When modules come from module map files explicitly specified by
-fmodule-map-file= arguments, allow those to override/shadow modules
with the same name that are found implicitly by header search. If such a
module is looked up by name (e.g. @import), we will always find the one
from -fmodule-map-file. If we try to use a shadowed module by including
one of its headers report an error.
This enables developers to force use of a specific copy of their module
to be used if there are multiple copies that would otherwise be visible,
for example if they develop modules that are installed in the default
search paths.
Patch originally by Ben Langmuir,
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20151116/143425.html
Based on cfe-dev discussion:
http://lists.llvm.org/pipermail/cfe-dev/2015-November/046164.html
Differential Revision: https://reviews.llvm.org/D31269
rdar://problem/23612102
llvm-svn: 321781
We used to advertise private modules to be declared as submodules
(Foo.Private). This has proven to not scale well since private headers
might carry several dependencies, introducing unwanted content into the
main module and often causing dep cycles.
Change the canonical way to name it to Foo_Private, forcing private
modules as top level ones, and provide warnings under -Wprivate-module
to suggest fixes for other private naming. Update documentation to
reflect that.
rdar://problem/31173501
llvm-svn: 321337
Summary:
llvm has grown a WritableMemoryBuffer class, which is convertible
(inherits from) a MemoryBuffer. We can use it to avoid conts_casting the
buffer contents when we want to write to it.
Reviewers: dblaikie, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D41387
llvm-svn: 321167
This ensures that when compiling for "arm64" __is_target_arch will succeed for
both "arm64" and "aarch64".
Thanks to Bob Wilson who pointed this out!
llvm-svn: 320853
builtin macros
This patch implements the __is_target_arch, __is_target_vendor, __is_target_os,
and __is_target_environment Clang preprocessor extensions that were proposed by
@compnerd in Bob's cfe-dev post:
http://lists.llvm.org/pipermail/cfe-dev/2017-November/056166.html.
These macros can be used to examine the components of the target triple at
compile time. A has_builtin(is_target_???) preprocessor check can be used to
check for their availability.
__is_target_arch allows you to check if an arch is specified without worring
about a specific subarch, e.g.
__is_target_arch(arm) returns 1 for the target arch "armv7"
__is_target_arch(armv7) returns 1 for the target arch "armv7"
__is_target_arch(armv6) returns 0 for the target arch "armv7"
__is_target_vendor and __is_target_environment match the specific vendor
or environment. __is_target_os matches the specific OS, but
__is_target_os(darwin) will match any Darwin-based OS. "Unknown" can be used
to test if the triple's component is specified.
rdar://35753116
Differential Revision: https://reviews.llvm.org/D41087
llvm-svn: 320734
Specifically, warn if:
* we find a character that the language standard says we must treat as an
identifier, and
* that character is not reasonably an identifier character (it's a punctuation
character or similar), and
* it renders identically to a valid non-identifier character in common
fixed-width fonts.
Some tools "helpfully" substitute the surprising characters for the expected
characters, and replacing semicolons with Greek question marks is a common
"prank".
llvm-svn: 320697
This behaves similar to the __has_cpp_attribute builtin macro in that it allows users to detect whether an attribute is supported with the [[]] spelling syntax, which can be enabled in C with -fdouble-square-bracket-attributes.
llvm-svn: 320088
Summary: This patch implements 4.3 of http://open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4220.pdf. If a raw string contains a newline character, replace each newline character with the \n escape code. Without this patch, included test case (macro_raw_string.cpp) results compilation failure.
Reviewers: rsmith, doug.gregor, jkorous-apple
Reviewed By: jkorous-apple
Subscribers: jkorous-apple, vsapsai, cfe-commits
Differential Revision: https://reviews.llvm.org/D39279
llvm-svn: 319904
when needed
This commit implements the semicolon insertion logic into the extract
refactoring. The following rules are used:
- extracting expression: add terminating ';' to the extracted function.
- extracting statements that don't require terminating ';' (e.g. switch): add
terminating ';' to the callee.
- extracting statements with ';': move (if possible) the original ';' from the
callee and add terminating ';'.
- otherwise, add ';' to both places.
Differential Revision: https://reviews.llvm.org/D39441
llvm-svn: 317343
Summary:
This change adds Scudo as a possible Sanitizer option via -fsanitize=.
This allows for easier static & shared linking of the Scudo library, it allows
us to enforce PIE (otherwise the security of the allocator is moot), and check
for incompatible Sanitizers combo.
In its current form, Scudo is not compatible with any other Sanitizer, but the
plan is to make it work in conjunction with UBsan (-fsanitize=scudo,undefined),
which will require additional work outside of the scope of this change.
Reviewers: eugenis, kcc, alekseyshl
Reviewed By: eugenis, alekseyshl
Subscribers: llvm-commits, srhines
Differential Revision: https://reviews.llvm.org/D39334
llvm-svn: 317337
When a preamble ends in a conditional preprocessor block that is being
skipped, the preprocessor needs to continue skipping that block when
the preamble is used.
This fixes PR34570.
llvm-svn: 317308
This patch implements an extension to the preprocessor:
__VA_OPT__(contents) --> which expands into its contents if variadic arguments are supplied to the parent macro, or behaves as an empty token if none.
- Currently this feature is only enabled for C++2a (this could be enabled, with some careful tweaks, for other dialects with the appropriate extension or compatibility warnings)
- The patch was reviewed here: https://reviews.llvm.org/D35782 and asides from the above (and moving some of the definition and expansion recognition logic into the corresponding state machines), I believe I incorporated all of Richard's suggestions.
A few technicalities (most of which were clarified through private correspondence between rsmith, hubert and thomas) are worth mentioning. Given:
#define F(a,...) a #__VA_OPT__(a ## a) a ## __VA_OPT__(__VA_ARGS__)
- The call F(,) Does not supply any tokens for the variadic arguments and hence VA_OPT behaves as a placeholder.
- When expanding VA_OPT (for e.g. F(,1) token pasting occurs eagerly within its contents if the contents need to be stringified.
- A hash or a hashhash prior to VA_OPT does not inhibit expansion of arguments if they are the first token within VA_OPT.
- When a variadic argument is supplied, argument substitution occurs within the contents as does stringification - and these resulting tokens are inserted back into the macro expansions token stream just prior to the entire stream being rescanned and concatenated.
See wg21.link/P0306 for further details on the feature.
Acknowledgment: This patch would have been poorer if not for Richard Smith's usual thoughtful analysis and feedback.
llvm-svn: 315840
- it made the bots v angry!
I'm not exactly sure why the assertion doesn't hold - if anyone has any insight - would appreciate it.
Thanks!
llvm-svn: 314748
In passing:
- change the name of the function to pasteTokens c/w coding standards
- rename CurToken to CurTokenIdx (since it is not the token, but the index)
- add doxygen comments to document some of pasteTokens' functionality
- use parameter names different from the data member names.
This will be useful for implementing __VA_OPT__ (https://reviews.llvm.org/D35782#inline-322587)
llvm-svn: 314747
- MacroArgs already knows the maximum number of arguments that can be supplied to the macro. No need to pass MacroInfo (information about the macro definition) to the call to getPreExpArgument (which by the way might benefit from being called getExpandedArgument() ?) for it to compute the number of arguments.
llvm-svn: 314593
The oldest versions of GCC we support (before 5) didn't support that
trait. is_trivial is stronger superset that clang::Token fulfills, so
just use that instead.
llvm-svn: 314391
Refactor MacroArgs to use TrailingObjects when creating a variably sized object on the heap to store the unexpanded tokens immediately after the MacroArgs object.
llvm-svn: 314372
This patch fixes broken preamble-skipping when the preamble region includes a byte order mark (BOM). Previously, parsing would fail if preamble PCH generation was enabled and a BOM was present.
This also fixes preamble invalidation when a BOM appears or disappears. This may seem to be an obscure edge case, but it happens regularly with IDEs that pass buffer overrides that never (or always) have a BOM, yet the underlying file from the initial parse that generated a PCH might (or might not) have a BOM.
I've included a test case for these scenarios.
Differential Revision: https://reviews.llvm.org/D37491
llvm-svn: 313796
Introduce a new "export_as" directive for top-level modules, which
indicates that the current module is a "private" module whose symbols
will eventually be exported through the named "public" module. This is
in support of a common pattern in the Darwin ecosystem where a single
public framework is constructed of several private frameworks, with
(currently) header duplication and some support from the linker.
Addresses rdar://problem/34438420.
llvm-svn: 313316
Summary:
This fixes PR34547.
`Lexer::LexEndOfFile` handles recording of ConditionalStack for
preamble and reporting errors about unmatched conditionalal PP
directives.
However, SkipExcludedConditionalBlock contianed duplicated logic for
reporting errors and clearing ConditionalStack, but not for preamble
recording.
This fix removes error reporting logic from
`SkipExcludedConditionalBlock`, unmatched PP conditionals are now
reported inside `Lexer::LexEndOfFile`.
Reviewers: erikjv, klimek, bkramer
Reviewed By: erikjv
Subscribers: nik, cfe-commits
Differential Revision: https://reviews.llvm.org/D37700
llvm-svn: 313014
This patch teaches the preprocessor to report more precise source ranges for
code that is skipped due to conditional directives.
The new behavior includes the '#' from the opening directive and the full text
of the line containing the closing directive in the skipped area. This matches
up clang's behavior (we don't IRGen the code between the closing "endif" and
the end of a line).
This also affects the code coverage implementation. See llvm.org/PR34166 (this
also happens to be rdar://problem/23224058).
The old behavior (report the end of the skipped range as the end
location of the 'endif' token) is preserved for indexing clients.
Differential Revision: https://reviews.llvm.org/D36642
llvm-svn: 312947
This is a recommit of r312781; in some build configurations
variable names are omitted, so changed the new regression
test accordingly.
llvm-svn: 312794
This adds _Float16 as a source language type, which is a 16-bit floating point
type defined in C11 extension ISO/IEC TS 18661-3.
In follow up patches documentation and more tests will be added.
Differential Revision: https://reviews.llvm.org/D33719
llvm-svn: 312781
Correct implementation: Apparently I managed in r311683 to submit the wrong
version of the patch for this, so I'm correcting it now.
Differential Revision: https://reviews.llvm.org/D37079
llvm-svn: 312542
This follows the scheme agreed with Nathan Sidwell, which can be found here:
https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
This will be proposed to the itanium-cxx-abi list once we have some experience
with how well it works; the ABI for this TS should be considered unstable until
it is part of the Itanium C++ ABI.
llvm-svn: 312467
Extend the -fmodule-file option to support the [<name>=]<file> value format.
If the name is omitted, then the old semantics is preserved (the module file
is loaded whether needed or not). If the name is specified, then the mapping
is treated as just another prebuilt module search mechanism, similar to
-fprebuilt-module-path, and the module file is only loaded if actually used
(e.g., via import). With one exception: this mapping also overrides module
file references embedded in other modules (which can be useful if module files
are moved/renamed as often happens during remote compilation).
This override semantics requires some extra work: we now store the module name
in addition to the file name in the serialized AST representation.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D35020
llvm-svn: 312220
Extend the -fmodule-file option to support the [<name>=]<file> value format.
If the name is omitted, then the old semantics is preserved (the module file
is loaded whether needed or not). If the name is specified, then the mapping
is treated as just another prebuilt module search mechanism, similar to
-fprebuilt-module-path, and the module file is only loaded if actually used
(e.g., via import). With one exception: this mapping also overrides module
file references embedded in other modules (which can be useful if module files
are moved/renamed as often happens during remote compilation).
This override semantics requires some extra work: we now store the module name
in addition to the file name in the serialized AST representation.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D35020
llvm-svn: 312105
Discovered due to a goofy git setup, the test system-headerline-directive.c
(and a few others) failed because the token-consumption will consume only the
'\r' in CRLF, making the preprocessor's printed value give the wrong line number
when returning from an include. For example:
(line 1):#include <noline.h>\r\n
The "file exit" code causes the printer to try to print the 'returned to the
main file' line. It looks up what the current line number is. However, since the
current 'token' is the '\n' (since only the \r was consumed), it will give the
line number as '1", not '2'. This results in a few failed tests, but more
importantly, results in error messages being incorrect when compiling a
previously preprocessed file.
Differential Revision: https://reviews.llvm.org/D37079
llvm-svn: 311683
Summary:
The crash occurs when the first token after a preamble is a macro
expansion.
Fixed by moving replayPreambleConditionalStack from Parser into
Preprocessor. It is now called right after the predefines file is
processed.
Reviewers: erikjv, bkramer, klimek, yvvan
Reviewed By: bkramer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D36872
llvm-svn: 311330
When non-modular headers are imported while not building a module but
in -fmodules mode, be conservative and preserve the default #import
semantic: do not reenter headers.
rdar://problem/33745031
llvm-svn: 310605
Summary:
Lexer::GetBeginningOfToken produced invalid location when
backtracking across escaped new lines.
This fixes PR26228
Reviewers: akyrtzi, alexfh, rsmith, doug.gregor
Reviewed By: alexfh
Subscribers: alexfh, cfe-commits
Patch by Paweł Żukowski!
Differential Revision: https://reviews.llvm.org/D30748
llvm-svn: 310576
C++14 added user-defined literal support for complex numbers so that you
can write something like "complex<double> val = 2i". However, there is
an existing GNU extension supporting this syntax and interpreting the
result as a _Complex type.
This changes parsing so that such literals are interpreted in terms of
C++14's operators if an overload is present but otherwise falls back to
the original GNU extension.
(We now have more robust diagnostics for implicit conversions so the
libc++ test that caused the original revert still passes).
llvm-svn: 310478
This led to crashes as the line number cache would report a bogus line number
for a line of code, and we'd try to find a nonexistent column within the line
when printing diagnostics.
llvm-svn: 309503
- This will also be used for the forthcoming __VA_OPT__ feature approved for C++2a.
- recommended by rsmith during his review of the __VA_OPT__ patch (https://reviews.llvm.org/D35782)
llvm-svn: 308948
- Extracted the reading of the tokens out into a separate function.
- Replace 'Argument' with 'Parameter' when referring to the identifiers of the macro definition (as opposed to the supplied arguments - MacroArgs - during the macro invocation).
This is in preparation for submitting patches for review to implement __VA_OPT__ which will otherwise just keep lengthening the HandleDefineDirective function and making it less comprehensible.
I will also directly update some extra clang tooling that is broken by the change from Argument to Parameter.
Hopefully the bots will stay appeased.
Thanks!
llvm-svn: 308190
- Extracted the reading of the tokens out into a separate function.
- Replace 'Argument' with 'Parameter' when referring to the identifiers of the macro definition (as opposed to the supplied arguments - MacroArgs - during the macro invocation).
This is in preparation for submitting patches for review to implement __VA_OPT__ which will otherwise just keep lengthening the HandleDefineDirective function and making it less comprehensible.
Thanks!
llvm-svn: 308157
The goal of this commit is to fix clang-format so it does not merge tokens when
using the alternative spelling keywords. (eg: "not foo" should not become "notfoo")
The problem is that Preprocessor::HandleIdentifier used to drop the identifier info
from the token for these keyword. This means the first condition of
TokenAnnotator::spaceRequiredBefore is not met. We could add explicit check for
the spelling in that condition, but I think it is better to keep the IdentifierInfo
and handle the operator keyword explicitly when needed. That actually leads to simpler
code, and probably slightly more efficient as well.
Another side effect of this change is that __identifier(and) will now work as
one would expect, removing a FIXME from the MicrosoftExtensions.cpp test
Differential Revision: https://reviews.llvm.org/D35172
llvm-svn: 308008
This patch extends the `overloadable` attribute to allow for one
function with a given name to not be marked with the `overloadable`
attribute. The overload without the `overloadable` attribute will not
have its name mangled.
So, the following code is now legal:
void foo(void) __attribute__((overloadable));
void foo(int);
void foo(float) __attribute__((overloadable));
In addition, this patch fixes a bug where we'd accept code with
`__attribute__((overloadable))` inconsistently applied. In other words,
we used to accept:
void foo(void);
void foo(void) __attribute__((overloadable));
But we will do this no longer, since it defeats the original purpose of
requiring `__attribute__((overloadable))` on all redeclarations of a
function.
This breakage seems to not be an issue in practice, since the only code
I could find that had this pattern often looked like:
void foo(void);
void foo(void) __attribute__((overloadable)) __asm__("foo");
void foo(int) __attribute__((overloadable));
...Which can now be simplified by simply removing the asm label and
overloadable attribute from the redeclaration of `void foo(void);`
Differential Revision: https://reviews.llvm.org/D32332
llvm-svn: 306467
'HandleEndifDirective' asserts that 'WasSkipping' is false, so switch to using 'FoundNonSkip' as the hint for 'SingleFileParseMode' to keep going with parsing.
llvm-svn: 305940
This is useful for being able to parse the preprocessor directive blocks even if the header, that defined the macro that is checked, hasn't been included.
Differential Revision: https://reviews.llvm.org/D34263
llvm-svn: 305797
for preprocessing
r300667 added support for editor placeholder to Clang. That commit didn’t take
into account that users who use Clang for preprocessing only (-E) will get the
"editor placeholder in source file" error when preprocessing their source
(PR33394). This commit ensures that Clang doesn't lex editor placeholders when
running a preprocessor only action.
rdar://32718000
Differential Revision: https://reviews.llvm.org/D34256
llvm-svn: 305576
correct getNumArguments
StringifiedArguments is allocated (resized) based on the size the
getNumArguments function. However, this function ACTUALLY currently
returns the amount of total UnexpArgTokens which is minimum the same as
the new implementation of getNumMacroArguments, since empty/omitted arguments
result in 1 UnexpArgToken, and included ones at minimum include 2
(1 for the arg itself, 1 for eof).
This patch renames the otherwise unused getNumArguments to be more clear
that it is the number of arguments that the Macro expects, and thus the maximum
number that can be stringified. This patch also replaces the explicit memset
(which results in value instantiation of the new tokens, PLUS clearing the
memory) with brace initialization.
Differential Revision: https://reviews.llvm.org/D32046
llvm-svn: 305425
UBSan found an issue with a nullptr being assigned to a reference.
This was because a following function went back and checked the
identifier in the CPPOperatorName case. This patch corrects that
location with the original logic as well.
llvm-svn: 305128
as part of a compilation.
This is intended for two purposes:
1) Writing self-contained test cases for modules: we can now write a single
source file test that builds some number of module files on the side and
imports them.
2) Debugging / test case reduction. A single-source testcase is much more
amenable to reduction, compared to a VFS tarball or .pcm files.
llvm-svn: 305101
to support operator keywords used in Windows SDK, alter token type when
seen in system headers
Hello, I submitted D33505 to address this problem, but the
proposal was rejected as too big a hammer.
This change will allow clang to parse the WindowsSDK header <query.h>
which uses the operator name "or" as a field name. Treat cpp operator
keywords as ordinary identifiers inside the Microsoft headers, but
treat them as usual in the user's program.
Original Submitter: Melanie Blower (mibintc)
Differential Revision: https://reviews.llvm.org/D33782
llvm-svn: 305087
This is useful for parsing a single file, as a fast/inaccurate 'mode' that can still provide declarations from the file, like the classes and their methods.
llvm-svn: 305044
This patch adds support for a `header` declaration in a module map to specify
certain `stat` information (currently, size and mtime) about that header file.
This has two purposes:
- It removes the need to eagerly `stat` every file referenced by a module map.
Instead, we track a list of unresolved header files with each size / mtime
(actually, for simplicity, we track submodules with such headers), and when
attempting to look up a header file based on a `FileEntry`, we check if there
are any unresolved header directives with that `FileEntry`'s size / mtime and
perform deferred `stat`s if so.
- It permits a preprocessed module to be compiled without the original files
being present on disk. The only reason we used to need those files was to get
the `stat` information in order to do header -> module lookups when using the
module. If we're provided with the `stat` information in the preprocessed
module, we can avoid requiring the files to exist.
Unlike most `header` directives, if a `header` directive with `stat`
information has no corresponding on-disk file the enclosing module is *not*
marked unavailable (so that behavior is consistent regardless of whether we've
resolved a header directive, and so that preprocessed modules don't get marked
unavailable). We could actually do this for all `header` directives: the only
reason we mark the module unavailable if headers are missing is to give a
diagnostic slightly earlier (rather than waiting until we actually try to build
the module / load and validate its .pcm file).
Differential Revision: https://reviews.llvm.org/D33703
llvm-svn: 304515
to the original module map.
Also use the path and name of the original module map when emitting that
information into the .pcm file. The upshot of this is that the produced .pcm
file will track information for headers in their original locations (where the
module was preprocessed), not relative to whatever directory the preprocessed
module map was in when it was built.
llvm-svn: 304346
Previously, a preamble only included #if blocks (and friends like
ifdef) if there was a corresponding #endif before any declaration or
definition. The problem is that any header file that uses include guards
will not have a preamble generated, which can make code-completion very
slow.
To prevent errors about unbalanced preprocessor conditionals in the
preamble, and unbalanced preprocessor conditionals after a preamble
containing unfinished conditionals, the conditional stack is stored
in the pch file.
This fixes PR26045.
Differential Revision: http://reviews.llvm.org/D15994
llvm-svn: 304207
and it has an include guard, produce callbacks for a module import, not for a
skipped non-modular header.
Fixes -E output when preprocessing a module to list these cases as a module
import, rather than suppressing the #include and losing the import side effect.
llvm-svn: 304183
This is an initial commit to allow using it with constant expressions, a follow-up commit will enable full support for it in ObjC methods.
llvm-svn: 303712
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694
This allows #line directives to appear in system headers that have code
that clang would normally warn on. This is compatible with GCC, which is
easy to test by running `gcc -E`.
Fixes PR30752
llvm-svn: 303582
remove the mechanism for doing so.
This mechanism was incorrect in the presence of preprocessed modules (and
#pragma clang module begin/end).
llvm-svn: 303469
When reaching the end of a module, we used to convert its macros to
ModuleMacros but also leave them in the MacroDirective chain for the
identifier. This meant that every lookup of such a macro would find two
(identical) definitions. It also made it difficult to determine the correct
owner for a macro when reaching the end of a module: the most recent
MacroDirective in the chain could be from an #included submodule rather than
the current module.
Simplify this: whenever we convert a MacroDirective to a ModuleMacro when
leaving a module, clear out the MacroDirective chain for that identifier, and
just rely on the ModuleMacro to provide the macro definition information.
(We don't want to do this for local submodule visibility mode, because in that
mode we maintain a distinct MacroDirective chain for each submodule, and we
need to keep around the prior MacroDirective in case we re-enter the submodule
-- for instance, if its header is #included more than once in a module build,
we need the include guard directive to stick around. But the problem doesn't
arise in this case for the same reason: each submodule has its own
MacroDirective chain, so the macros don't leak out of submodules in the first
place.)
This reinstates r302932, reverted in r302947, with a fix for a bug that
resulted in us sometimes losing macro definitions due to failing to clear out
the overridden module macro list when promoting a directive to a module macro.
llvm-svn: 303468
retrieving the identifer info for an Objective-C keyword
This commit fixes an assertion that's triggered in getIdentifier when the token
is an annotation token.
rdar://32225463
llvm-svn: 303246
When reaching the end of a module, we used to convert its macros to
ModuleMacros but also leave them in the MacroDirective chain for the
identifier. This meant that every lookup of such a macro would find two
(identical) definitions. It also made it difficult to determine the correct
owner for a macro when reaching the end of a module: the most recent
MacroDirective in the chain could be from an #included submodule rather than
the current module.
Simplify this: whenever we convert a MacroDirective to a ModuleMacro when
leaving a module, clear out the MacroDirective chain for that identifier, and
just rely on the ModuleMacro to provide the macro definition information.
(We don't want to do this for local submodule visibility mode, because in that
mode we maintain a distinct MacroDirective chain for each submodule, and we
need to keep around the prior MacroDirective in case we re-enter the submodule
-- for instance, if its header is #included more than once in a module build,
we need the include guard directive to stick around. But the problem doesn't
arise in this case for the same reason: each submodule has its own
MacroDirective chain, so the macros don't leak out of submodules in the first
place.)
llvm-svn: 302932
In r298391 we fixed the umbrella framework model to work when submodules
named "Private" are used. This complements the work by allowing the
umbrella framework model to work in general.
rdar://problem/31790067
llvm-svn: 302491
To support this, an optional marker "#pragma clang module contents" is
recognized in module map files, and the rest of the module map file from that
point onwards is treated as the source of the module. Preprocessing a module
map produces the input module followed by the marker and then the preprocessed
contents of the module.
Ignoring line markers, a preprocessed module might look like this:
module A {
header "a.h"
}
#pragma clang module contents
#pragma clang module begin A
// ... a.h ...
#pragma clang module end
The preprocessed output generates line markers, which are not accepted by the
module map parser, so -x c++-module-map-cpp-output should be used to compile
such outputs.
A couple of major parts do not work yet:
1) The files that are listed in the module map must exist on disk, in order to
build the on-disk header -> module lookup table in the PCM file. To fix
this, we need the preprocessed output to track the file size and other stat
information we might use to build the lookup table.
2) Declaration ownership semantics don't work properly yet, since mapping from
a source location to a module relies on mapping from FileIDs to modules,
which we can't do if module transitions can occur in the middle of a file.
llvm-svn: 302309
This patch adds a fix-it for the -Wunguarded-availability warning. This fix-it
is similar to the Swift one: it suggests that you wrap the statement in an
`if (@available)` check. The produced fixits are indented (just like the Swift
ones) to make them look nice in Xcode's fix-it preview.
rdar://31680358
Differential Revision: https://reviews.llvm.org/D32424
llvm-svn: 302253
The whitespace should come from the argument name in the macro
expansion, rather than from the token passed to the macro (same as it
does when not pasting).
Added a new test case for the change in behavior to stringize_space.c.
FileCheck'ized macro_paste_commaext.c, tweaked the test case, and
added a comment; no behavioral change to this test.
Differential Revision: https://reviews.llvm.org/D30427
llvm-svn: 302195
These pragmas are intended to simulate the effect of entering or leaving a file
with an associated module. This is not completely implemented yet: declarations
between the pragmas will not be attributed to the correct module, but macro
visibility is already functional.
Modules named by #pragma clang module begin must already be known to clang (in
some module map that's either loaded or on the search path).
llvm-svn: 302098
Many of our supported configurations support modules but do not have any
first-class syntax to perform a module import. This leaves us with a problem:
there is no way to represent the expansion of a #include that imports a module
in the -E output for such languages. (We don't want to just leave it as a
#include because that requires the consumer of the preprocessed source to have
the same file system layout and include paths as the creator.)
This patch adds a new pragma:
#pragma clang module import MODULE.NAME.HERE
that imports a module, and changes -E and -frewrite-includes to use it when
rewriting a #include that maps to a module import. We don't make any attempt
to use a native language syntax import if one exists, to get more consistent
output. (If in the future, @import and #include have different semantics in
some way, the pragma will track the #include semantics.)
llvm-svn: 301725
One of the -Wincomplete-umbrella warnings diagnoses when a header is present in
the directory but it's not present in the umbrella header. Currently, this
warning only happens on top level modules; any submodule using an umbrella
header does not get this warning. Fix that by also considering the submodules.
Differential Revision: https://reviews.llvm.org/D32576
rdar://problem/22623686
llvm-svn: 301597
If a file search involves a header map, suppress
-Wnonportable-include-path. It's firing lots of false positives for
framework authors internally, and it's not trivial to fix.
Consider a framework called "Foo" with a main (installed) framework header
"Foo/Foo.h". It's atypical for "Foo.h" to actually live inside a
directory called "Foo" in the source repository. Instead, the
build system generates a header map while building the framework.
If Foo.h lives at the top-level of the source repository (common), and
the git repo is called ssh://some.url/foo.git, then the header map will
have something like:
Foo/Foo.h -> /Users/myname/code/foo/Foo.h
where "/Users/myname/code/foo" is the clone of ssh://some.url/foo.git.
After #import <Foo/Foo.h>, the current implementation of
-Wnonportable-include-path will falsely assume that Foo.h was found in a
nonportable way, because of the name of the git clone (.../foo/Foo.h).
However, that directory name was not involved in the header search at
all.
This commit adds an extra parameter to Preprocessor::LookupFile and
HeaderSearch::LookupFile to track if the search used a header map,
making it easy to suppress the warning. Longer term, once we find a way
to avoid the false positive, we should turn the warning back on.
rdar://problem/28863903
llvm-svn: 301592
This reverts commit r301449. It breaks the build with:
MacroPPCallbacks.h:114:50: error: non-virtual member function marked 'override' hides virtual member function
llvm-svn: 301469
Summary:
The PPCallbacks::MacroUndefined callback is currently insufficient for clients that need to track the MacroDirectives.
This patch adds an additional argument to PPCallbacks::MacroUndefined that is the undef MacroDirective.
Reviewers: bruno, manmanren
Reviewed By: bruno
Subscribers: nemanjai, cfe-commits
Differential Revision: https://reviews.llvm.org/D29923
llvm-svn: 301449
Drive-by fix (noticed while working on https://reviews.llvm.org/D32205):
DebugOverflowStack() is supposed to provoke a stack overflow, however
LLVM was smart enough to use the red-zone and fold the load into a tail
jump on x86_64 optimizing this to an endless loop instead of a stack
overflow.
llvm-svn: 301218
This commit teaches Clang to recognize editor placeholders that are produced
when an IDE like Xcode inserts a code-completion result that includes a
placeholder. Now when the lexer sees a placeholder token, it emits an
'editor placeholder in source file' error and creates an identifier token
that represents the placeholder. The parser/sema can now recognize the
placeholders and can suppress the diagnostics related to the placeholders. This
ensures that live issues in an IDE like Xcode won't get spurious diagnostics
related to placeholders.
This commit also adds a new compiler option named '-fallow-editor-placeholders'
that silences the 'editor placeholder in source file' error. This is useful
for an IDE like Xcode as we don't want to display those errors in live issues.
rdar://31581400
Differential Revision: https://reviews.llvm.org/D32081
llvm-svn: 300667
Previously, if an escaped newline was followed by a newline or a nul, we'd lex
the escaped newline as a bogus space character. This led to a bunch of
different broken corner cases:
For the pattern "\\\n\0#", we would then have a (horizontal) space whose
spelling ends in a newline, and would decide that the '#' is at the start of a
line, and incorrectly start preprocessing a directive in the middle of a
logical source line. If we were already in the middle of a directive, this
would result in our attempting to process multiple directives at the same time!
This resulted in crashes, asserts, and hangs on invalid input, as discovered by
fuzz-testing.
For the pattern "\\\n" at EOF (with an implicit following nul byte), we would
produce a bogus trailing space character with spelling "\\\n". This was mostly
harmless, but would lead to clang-format getting confused and misformatting in
rare cases. We now produce a trailing EOF token with spelling "\\\n",
consistent with our handling for other similar cases -- an escaped newline is
always part of the token containing the next character, if any.
For the pattern "\\\n\n", this was somewhat more benign, but would produce an
extraneous whitespace token to clients who care about preserving whitespace.
However, it turns out that our lexing for line comments was relying on this bug
due to an off-by-one error in its computation of the end of the comment, on the
slow path where the comment might contain escaped newlines.
llvm-svn: 300515
This allows using and testing these two features separately. (noteably,
debug info is, so far as I know, always a win (basically). But function
modular codegen is currently a loss for highly optimized code - where
most of the linkonce_odr definitions are optimized away, so providing
weak_odr definitions is only overhead)
llvm-svn: 300104
Summary: When using the C preprocessor with assembly files, either with a
capital `S` file extension, or with `-xassembler-with-cpp`, the Unicode escape
sequence `\u` is ignored. The `\u` pattern can be used for expanding a macro
argument that starts with `u`.
Author: Salman Arif <salman.arif@arm.com>
Reviewers: rengolin, olista01
Reviewed By: olista01
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31765
llvm-svn: 299754
Fix the current parsing of subframeworks in modulemaps to lookup for
headers based on whether they are frameworks.
rdar://problem/30563982
llvm-svn: 298391
This reverts commit r298185, effectively reapplying r298165, after fixing the
new unit tests (PR32338). The memory buffer generator doesn't null-terminate
the MemoryBuffer it creates; this version of the commit informs getMemBuffer
about that to avoid the assert.
Original commit message follows:
----
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298278
Clang's internal build system for implicit modules uses lock files to
ensure that after a process writes a PCM it will read the same one back
in (without contention from other -cc1 commands). Since PCMs are read
from disk repeatedly while invalidating, building, and importing, the
lock is not released quickly. Furthermore, the LockFileManager is not
robust in every environment. Other -cc1 commands can stall until
timeout (after about eight minutes).
This commit changes the lock file from being necessary for correctness
to a (possibly dubious) performance hack. The remaining benefit is to
reduce duplicate work in competing -cc1 commands which depend on the
same module. Follow-up commits will change the internal build system to
continue after a timeout, and reduce the timeout. Perhaps we should
reconsider blocking at all.
This also fixes a use-after-free, when one part of a compilation
validates a PCM and starts using it, and another tries to swap out the
PCM for something new.
The PCMCache is a new type called MemoryBufferCache, which saves memory
buffers based on their filename. Its ownership is shared by the
CompilerInstance and ModuleManager.
- The ModuleManager stores PCMs there that it loads from disk, never
touching the disk if the cache is hot.
- When modules fail to validate, they're removed from the cache.
- When a CompilerInstance is spawned to build a new module, each
already-loaded PCM is assumed to be valid, and is frozen to avoid
the use-after-free.
- Any newly-built module is written directly to the cache to avoid the
round-trip to the filesystem, making lock files unnecessary for
correctness.
Original patch by Manman Ren; most testcases by Adrian Prantl!
llvm-svn: 298165
in macro argument pre-expansion mode when skipping a function body
This commit fixes a token caching problem that currently occurs when clang is
skipping a function body (e.g. when looking for a code completion token) and at
the same time caching the tokens for _Pragma when lexing it in macro argument
pre-expansion mode.
When _Pragma is being lexed in macro argument pre-expansion mode, it caches the
tokens so that it can avoid interpreting the pragma immediately (as the macro
argument may not be used in the macro body), and then either backtracks over or
commits these tokens. The problem is that, when we're backtracking/committing in
such a scenario, there's already a previous backtracking position stored in
BacktrackPositions (as we're skipping the function body), and this leads to a
situation where the cached tokens from the pragma (like '(' 'string_literal'
and ')') will remain in the cached tokens array incorrectly even after they're
consumed (in the case of backtracking) or just ignored (in the case when they're
committed). Furthermore, what makes it even worse, is that because of a previous
backtracking position, the logic that deals with when should we call
ExitCachingLexMode in CachingLex no longer works for us in this situation, and
more tokens in the macro argument get cached, to the point where the EOF token
that corresponds to the macro argument EOF is cached. This problem leads to all
sorts of issues in code completion mode, where incorrect errors get presented
and code completion completely fails to produce completion results.
rdar://28523863
Differential Revision: https://reviews.llvm.org/D28772
llvm-svn: 296140
Summary: This is a patch for PR31836. As the bug replaces the path separators in the included file name with the characters following them, the test script makes sure that there's no "Ccase-insensitive-include-pr31836.h" in the warning message.
Reviewers: rsmith, eric_niebler
Reviewed By: eric_niebler
Subscribers: karies, cfe-commits
Differential Revision: https://reviews.llvm.org/D30000
llvm-svn: 295779
The Module::WithCodegen flag was only being set when the module was
parsed from a ModuleMap. Instead set it late, in the ASTWriter to match
the layer where the MODULAR_CODEGEN_DECLs list is determined (the
WithCodegen flag essentially means "are this module's decls in
MODULAR_CODEGEN_DECLs").
When simultaneous emission of AST file and modular object is implemented
this may need to change - the Module::WithCodegen flag will need to be
set earlier, and ideally the MODULAR_CODEGEN_DECLs gathering will
consult this flag (that's not possible right now since Decls destined
for an AST File don't have a Module - only if they're /read/ from a
Module is that true - I expect that would need to change as well).
llvm-svn: 293692
First pass at generating weak definitions of inline functions from module files
(& skipping (-O0) or emitting available_externally (optimizations)
definitions where those modules are used).
External functions defined in modules are emitted into the modular
object file as well (this may turn an existing ODR violation (if that
module were imported into multiple translations) into valid/linkable
code).
Internal symbols (static functions, for example) are not correctly
supported yet. The symbol will be produced, internal, in the modular
object - unreferenceable from the users.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D28845
llvm-svn: 293456
by providing a memchr builtin that returns char* instead of void*.
Also add a __has_feature flag to indicate the presence of constexpr forms of
the relevant <string> functions.
llvm-svn: 292555
When a textual header is present inside a umbrella dir but not in the
header, we get the misleading warning:
warning: umbrella header for module 'FooFramework' does not include
header 'Baz_Private.h'
The module map in question:
framework module FooFramework {
umbrella header "FooUmbrella.h"
export *
module * { export * }
module Private {
textual header "Baz_Private.h"
}
}
Fix this by taking textual headers into account.
llvm-svn: 291794
Textual headers and builtins that are #import'd from different
modules should get re-entered when these modules are independent
from each other.
Differential Revision: https://reviews.llvm.org/D26267
rdar://problem/25881934
llvm-svn: 291644
In r276159, we started to say that a module X is defined in a pch if we specify
-fmodule-name when building the pch. This caused a regression that reports
module X is defined in both pch and pcm if we generate the pch with
-fmodule-name=X and then in a separate clang invocation, we include the pch and
also import X.pcm.
This patch adds an option CompilingPCH similar to CompilingModule. When we use
-fmodule-name=X while building a pch, modular headers in X will be textually
included and the compiler knows that we are not building module X, so we don't
put module X in SUBMODULE_DEFINITION of the pch.
Differential Revision: http://reviews.llvm.org/D28415
llvm-svn: 291465
Summary:
The module system supports accompanying a primary module (say Foo) with
an auxiliary "private" module (defined in an adjacent module.private.modulemap
file) that augments the primary module when associated private headers are
available. The feature is intended to be used to augment the primary
module with a submodule (say Foo.Private), however some users in the wild
are choosing to augment the primary module with an additional top-level module
with a "similar" name (in all cases so far: FooPrivate).
This "works" when a user of the module initially imports a private header,
such as '#import "Foo/something_private.h"' since the Foo import winds up
importing FooPrivate in passing. But if the import is subsequently recorded
in a PCH file, reloading the PCH will fail to validate because of a cross-check
that attempts to find the module.modulemap (or module.private.modulemap) using
HeaderSearch algorithm, applied to the "FooPrivate" name. Since it's stored in
Foo.framework/Modules, not FooPrivate.framework/Modules, the check fails and
the PCH is rejected.
This patch adds a compensatory workaround in the HeaderSearch algorithm
when searching (and failing to find) a module of the form FooPrivate: the
name used to derive filesystem paths is decoupled from the module name
being searched for, and if the initial search fails and the module is
named "FooPrivate", the filesystem search name is altered to remove the
"Private" suffix, and the algorithm is run a second time (still looking for
a module named FooPrivate, but looking in directories derived from Foo).
Accompanying this change is a new warning that triggers when a user loads
a module.private.modulemap that defines a top-level module with a different
name from the top-level module defined in its adjacent module.modulemap.
Reviewers: doug.gregor, manmanren, bruno
Subscribers: bruno, cfe-commits
Differential Revision: https://reviews.llvm.org/D27852
llvm-svn: 290219