module and
ASTSourceDescriptor can use it.
- Change the signature from uint64_t to std::array<uint32_t,5>.
- Stop using (saving/reading) the size and modification time of PCM
files when there is a valid SIGNATURE.
- Add UNHASHED_CONTROL_BLOCK, and use it to store the SIGNATURE record
and other records that shouldn't affect the hash. Because implicit
modules reuses the same file for multiple levels of -Werror, this
includes DIAGNOSTIC_OPTIONS and DIAG_PRAGMA_MAPPINGS.
This helps to solve a PCH + implicit Modules dependency issue: PCH files
are handled by the external build system, whereas implicit modules are
handled by internal compiler build system. This prevents invalidating a
PCH when the compiler overwrites a PCM file with the same content
(modulo the diagnostic differences).
Design and original patch by Manman Ren!
llvm-svn: 297655
This commit adds support for a new -iframeworkwithsysroot compiler option which
allows the user to specify a framework path that can be prefixed with the
sysroot. This option is similar to the -iwithsysroot option that exists to
supplement -isystem.
rdar://21316352
Differential Revision: https://reviews.llvm.org/D30183
llvm-svn: 297614
Summary:
This is a revised version of D28796. Included test is changed to
resolve the target compatibility issue reported (rL293032).
Reviewers: inglorion, dblaikie, echristo, aprantl, probinson
Reviewed By: inglorion
Subscribers: mehdi_amini, cfe-commits
Differential Revision: https://reviews.llvm.org/D30663
llvm-svn: 297194
Modules/preambles/PCH files can contain diagnostics, which, when used,
are added to the current ASTUnit. For that to work, they are translated
to use the current FileManager's FileIDs. When the entry is not the
main file, all local source locations will be checked by a linear
search. Now this is a problem, when there are lots of diagnostics (say,
25000) and lots of local source locations (say, 440000), and end up
taking seconds when using such a preamble.
The fix is to cache the last FileID, because many subsequent diagnostics
refer to the same file. This reduces the time spent in
ASTUnit::TranslateStoredDiagnostics from seconds to a few milliseconds
for files with many slocs/diagnostics.
This fixes PR31353.
Differential Revision: https://reviews.llvm.org/D29755
llvm-svn: 295301
In case user did not provide valid standard name for -std option, available
values (with short description) will be reported.
Patch by Paweł Żukowski!
llvm-svn: 295113
If the preamble had diagnostic state this would leave behind invalid
state in the DiagnosticsEngine and crash later. The test case runs into
an assertion in DiagnosticsEngine::setSourceManager.
llvm-svn: 294963
Initialize fields directly in header. Note that the ModuleManager field is an
IntrusiveRefCntPtr, so there's no need for explicit initialization.
llvm-svn: 293863
First pass at generating weak definitions of inline functions from module files
(& skipping (-O0) or emitting available_externally (optimizations)
definitions where those modules are used).
External functions defined in modules are emitted into the modular
object file as well (this may turn an existing ODR violation (if that
module were imported into multiple translations) into valid/linkable
code).
Internal symbols (static functions, for example) are not correctly
supported yet. The symbol will be produced, internal, in the modular
object - unreferenceable from the users.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D28845
llvm-svn: 293456
Summary:
Now when you ask clang to link in a bitcode module, you can tell it to
set attributes on that module's functions to match what we would have
set if we'd emitted those functions ourselves.
This is particularly important for fast-math attributes in CUDA
compilations.
Each CUDA compilation links in libdevice, a bitcode library provided by
nvidia as part of the CUDA distribution. Without this patch, if we have
a user-function F that is compiled with -ffast-math that calls a
function G from libdevice, F will have the unsafe-fp-math=true (etc.)
attributes, but G will have no attributes.
Since F calls G, the inliner will merge G's attributes into F's. It
considers the lack of an unsafe-fp-math=true attribute on G to be
tantamount to unsafe-fp-math=false, so it "merges" these by setting
unsafe-fp-math=false on F.
This then continues up the call graph, until every function that
(transitively) calls something in libdevice gets unsafe-fp-math=false
set, thus disabling fastmath in almost all CUDA code.
Reviewers: echristo
Subscribers: hfinkel, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D28538
llvm-svn: 293097
This reverts commit r293004 because it broke the buildbots with "unknown CPU"
errors. I tried to fix it in r293026, but that broke on Green Dragon with this
kind of error:
error: expected string not found in input
// CHECK: l{{ +}}df{{ +}}*ABS*{{ +}}{{0+}}{{.+}}preprocessed-input.c{{$}}
^
<stdin>:2:1: note: scanning from here
/Users/buildslave/jenkins/sharedspace/incremental@2/clang-build/tools/clang/test/Frontend/Output/preprocessed-input.c.tmp.o: file format Mach-O 64-bit x86-64
^
<stdin>:2:67: note: possible intended match here
/Users/buildslave/jenkins/sharedspace/incremental@2/clang-build/tools/clang/test/Frontend/Output/preprocessed-input.c.tmp.o: file format Mach-O 64-bit x86-64
I suppose this means that llvm-objdump doesn't support Mach-O, so the test
should indeed check for linux (but not for x86). I'll leave it to someone that
knows better.
llvm-svn: 293032
Summary:
Clang appears to always use name as specified on the command
line, whereas gcc uses the name as specified in the linemarker at the
first line when compiling a preprocessed source. This results mismatch
between two compilers in FILE symbol table entry. This patch makes clang
to resemble gcc's behavior in finding the original source file name and
use it as an input file name.
Even with this patch, values of FILE symbol table entry may still be
different because clang uses dirname+basename for the entry whlie gcc
uses basename only. I'll write a patch for that once this patch is
committed.
Reviewers: dblaikie, inglorion
Reviewed By: inglorion
Subscribers: inglorion, aprantl, bruno
Differential Revision: https://reviews.llvm.org/D28796
llvm-svn: 293004
Summary:
SamplePGO uses profile with debug info to collect profile. Unlike the traditional debugging purpose, sample pgo needs more accurate debug info to represent the profile. We add -femit-accurate-debug-info for this purpose. It can be combined with all debugging modes (-g, -gmlt, etc). It makes sure that the following pieces of info is always emitted:
* start line of all subprograms
* linkage name of all subprograms
* standalone subprograms (functions that has neither inlined nor been inlined)
The impact on speccpu2006 binary size (size increase comparing with -g0 binary, also includes data for -g binary, which does not change with this patch):
-gmlt(orig) -gmlt(patched) -g
433.milc 4.68% 5.40% 19.73%
444.namd 8.45% 8.93% 45.99%
447.dealII 97.43% 115.21% 374.89%
450.soplex 27.75% 31.88% 126.04%
453.povray 21.81% 26.16% 92.03%
470.lbm 0.60% 0.67% 1.96%
482.sphinx3 5.77% 6.47% 26.17%
400.perlbench 17.81% 19.43% 73.08%
401.bzip2 3.73% 3.92% 12.18%
403.gcc 31.75% 34.48% 122.75%
429.mcf 0.78% 0.88% 3.89%
445.gobmk 6.08% 7.92% 42.27%
456.hmmer 10.36% 11.25% 35.23%
458.sjeng 5.08% 5.42% 14.36%
462.libquantum 1.71% 1.96% 6.36%
464.h264ref 15.61% 16.56% 43.92%
471.omnetpp 11.93% 15.84% 60.09%
473.astar 3.11% 3.69% 14.18%
483.xalancbmk 56.29% 81.63% 353.22%
geomean 15.60% 18.30% 57.81%
Debug info size change for -gmlt binary with this patch:
433.milc 13.46%
444.namd 5.35%
447.dealII 18.21%
450.soplex 14.68%
453.povray 19.65%
470.lbm 6.03%
482.sphinx3 11.21%
400.perlbench 8.91%
401.bzip2 4.41%
403.gcc 8.56%
429.mcf 8.24%
445.gobmk 29.47%
456.hmmer 8.19%
458.sjeng 6.05%
462.libquantum 11.23%
464.h264ref 5.93%
471.omnetpp 31.89%
473.astar 16.20%
483.xalancbmk 44.62%
geomean 16.83%
Reviewers: davidxl, andreadb, rob.lougher, dblaikie, echristo
Reviewed By: dblaikie, echristo
Subscribers: hfinkel, rob.lougher, andreadb, gbedwell, cfe-commits, probinson, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25435
llvm-svn: 292458
In ThinLTO mode, type metadata will require the module to be written as a
multi-module bitcode file, which is currently incompatible with the Darwin
linker. It is also useful to be able to enable or disable multi-module bitcode
for testing purposes. This introduces a cc1-level flag, -f{,no-}lto-unit,
which is used by the driver to enable multi-module bitcode on all but
Darwin+ThinLTO, and can also be used to enable/disable the feature manually.
Differential Revision: https://reviews.llvm.org/D28877
llvm-svn: 292448
Correct the logic used to set ATOMIC_*_LOCK_FREE preprocessor macros not
to rely on the ABI alignment of types. Instead, just assume all those
types are aligned correctly by default since clang uses safe alignment
for _Atomic types even if the underlying types are aligned to a lower
boundary by default.
For example, the 'long long' and 'double' types on x86 are aligned to
32-bit boundary by default. However, '_Atomic long long' and '_Atomic
double' are aligned to 64-bit boundary, therefore satisfying
the requirements of lock-free atomic operations.
This fixes PR #19355 by correcting the value of
__GCC_ATOMIC_LLONG_LOCK_FREE on x86, and therefore also fixing
the assumption made in libc++ tests. This also fixes PR #30581 by
applying a consistent logic between the functions used to implement
both interfaces.
Differential Revision: https://reviews.llvm.org/D28213
llvm-svn: 291477
In r276159, we started to say that a module X is defined in a pch if we specify
-fmodule-name when building the pch. This caused a regression that reports
module X is defined in both pch and pcm if we generate the pch with
-fmodule-name=X and then in a separate clang invocation, we include the pch and
also import X.pcm.
This patch adds an option CompilingPCH similar to CompilingModule. When we use
-fmodule-name=X while building a pch, modular headers in X will be textually
included and the compiler knows that we are not building module X, so we don't
put module X in SUBMODULE_DEFINITION of the pch.
Differential Revision: http://reviews.llvm.org/D28415
llvm-svn: 291465
Aleksey Shlypanikov pointed out my mistake in migrating an explicit
unique_ptr to auto - I was expecting the function returned a unique_ptr,
but instead it returned a raw pointer - introducing a leak.
Thanks Aleksey!
This reapplies r291184, reverted in r291249.
llvm-svn: 291270
in non-void functions that fall off at the end without returning a value when
compiling C++.
Clang uses the new compiler flag to determine when it should treat control flow
paths that fall off the end of a non-void function as unreachable. If
-fno-strict-return is on, the code generator emits the ureachable and trap
IR only when the function returns either a record type with a non-trivial
destructor or another non-trivially copyable type.
The primary goal of this flag is to avoid treating falling off the end of a
non-void function as undefined behaviour. The burden of undefined behaviour
is placed on the caller instead: if the caller ignores the returned value then
the undefined behaviour is avoided. This kind of behaviour is useful in
several cases, e.g. when compiling C code in C++ mode.
rdar://13102603
Differential Revision: https://reviews.llvm.org/D27163
llvm-svn: 290960
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290887
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290886
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290885
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290884
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290882
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290881
This commit fixes a crash that occurs when -print-decl-contexts AST consumer
tries to print an unhandled declaration.
rdar://19467234
Differential Revision: https://reviews.llvm.org/D26964
llvm-svn: 290880
to be specified for a template template parameter whenever the parameter is at
least as specialized as the argument (when there's an obvious and correct
mapping from uses of the parameter to uses of the argument). For example, a
template with more parameters can be passed to a template template parameter
with fewer, if those trailing parameters have default arguments.
This is disabled by default, despite being a DR resolution, as it's fairly
broken in its current state: there are no partial ordering rules to cope with
template template parameters that have different parameter lists, meaning that
code that attempts to decompose template-ids based on arity can hit unavoidable
ambiguity issues.
The diagnostics produced on a non-matching argument are also pretty bad right
now, but I aim to improve them in a subsequent commit.
llvm-svn: 290792
manager, and a code path to use it.
The option is actually a top-level option but does contain
'experimental' in the name. This is the compromise suggested by Richard
in discussions. We expect this option will be around long enough and
have enough users towards the end that it merits not being relegated to
CC1, but it still needs to be clear that this option will go away at
some point.
The backend code is a fresh codepath dedicated to handling the flow with
the new pass manager. This was also Richard's suggested code structuring
to essentially leave a clean path for development rather than carrying
complexity or idiosyncracies of how we do things just to share code with
the parts of this in common with the legacy pass manager. And it turns
out, not much is really in common even though we use the legacy pass
manager for codegen at this point.
I've switched a couple of tests to run with the new pass manager, and
they appear to work. There are still plenty of bugs that need squashing
(just with basic experiments I've found two already!) but they aren't in
this code, and the whole point is to expose the necessary hooks to start
experimenting with the pass manager in more realistic scenarios.
That said, I want to *strongly caution* anyone itching to play with
this: it is still *very shaky*. Several large components have not yet
been shaken down. For example I have bugs in both the always inliner and
inliner that I have already spotted and will be fixing independently.
Still, this is a fun milestone. =D
One thing not in this patch (but that might be very reasonable to add)
is some level of support for raw textual pass pipelines such as what
Sean had a patch for some time ago. I'm mostly interested in the more
traditional flow of getting the IR out of Clang and then running it
through opt, but I can see other use cases so someone may want to add
it.
And of course, *many* features are not yet supported!
- O1 is currently more like O2
- None of the sanitizers are wired up
- ObjC ARC optimizer isn't wired up
- ...
So plenty of stuff still lef to do!
Differential Revision: https://reviews.llvm.org/D28077
llvm-svn: 290450
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
Much to my surprise, '-disable-llvm-optzns' which I thought was the
magical flag I wanted to get at the raw LLVM IR coming out of Clang
deosn't do that. It still runs some passes over the IR. I don't want
that, I really want the *raw* IR coming out of Clang and I strongly
suspect everyone else using it is in the same camp.
There is actually a flag that does what I want that I didn't know about
called '-disable-llvm-passes'. I suspect many others don't know about it
either. It both does what I want and is much simpler.
This removes the confusing version and makes that spelling of the flag
an alias for '-disable-llvm-passes'. I've also moved everything in Clang
to use the 'passes' spelling as it seems both more accurate (*all* LLVM
passes are disabled, not just optimizations) and much easier to remember
and spell correctly.
This is part of simplifying how Clang drives LLVM to make it cleaner to
wire up to the new pass manager.
Differential Revision: https://reviews.llvm.org/D28047
llvm-svn: 290392
Merge all VFS mapped files inside -ivfsoverlay inputs into the vfs
overlay provided by the crash reproducer. This is the last missing piece
to allow crash reproducers to fully work with user frameworks; when
combined with headermaps, it allows clang to find additional frameworks.
rdar://problem/27913709
llvm-svn: 290326
Added a map to associate types and declarations with extensions.
Refactored existing diagnostic for disabled types associated with extensions and extended it to declarations for generic situation.
Fixed some bugs for types associated with extensions.
Allow users to use pragma to declare types and functions for supported extensions, e.g.
#pragma OPENCL EXTENSION the_new_extension_name : begin
// declare types and functions associated with the extension here
#pragma OPENCL EXTENSION the_new_extension_name : end
Differential Revision: https://reviews.llvm.org/D21698
llvm-svn: 289979
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
In r267772, we had set the PS4's default dialect for both C and
Objective-C to gnu99. Make that change only for C; we don't really
support Objective-C/C++ so there's no point fiddling the dialect.
llvm-svn: 289625
Sort the headers by name before adding the includes in
collectModuleHeaderIncludes. This makes the include order for building
umbrellas deterministic across different filesystems and also guarantees
that the ASTWriter always dump top headers in the same order.
There's currently no good way to test for this behavior.
rdar://problem/28116411
llvm-svn: 289478
Collect the necessary input PCH files.
Do not try to validate the AST before copying it out because if the
crash is in this path, we won't be able to collect it. Instead only
check if it's a file containg an AST.
rdar://problem/27913709
llvm-svn: 289460
Use the vfs lookup instead of real filesytem and handle the case where
-include-pch is a directory and this dir is searched for a PCH.
llvm-svn: 289459
Include headermaps (.hmap files) in the .cache directory and
add VFS entries. All headermaps are known after HeaderSearch
setup, collect them right after.
rdar://problem/27913709
llvm-svn: 289360
Recover better from an incompatible .pcm file being provided by -fmodule-file=. We try to include the headers of the module textually in this case, still enforcing the modules semantic rules. In order to make that work, we need to still track that we're entering and leaving the module. Also, if the module was also marked as unavailable (perhaps because it was missing a file), we shouldn't mark the module unavailable -- we don't need the module to be complete if we're going to enter it textually.
llvm-svn: 288741
This reverts commit r288449.
I believe that this is currently faulty wrt. modules being imported
inside namespaces. Adding these lines to the new test:
namespace n {
#include "foo.h"
}
Makes it break with
fatal error: import of module 'M' appears within namespace 'n'
However, I believe it should fail with
error: redundant #include of module 'M' appears within namespace 'n'
I have tracked this down to us now inserting a tok::annot_module_begin
instead of a tok::annot_module_include in
Preprocessor::HandleIncludeDirective() and then later in
Parser::parseMisplacedModuleImport(), we hit the code path for
tok::annot_module_begin, which doesn't set FromInclude of
checkModuleImportContext to true (thus leading to the "wrong"
diagnostic).
llvm-svn: 288626
removed as a duplicate header search path
The commit r126167 started passing the First index into RemoveDuplicates, but
forgot to update 0 to First in the loop that looks for the duplicate. This
resulted in a bug where an -iquoted search path was incorrectly removed if you
passed in the same path into -iquote and more than one time into -isystem.
rdar://23991350
Differential Revision: https://reviews.llvm.org/D27298
llvm-svn: 288491
We try to include the headers of the module textually in this case, still
enforcing the modules semantic rules. In order to make that work, we need to
still track that we're entering and leaving the module. Also, if the module was
also marked as unavailable (perhaps because it was missing a file), we
shouldn't mark the module unavailable -- we don't need the module to be
complete if we're going to enter it textually.
llvm-svn: 288449
This commit adds a new predefined macro named __OBJC_BOOL_IS_BOOL that describes
the Objective-C boolean type: its value is zero if the Objective-C boolean uses
the signed character type, otherwise its value is one as the Objective-C boolean
uses the builtin boolean type.
rdar://21170440
Differential Revision: https://reviews.llvm.org/D26234
llvm-svn: 287529
Summary:
This used to work because system headers are found in a (somewhat)
predictable set of locations on Linux. But this is not the case on
MacOS; without this change, we don't look in the right places for our
headers when doing device-side compilation on Mac.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26776
llvm-svn: 287286
Re-introduce r285411.
Implement the -dI as supported by GCC: Output ‘#include’ directives in addition
to the result of preprocessing.
This change aims to add this option, pass it through to the preprocessor via
the options class, and when inclusions occur we output some information (+ test
cases).
Patch by Steve O'Brien!
Differential Revision: https://reviews.llvm.org/D26089
llvm-svn: 287275
This can be used to append alternative typo corrections to an existing diag.
include-fixer can use it to suggest includes to be added.
Differential Revision: https://reviews.llvm.org/D26745
llvm-svn: 287128
Summary:
Just like gcc, we should have the -Og option as more and more software are using it:
https://llvm.org/bugs/show_bug.cgi?id=20765
Reviewers: echristo, dberlin, dblaikie, keith.walker.arm, rengolin
Subscribers: aprantl, friss, mehdi_amini, RKSimon, probinson, majnemer, cfe-commits
Differential Revision: https://reviews.llvm.org/D24998
llvm-svn: 286602
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106630.html
Move block info block state to a new class, BitstreamBlockInfo.
Clients may set the block info for a particular cursor with the
BitstreamCursor::setBlockInfo() method.
At this point BitstreamReader is not much more than a container for an
ArrayRef<uint8_t>, so remove it and replace all uses with direct uses
of memory buffers.
Differential Revision: https://reviews.llvm.org/D26259
llvm-svn: 286207
code, let's just assert that the DiagonsticEngine doesn't own the client
because our constructor took ownership of it and has a std::unique_ptr
that handles deleting it. This seems much more clear -- the release was
harmless but confusing as if there were some memory there it would have
leaked, and the reset was harmless but confusing as if there were some
memory there it would have been double-freed. But in both cases there
was nothing there.
llvm-svn: 285950
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
llvm-svn: 285773
Summary:
This patch adds a command line option '-cl-ext' to control a set of
supported OpenCL extensions. Option accepts a comma-separated list
of extensions prefixed with '+' or '-'.
It can be used together with a target triple to override support for some
extensions:
// spir target supports all extensions, but we want to disable fp64
clang -cc1 -triple spir-unknown-unknown -cl-ext=-cl_khr_fp64
Special 'all' extension allows to enable or disable all possible
extensions:
// only fp64 will be supported
clang -cc1 -triple spir-unknown-unknown -cl-ext=-all,+cl_khr_fp64
Patch by asavonic (Andrew Savonichev).
Reviewers: joey, yaxunl
Subscribers: yaxunl, bader, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D23712
llvm-svn: 285700
on cxx-abi-dev (thread starting 2016-10-11). This is currently hidden behind a
cc1-only -m flag, pending discussion of how best to deal with language changes
that require use of new symbols from the ABI library.
llvm-svn: 285664
No block info block should need to define local abbreviations, so we can
always use a code width of 2.
Also change all block info block writers to use EnterBlockInfoBlock.
Differential Revision: https://reviews.llvm.org/D26168
llvm-svn: 285660
Implement the -dI as supported by GCC: Output ‘#include’ directives in addition
to the result of preprocessing.
This change aims to add this option, pass it through to the preprocessor via
the options class, and when inclusions occur we output some information (+ test
cases).
Patch by Steve O'Brien!
Differential Revision: https://reviews.llvm.org/D25153
llvm-svn: 285411
r276653 suppressed the pragma once warning when generating a PCH file.
This patch extends that to any main file for which clang is told (with
the -x option) that it's a header file. It will also suppress the
warning "#include_next in primary source file".
Differential Revision: http://reviews.llvm.org/D25989
llvm-svn: 285295
Summary:
SetVector already used DenseSet, but SmallSetVector used std::set. This
leads to surprising performance differences. Moreover, it means that
the set of key types accepted by SetVector and SmallSetVector are
quite different!
In order to make this change, we had to convert some callsites that used
SmallSetVector<std::string, N> to use SmallSetVector<CachedHashString, N>
instead.
Reviewers: timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25648
llvm-svn: 284887
Reapply r283827 by fixing the tests to not be target specific
Currently, driver level warnings do not show option names (e.g. warning:
complain about foo [-Woption-name]) in a diagnostic unless
-fdiagnostics-show-option is explictly specified. OTOH, the driver by
default turn this option on for CC1. Change the logic to show option
names by default in the driver as well.
Differential Revision: https://reviews.llvm.org/D24516
rdar://problem/27300909
llvm-svn: 283913
The backend now has the capability to save information from optimizations, the
same information that can be used to generate optimization diagnostics but in
machine-consumable form, into an output file. This can be enabled when using
opt (see r282539), and this change enables it when using clang. The idea is
that other tools will be able to consume these files, and perhaps in
combination with the original source code, produce various kinds of
optimization reports for users (and for compiler developers).
We now have at-least two tools that can consume these files:
* tools/llvm-opt-report
* utils/opt-viewer
Using the flag -fsave-optimization-record will cause the YAML file to be
generated; the file name will be based on the output file name (if we're using
-c or -S and have an output name), or the input file name. When we're using
CUDA, or some other offloading mechanism, separate files are generated for each
backend target. The output file name can be specified by the user using
-foptimization-record-file=filename.
Differential Revision: https://reviews.llvm.org/D25225
llvm-svn: 283834
Currently, driver level warnings do not show option names (e.g. warning:
complain about foo [-Woption-name]) in a diagnostic unless
-fdiagnostics-show-option is explictly specified. OTOH, the driver by
default turn this option on for CC1. Change the logic to show option
names by default in the driver as well.
Differential Revision: https://reviews.llvm.org/D24516
rdar://problem/27300909
llvm-svn: 283827
Summary: This matches the idiom we use for our other CUDA wrapper headers.
Reviewers: tra
Subscribers: beanz, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D24978
llvm-svn: 283679
Summary:
Also makes -fcoroutines_ts to be both a Driver and CC1 flag.
Patch mostly by EricWF.
Reviewers: rnk, cfe-commits, rsmith, EricWF
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D25130
llvm-svn: 283064
assume that ::operator new provides no more alignment than is necessary for any
primitive type, except when we're on a GNU OS, where glibc's malloc guarantees
to provide 64-bit alignment on 32-bit systems and 128-bit alignment on 64-bit
systems. This can be controlled by the command-line -fnew-alignment flag.
llvm-svn: 282974
Summary:
This lets people link against LLVM and their own version of the UTF
library.
I determined this only affects llvm, clang, lld, and lldb by running
$ git grep -wl 'UTF[0-9]\+\|\bConvertUTF\bisLegalUTF\|getNumBytesFor' | cut -f 1 -d '/' | sort | uniq
clang
lld
lldb
llvm
Tested with
ninja lldb
ninja check-clang check-llvm check-lld
(ninja check-lldb doesn't complete for me with or without this patch.)
Reviewers: rnk
Subscribers: klimek, beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D24996
llvm-svn: 282822
This option behaves in a similar spirit as -save-temps and writes
internal llvm statistics in json format to a file.
Differential Revision: https://reviews.llvm.org/D24820
llvm-svn: 282426
Clang has the default FP contraction setting of “-ffp-contract=on”, which
doesn't really mean “on” in the conventional sense of the word, but rather
really means “according to the per-statement effective value of the relevant
pragma”.
Before this patch, Clang has that pragma defaulting to “off”. Since the
“-ffp-contract=on” mode is really an AND of two booleans and the second of them
defaults to “off”, the whole thing effectively defaults to “off”. This patch
changes the default value of the pragma to “on”, thus making the default pair of
booleans (on, on) rather than (on, off). This makes FP optimization slightly
more aggressive than before when not using either “-Ofast”, “-ffast-math”, or
“-ffp-contract=fast”. Even with this patch the compiler still respects
“-ffp-contract=off”.
As per a suggestion by Steve Canon, the added code does _not_ require “-O3” or
higher. This is so as to try our best to preserve identical floating-point
results for unchanged source code compiling for an unchanged target when only
changing from any optimization level in the set (“-O0”, “-O1”, “-O2”, “-O3”) to
any other optimization level in that set. “-Os” and “-Oz” seem to be behaving
identically, i.e. should probably be considered a part of the aforementioned
set, but I have not reviewed this rigorously. “-Ofast” is explicitly _not_ a
member of that set.
Patch authored by Abe Skolnik [a.skolnik@samsung.com] and Stephen Canon [scanon@apple.com].
Differential Revision: https://reviews.llvm.org/D24481
llvm-svn: 282259
Currently, the Clang version is computed as follows:
1. LLVM defines major, minor, and patch versions, all statically set. Today,
these are 4, 0, and 0, respectively.
2. The static version numbers are combined into PACKAGE_VERSION along with a
suffix, so the result today looks like "4.0.0svn".
3. Clang extracts CLANG_VERSION from PACKAGE_VERSION using a regexp. The regexp
allows the patch level to omitted, and drops any non-digit trailing values.
Today, this result looks like "4.0.0".
4. CLANG_VERSION is then split further into CLANG_VERSION_MAJOR and
CLANG_VERSION_MINOR. Today, these resolve to 4 and 0, respectively.
5. If CLANG_VERSION matches a regexp with three version components, then
CLANG_VERSION_PATCHLEVEL is extracted and the CLANG_HAS_VERSION_PATCHLEVEL
variable is set to 1. Today, these values are 0 and 1, respectively.
6. The CLANG_VERSION_* variables (and CLANG_HAS_VERSION_PATCHLEVEL) are
configured into [llvm/tools/clang/]include/clang/Basic/Version.inc
verbatim by CMake.
7. In [llvm/tools/clang/]include/clang/Basic/Version.h, macros are defined
conditionally, based on CLANG_HAS_VERSION_PATCHLEVEL, to compute
CLANG_VERSION_STRING as either a two- or three-level version number. Today,
this value is "4.0.0", because despite the patchlevel being 0, it was
matched by regexp and is thus "HAS"ed by the preprocessor. This string is
then used wherever Clang's "version" is needed [*].
[*] Including, notably, by compiler-rt, for computing its installation path.
This change collapses steps 2-5 by defaulting Clang to use LLVM's (non-string)
version components for the Clang version (see [*] for why not PACKAGE_VERSION),
and collapses steps 6 and 7 by simply writing CLANG_VERSION_STRING into
Version.inc. The Clang version today always uses the patchlevel form, so the
collapsed Version.inc does not have logic for a version without a patch level.
Historically speaking, this technique began with the VER file in r82085 (which
survives in the form of the regexp in #3). The major, minor, and patchlevel
versions were introduced by r106863 (which remains in #4-6). The VER file itself
was deleted in favor of the LLVM version number in r106914. On the LLVM side,
the individual LLVM_VERSION_MAJOR, LLVM_VERSION_MINOR, and PACKAGE_VERSION
weren't introduced for nearly two more years, until r150405.
llvm-svn: 281666
The class PTHWriter is in lib/Frontend/CacheTokens.cpp
inside the anonymous namespace.
This diff changes the order of fields an removes excessive padding.
Test plan: make -j8 check-clang
Differential revision: https://reviews.llvm.org/D23902
llvm-svn: 281385
Original commit message:
Add -fdiagnostics-show-hotness
Summary:
I've recently added the ability for optimization remarks to include the
hotness of the corresponding code region. This uses PGO and allows
filtering of the optimization remarks by relevance. The idea was first
discussed here:
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
The general goal is to produce a YAML file with the remarks. Then, an
external tool could dynamically filter these by hotness and perhaps by
other things.
That said it makes sense to also expose this at the more basic level
where we just include the hotness info with each optimization remark.
For example, in D22694, the clang flag was pretty useful to measure the
overhead of the additional analyses required to include hotness.
(Without the flag we don't even run the analyses.)
For the record, Hal has already expressed support for the idea of this
patch on IRC.
Differential Revision: https://reviews.llvm.org/D23284
llvm-svn: 281293
Summary:
I've recently added the ability for optimization remarks to include the
hotness of the corresponding code region. This uses PGO and allows
filtering of the optimization remarks by relevance. The idea was first
discussed here:
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
The general goal is to produce a YAML file with the remarks. Then, an
external tool could dynamically filter these by hotness and perhaps by
other things.
That said it makes sense to also expose this at the more basic level
where we just include the hotness info with each optimization remark.
For example, in D22694, the clang flag was pretty useful to measure the
overhead of the additional analyses required to include hotness.
(Without the flag we don't even run the analyses.)
For the record, Hal has already expressed support for the idea of this
patch on IRC.
Differential Revision: https://reviews.llvm.org/D23284
llvm-svn: 281276
OpenCL requires __ENDIAN_LITTLE__ be set for little endian targets.
The default for targets was also apparently big endian, so AMDGPU
was incorrectly reported as big endian. Set this from the triple
so targets don't have another place to set the endianness.
llvm-svn: 280787
-fprofile-dir=path allows the user to specify where .gcda files should be
emitted when the program is run. In particular, this is the first flag that
causes the .gcno and .o files to have different paths, LLVM is extended to
support this. -fprofile-dir= does not change the file name in the .gcno (and
thus where lcov looks for the source) but it does change the name in the .gcda
(and thus where the runtime library writes the .gcda file). It's different from
a GCOV_PREFIX because a user can observe that the GCOV_PREFIX_STRIP will strip
paths off of -fprofile-dir= but not off of a supplied GCOV_PREFIX.
To implement this we split -coverage-file into -coverage-data-file and
-coverage-notes-file to specify the two different names. The !llvm.gcov
metadata node grows from a 2-element form {string coverage-file, node dbg.cu}
to 3-elements, {string coverage-notes-file, string coverage-data-file, node
dbg.cu}. In the 3-element form, the file name is already "mangled" with
.gcno/.gcda suffixes, while the 2-element form left that to the middle end
pass.
llvm-svn: 280306
r280133. Original commit message:
C++ Modules TS: driver support for building modules.
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280134
to CC1, which are translated to function attributes and can e.g. be mapped on
build attributes FP_exceptions and FP_denormal. Setting these build attributes
allows better selection of floating point libraries.
Differential Revision: https://reviews.llvm.org/D23840
llvm-svn: 280064
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280035
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279651
In this mode, there is no need to load any module map and the programmer can
simply use "@import" syntax to load the module directly from a prebuilt
module path. When loading from prebuilt module path, we don't support
rebuilding of the module files and we ignore compatible configuration
mismatches.
rdar://27290316
Differential Revision: http://reviews.llvm.org/D23125
llvm-svn: 279096
standard's Annex B. We now attempt to increase the process's stack rlimit to
8MiB on startup, which appears to be enough to allow this to work reliably.
(And if it turns out not to be, we can investigate increasing it further.)
llvm-svn: 278983
Add 'ignore-non-existent-contents' to tell the VFS whether an invalid path
obtained via 'external-contents' should cause iteration on the VFS to stop.
If 'true', the VFS should ignore the entry and continue with the next. Allows
YAML files to be shared across multiple compiler invocations regardless of
prior existent paths in 'external-contents'. This global value is overridable
on a per-file basis.
This adds the parsing and write test part, but use by VFS comes next.
Differential Revision: https://reviews.llvm.org/D23422
rdar://problem/27531549
llvm-svn: 278456
Let the driver pass the option to frontend. Do not set precision metadata for division instructions when this option is set. Set function attribute "correctly-rounded-divide-sqrt-fp-math" based on this option.
Differential Revision: https://reviews.llvm.org/D22940
llvm-svn: 278155
Adjust target features for amdgcn target when -cl-denorms-are-zero is set.
Denormal support is controlled by feature strings fp32-denormals fp64-denormals in amdgcn target. If -cl-denorms-are-zero is not set and the command line does not set fp32/64-denormals feature string, +fp32-denormals +fp64-denormals will be on for GPU's supporting them.
A new virtual function virtual void TargetInfo::adjustTargetOptions(const CodeGenOptions &CGOpts, TargetOptions &TargetOpts) const is introduced to allow adjusting target option by codegen option.
Differential Revision: https://reviews.llvm.org/D22815
llvm-svn: 278151
This patch adds a command line option to list the checkers that were enabled
by analyzer-checker and not disabled by -analyzer-disable-checker.
It can be very useful to debug long command lines when it is not immediately
apparent which checkers are turned on and which checkers are turned off.
Differential Revision: https://reviews.llvm.org/D23060
llvm-svn: 278006
This differs from the previous version by being more careful about template
instantiation/specialization in order to prevent errors when building with
clang -Werror. Specifically:
* begin is not defined in the template and is instead instantiated when Head
is. I think the warning when we don't do that is wrong (PR28815) but for now
at least do it this way to avoid the warning.
* Instead of performing template specializations in LLVM_INSTANTIATE_REGISTRY
instead provide a template definition then do explicit instantiation. No
compiler I've tried has problems with doing it the other way, but strictly
speaking it's not permitted by the C++ standard so better safe than sorry.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 277806
Currently Clang use int32 to represent sampler_t, which have been a source of issue for some backends, because in some backends sampler_t cannot be represented by int32. They have to depend on kernel argument metadata and use IPA to find the sampler arguments and global variables and transform them to target specific sampler type.
This patch uses opaque pointer type opencl.sampler_t* for sampler_t. For each use of file-scope sampler variable, it generates a function call of __translate_sampler_initializer. For each initialization of function-scope sampler variable, it generates a function call of __translate_sampler_initializer.
Each builtin library can implement its own __translate_sampler_initializer(). Since the real sampler type tends to be architecture dependent, allowing it to be initialized by a library function simplifies backend design. A typical implementation of __translate_sampler_initializer could be a table lookup of real sampler literal values. Since its argument is always a literal, the returned pointer is known at compile time and easily optimized to finally become some literal values directly put into image read instructions.
This patch is partially based on Alexey Sotkin's work in Khronos Clang (3d4eec6162).
Differential Revision: https://reviews.llvm.org/D21567
llvm-svn: 277024
This version has two fixes compared to the original:
* In Registry.h the template static members are instantiated before they are
used, as clang gives an error if you do it the other way around.
* The use of the Registry template in clang-tidy is updated in the same way as
has been done everywhere else.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 276973
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
Differential Revision: http://reviews.llvm.org/D21385
llvm-svn: 276856
With PCH+Module, sometimes compiler gives a hard error:
Module file ‘<some-file path>.pcm' is out of date and needs to be rebuilt
This happens when we have a pch importing a module and the module gets
overwritten by another compiler instance after we build the pch (one example is
that both compiler instances hash to the same pcm file but use different
diagnostic options). When we try to load the pch later on, the compiler notices
that the imported module is out of date (modification date, size do not match)
but it can't handle this out of date pcm (i.e it does not know how to rebuild
the pch).
This commit introduces a new command line option so for PCH + module, we can
turn on this option and if two compiler instances only differ in diagnostic
options, the latter instance will not invalidate the original pcm.
rdar://26675801
Differential Revision: http://reviews.llvm.org/D22773
llvm-svn: 276769
Summary:
This patch replaces the CUDA specific action by a generic offload action. The offload action may have multiple dependences classier in “host” and “device”. The way this generic offloading action is used is very similar to what is done today by the CUDA implementation: it is used to set a specific toolchain and architecture to its dependences during the generation of jobs.
This patch also proposes propagating the offloading information through the action graph so that that information can be easily retrieved at any time during the generation of commands. This allows e.g. the "clang tool” to evaluate whether CUDA should be supported for the device or host and ptas to easily retrieve the target architecture.
This is an example of how the action graphs would look like (compilation of a single CUDA file with two GPU architectures)
```
0: input, "cudatests.cu", cuda, (host-cuda)
1: preprocessor, {0}, cuda-cpp-output, (host-cuda)
2: compiler, {1}, ir, (host-cuda)
3: input, "cudatests.cu", cuda, (device-cuda, sm_35)
4: preprocessor, {3}, cuda-cpp-output, (device-cuda, sm_35)
5: compiler, {4}, ir, (device-cuda, sm_35)
6: backend, {5}, assembler, (device-cuda, sm_35)
7: assembler, {6}, object, (device-cuda, sm_35)
8: offload, "device-cuda (nvptx64-nvidia-cuda:sm_35)" {7}, object
9: offload, "device-cuda (nvptx64-nvidia-cuda:sm_35)" {6}, assembler
10: input, "cudatests.cu", cuda, (device-cuda, sm_37)
11: preprocessor, {10}, cuda-cpp-output, (device-cuda, sm_37)
12: compiler, {11}, ir, (device-cuda, sm_37)
13: backend, {12}, assembler, (device-cuda, sm_37)
14: assembler, {13}, object, (device-cuda, sm_37)
15: offload, "device-cuda (nvptx64-nvidia-cuda:sm_37)" {14}, object
16: offload, "device-cuda (nvptx64-nvidia-cuda:sm_37)" {13}, assembler
17: linker, {8, 9, 15, 16}, cuda-fatbin, (device-cuda)
18: offload, "host-cuda (powerpc64le-unknown-linux-gnu)" {2}, "device-cuda (nvptx64-nvidia-cuda)" {17}, ir
19: backend, {18}, assembler
20: assembler, {19}, object
21: input, "cuda", object
22: input, "cudart", object
23: linker, {20, 21, 22}, image
```
The changes in this patch pass the existent regression tests (keeps the existent functionality) and resulting binaries execute correctly in a Power8+K40 machine.
Reviewers: echristo, hfinkel, jlebar, ABataev, tra
Subscribers: guansong, andreybokhanko, tcramer, mkuron, cfe-commits, arpith-jacob, carlo.bertolli, caomhin
Differential Revision: https://reviews.llvm.org/D18171
llvm-svn: 275645
This changes the CompilerInstance::createOutputFile function to return
a std::unique_ptr<llvm::raw_ostream>, rather than an llvm::raw_ostream
implicitly owned by the CompilerInstance. This in most cases required that
I move ownership of the output stream to the relevant ASTConsumer.
The motivation for this change is to allow BackendConsumer to be a client
of interfaces such as D20268 which take ownership of the output stream.
Differential Revision: http://reviews.llvm.org/D21537
llvm-svn: 275507
-fxray-instrument: enables XRay annotation of IR
-fxray-instruction-threshold: configures the threshold for function size (looking at IR instructions), and allow LLVM to decide whether to add the nop sleds later on in the process.
Also implements the related xray_always_instrument and xray_never_instrument function attributes.
Patch by Dean Michael Berris.
llvm-svn: 275330
Also fixes strict-aliasing option to only be allowed when OpenCL Version 1.0. Added testcase in test/Frontend/opencl-blocks.cl.
Patch by Aaron En Ye Shi.
Differential Revision: http://reviews.llvm.org/D22170
llvm-svn: 275318
This is to allow distributed build systems, that do not preserve time stamps, to use PCH files.
Second and last part of the patch proposed at:
Differential Revision: http://reviews.llvm.org/D20867
llvm-svn: 275267
Add OCL option -cl-no-signed-zeros to driver options.
Also added to opencl.cl testcases.
Patch by Aaron En Ye Shi.
Differential Revision: http://reviews.llvm.org/D22067
llvm-svn: 274923